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2

Percolation

Random fractals in Nature arise for a variety of reasons (dynamic chaotic pro-
cesses, self-organized criticality, etc.) that are the focus of much current research.
Percolation is one such chief mechanism. The importance of percolation lies in
the fact that it models critical phase transitions of rich physical content, yet it may
be formulated and understood in terms of very simple geometrical concepts. It
is also an extremely versatile model, with applications to such diverse problems
as supercooled water, galactic structures, fragmentation, porous materials, and
earthquakes.

2.1 The percolation transition

Consider a square lattice on which each bond is present with probabilityp, or
absent with probability 1− p. Whenp is small there is a dilute population of bonds,
and clusters of small numbers of connected bonds predominate. Asp increases, the
size of the clusters also increases. Eventually, forp large enough there emerges a
cluster that spans the lattice from edge to edge (Fig. 2.1). If the lattice is infinite, the
inception of the spanning cluster occurs sharply upon crossing acritical threshold
of the bond concentration,p = pc.

The probability that a given bond belongs to the incipient infinite cluster,P∞,
undergoes a phase transition: it is zero forp < pc, and increases continuously as
p is made larger than the critical thresholdpc (Fig. 2.2). Above and close to the
transition point,P∞ follows a power law:

P∞ ∼ (p − pc)
β. (2.1)

This phenomenon is known as thepercolationtransition. The name comes from the
possible interpretation of bonds as channels open to the flow of a fluid in a porous
medium (absent bonds represent blocked channels). At the transition point the
fluid can percolate through the medium for the first time. The flow rate undergoes

13



14 Percolation

Fig. 2.1. Bond percolation on the square lattice. Shown are 40× 40 square lattices, where
bonds are present with probabilitiesp = 0.05 (a), 0.20 (b), and 0.50 (c). Notice how
the clusters of connected bonds (i.e., the percolation clusters) grow in size asp increases.
In (c) the concentration is equal to the critical concentration for bond percolation on the
square lattice,pc = 0.5. A cluster spanning the lattice (from top to bottom) appears for
the first time. The bonds of this incipient infinite cluster are highlighted in bold.

a phase transition similar to that ofP∞. In fact, the transition is similar to all other
continuous (second-order) phase transitions in physical systems.P∞ plays the role
of anorder parameter, analogous to magnetization in a ferromagnet, andβ is the
critical exponentof the order parameter.
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Fig. 2.2. A schematic representation of the percolation transition. The probabilityP∞ that
a bond belongs to the spanning cluster undergoes a sharp transition (in the thermodynamic
limit of infinitely large systems): below a critical probability thresholdpc there is no
spanning cluster, soP∞ = 0, but P∞ becomes finite whenp > pc.

There exists a large variety of percolation models. For example, the model above
can be defined on a triangular lattice, or any other lattice besides the square lattice.
In site percolationthe percolating elements are lattice sites, rather than bonds.
In that case we think of nearest-neighbor sites as belonging to the same cluster
(Fig. 2.3). Other connectivity rules may be employed: inbootstrap percolation
a subset of the cluster is connected if it is attached by at least two sites, or
bonds.Continuum percolationis defined without resorting to a lattice – consider
for example a set of circles randomly placed on a plane, where contact is made
through their partial overlap (Fig. 2.4). Finally, one may consider percolation
in different space dimensions. The percolation thresholdpc is affected by these
various choices (Table 2.1), but critical exponents, such asβ, depend only upon
the space dimension. This insensitivity to all other details is termeduniversality.
Clearly, critical exponents capture something very essential of the nature of the
model at hand. They are used to classify critical phase transitions intouniversality
classes.

Let us define some more of these important critical exponents. The typical length
of finite clusters is characterized by thecorrelation lengthξ . It diverges asp
approachespc as

ξ ∼ |p − pc|−ν, (2.2)
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Fig. 2.3. Site percolation on the square lattice. Shown are 20×20 square lattices with sites
occupied (gray squares) with probabilitiesp = 0.2 (a) and 0.6 (b). Nearest-neighbor sites
(squares that share an edge) belong to the same cluster. The concentration in (b) is slightly
abovepc of the infinite system, hence a spanning cluster results. The sites of the “infinite”
cluster are in black.



2.1 The percolation transition 17

Fig. 2.4. Continuum percolation of circles on the plane. In this example the percolating
elements are circles of a given diameter, which are placedrandomly on the plane.
Overlapping circles belong to the same cluster. As the concentration of circles increases
the clusters grow in size, until a spanning percolating cluster appears (black circles). This
type of percolation model requires no underlying lattice.

Table 2.1.Percolation thresholds for several two- and three-dimensional lattices
and the Cayley tree.

Lattice Percolation

Sites Bonds

Triangular 1
2

a
2 sin(π/18)a

Square 0.592 746 0b,c 1
2

a

Honeycomb 0.697 043d 1 − 2 sin(π/18)a

Face-centered cubic 0.198e 0.120 163 5c

Body-centered cubic 0.254e 0.180 287 5c

Simple cubic (first nearest neighbor) 0.311 605f,g 0.248 812 6c,h

Simple cubic (second nearest neighbor) 0.137i –
Simple cubic (third nearest neighbor) 0.097i –
Cayley tree 1/(z − 1) 1/(z − 1)

Continuum percolationd = 2 0.312± 0.005j –
(overlapping circles)

Continuum percolationd = 3 0.2895± 0.0005k –
(overlapping spheres)

aExact: Essamet al. (1978), Kesten (1982), Ziff (1992);bZiff and Sapoval (1987);
cLorenz and Ziff (1998);dSuding and Ziff (1999);eStauffer (1985a);f Strenskiet al.

(1991);gAcharyya and Stauffer (1998);hGrassberger (1992a);i Domb (1966);j Vicsek
and Kertesz (1981), Kertesz (1981); andkRintoul and Torquato (1997).
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Fig. 2.5. An incipient infinite cluster. Shown is the spanning cluster in site percolation
on the square lattice, as obtained from a computer simulation in a 400× 400 square, with
p = 0.6 (just above the percolation threshold). For clarity, occupied sites that do not
belong to the spanning cluster have been removed, thus highlighting the presence of holes
on all length scales – a characteristic feature of random fractals.

with the same critical exponentν below and above the transition. The average mass
(the number of sites in site percolation, or the number of bonds in bond percolation)
of finite clusters,S, is analogous to the magnetic susceptibility in ferromagnetic
phase transitions. It diverges aboutpc as

S ∼ |p − pc|−γ , (2.3)

again with the same exponentγ on both sides of the transition. In the following
sections we shall meet some more exponents and we shall see how they are related
to each other.

2.2 The fractal dimension of percolation

The structure of percolation clusters can be well described by fractal concepts.
Consider first the incipient infinite cluster at the critical threshold. An example is
shown in Fig. 2.5. As is evident, the cluster contains holes on all length scales,
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ξ

Fig. 2.6. A schematic representation of the infinite percolation cluster abovepc. The
fractal features of the infinite cluster above the percolation threshold are represented
schematically by repeating Sierpinski gaskets of lengthξ , the so-called correlation length.
There is self-similarity only at distances shorter thanξ , whereas on larger length scales the
cluster is homogeneous (like a regular triangular lattice, in this drawing).

similar to the random Sierpinski carpet of Fig. 1.4b. In fact, with help of the box-
counting algorithm, or other techniques from Chapter 1, one can show that the
cluster is self-similar on all length scales (larger than the lattice spacing and smaller
than its overall size) and can be regarded as a fractal. Its fractal dimensiondf

describes how the massSwithin a sphere of radiusr scales withr :

S(r ) ∼ r df . (2.4)

S(r ) is obtained by averaging over many cluster realizations (in different percola-
tion simulations), or, equivalently, averaging over different positions of the center
of the sphere in a single infinite cluster.

Let us now examine percolation clusters off criticality. Below the percolation
threshold the typical size of clusters is finite, of the order of the correlation length
ξ . Therefore, clusters below criticality can be self-similar only up to the length
scale ofξ . The system possesses a natural upper cutoff. Above criticality,ξ is a
measure of the size of thefiniteclusters in the system. The incipient infinite cluster
remains infinite in extent, but its largest holes are also typically of sizeξ . It follows
that the infinite cluster can be self-similar only up to length scaleξ . At distances
larger thanξ self-similarity is lost and the infinite cluster becomes homogeneous.
In other words, for length scales shorter thanξ the system isscale invariant(or
self-similar) whereas for length scales larger thanξ the system istranslationally
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Fig. 2.7. The structure of the infinite percolation cluster abovepc. The dependence of the
fractal dimension upon the length scale (Eq. (2.5)) is clearly seen in this plot ofS(r )/r d

(d = 2) versusr , for the infinite cluster in a 2500× 2500 percolation system. The slope of
the curve isdf − d for r < ξ ≈ 200, and zero forr > ξ .

invariant (or homogeneous). The situation is cartooned in Fig. 2.6, in which the
infinite cluster above criticality is likened to a regular lattice of Sierpinski gaskets
of sizeξ each. The peculiar structure of the infinite cluster implies that its mass
scales differently at distances shorter and larger thanξ :

S(r ) ∼
{

r df r < ξ ,
r d r > ξ .

(2.5)

Fig. 2.7 illustrates this crossover measured in a two-dimensional percolation
system abovepc.

We can now identifydf by relating it to other critical exponents. An arbitrary site,
within a given region of volumeV , belongs to the infinite cluster with probability
S/V (S is the mass of the infinite cluster enclosed withinV). If the linear size of
the region is smaller thanξ the cluster is self-similar, and so

P∞ ∼ r df

r d
∼ ξdf

ξd
, r < ξ. (2.6)

Using Eqs. (2.1) and (2.2) we can express both sides of Eq. (2.6) as powers of
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Fig. 2.8. Subsets of the incipient infinite percolation cluster. The spanning cluster (from
top to bottom of the lattice) in a computer simulation of bond percolation on the square
lattice at criticality is shown. Subsets of the cluster are highlighted: dangling ends (broken
lines), blobs (solid lines), and red bonds (bold solid lines).

p − pc:

(p − pc)
β ∼ (p − pc)

−ν(df−d), (2.7)

hence

df = d − β

ν
. (2.8)

Thus, the fractal dimension of percolation is not a new, independent exponent, but
depends on the critical exponentsβ andν. Sinceβ andν are universal,df is also
universal!

2.3 Structural properties

As with other fractals, the fractal dimension is not sufficient to fully characterize
the geometrical properties of percolation clusters. Different geometrical properties
are important according to the physical application of the percolation model.

Suppose that one applies a voltage on two sites of a metallic percolation cluster.
The backboneof the cluster consists of those bonds (or sites) which carry the
electric current. The remaining parts of the cluster which carry no current are
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Fig. 2.9. The hull of percolation clusters. The external perimeter (the hull) is highlighted
in bold lines in this computer simulation of a cluster of site percolation in the square lattice.
Thetotal perimeterincludes also the edges of the internal “lakes” (not shown).

thedangling ends(Fig. 2.8). They are connected to the backbone by a single bond.
Thered bondsare those bonds that carry the total current; severing a red bond stops
the current flow. Theblobsare what remains from the backbone when all the red
bonds are removed (Fig. 2.8). Percolation clusters (in the self-similar regime) are
finitely ramified: arbitrarily large subsets of a cluster may always be isolated by
cutting a finite number of red bonds.

The external perimeter of a cluster, which is also called thehull, consists of
those cluster sites which are connected to infinity through an uninterrupted chain
of empty sites (Fig. 2.9). In contrast, thetotal perimeterincludes also the edges of
internal holes. The hull is an important model for random fractal interfaces.

The fractal dimension of the backbone,dBB
f , is smaller than the fractal dimension

of the cluster (see Table 2.2). That is to say, most of the mass of the percolation
cluster is concentrated in the dangling ends, and the fractal dimension of the
dangling ends is equal to that of the infinite cluster. The fractal dimension of the
backbone is known only from numerical simulations.

The fractal dimensions of the red bonds and of the hull are known from exact
arguments. The mean number of red bonds has been shown to vary withp as
〈N〉 ∼ (p − pc)

−1 ∼ ξ1/ν , hence the fractal dimension of red bonds isdred = 1/ν.
The fractal dimension of the hull ind = 2 is dh = 7

4 – smaller than the fractal
dimension of the cluster,df = 91/48. In d ≥ 3, however, the mass of the hull
is believed to be proportional to the mass of the cluster, and both have the same
fractal dimension.
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Fig. 2.10. Chemical distance. The chemical path between two sites A and B in a two-
dimensional percolation cluster is shown in black. Notice that more than one chemical
path may exist. The union of all the chemical paths shown is called theelastic backbone.

As an additional characterization of percolation clusters we mention thechem-
ical distance. The chemical distance,̀, is the length of the shortest path (along
cluster sites) between two sites of the cluster (Fig. 2.10). Thechemical dimension
d`, also known as thegraph dimensionor thetopological dimension, describes how
the mass of the cluster within a chemical length` scales with̀ :

S(`) ∼ `d` . (2.9)

By comparing Eqs. (2.4) and (2.9), one can infer the relation between regular
Euclidean distance and chemical distance:

r ∼ `d`/df ≡ `ν` . (2.10)

This relation is often written as̀∼ r dmin, wheredmin ≡ 1/ν` can be regarded as the
fractal dimension of the minimal path. The exponentdmin is known mainly from
numerical simulations. Obviously,dmin ≥ 1 (see Table 2.2). In many known
deterministic fractals the chemical length exponent is eitherd` = df (e.g., for
the Sierpinski gasket) ord` = 1 (e.g., for the Koch curve). An example of an
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(a)

(b)

1 1

1

1

1

1

4

Fig. 2.11. The modified Koch curve. The initiator consists of a unit segment. Shown is the
curve after one generation (a), and two generations (b). Notice that the shortest path (i.e.,
the chemical length) between the two endpoints in (a) is five units long.

exception to this rule is exhibited by the modified Koch curve of Fig. 2.11. The
fractal dimension of this object isdf = ln 7/ln 4, while its chemical dimension is
d` = ln 7/ln 5 (ordmin = ln 5/ln 4).

The concept of chemical length finds several interesting applications, such as
in the Leath algorithmfor the construction of percolation clusters (Exercise 2),
or in oil recovery, in which the first-passage time from the injection well to a
production well a distancer away is related tò. It is also useful in the description
of propagation of epidemics and forest fires. Suppose that trees in a forest are
distributed as in the percolation model. Assume further that in a forest fire at
each unit time a burning tree ignites fires in the trees immediately adjacent to it
(the nearest neighbors). The fire front will then advance onechemical shell(sites
at equal chemical distance from a common origin) per unit time. The speed of
propagation would be

v = dr

dt
= dr

d`
∼ `ν`−1 ∼ (p − pc)

ν(dmin−1). (2.11)

In d = 2 the exponentν(dmin − 1) ≈ 0.16 is rather small and so the increase of
v upon crossingpc is steep: a fire that could not propagate at all belowpc may
propagate very fast just abovepc, when the concentration of trees is only slightly
bigger.

In Table 2.2 we list the values of some of the percolation exponents discussed
above. As mentioned earlier, they are universal and depend only on the dimension-
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Table 2.2.Fractal dimensions of the substructures composing percolation
clusters.

d 2 3 4 5 6

df 91/48a 2.53± 0.02b 3.05± 0.05c 3.69± 0.02d 4
dmin 1.1307± 0.0004e 1.374± 0.004e 1.60± 0.05f 1.799g 2
dred 3/4h 1.143± 0.01i 1.385± 0.055j 1.75± 0.01j 2
dh 7/4k 2.548± 0.014i 4
dBB

f 1.6432± 0.0008l 1.87± 0.03m 1.9 ± 0.2n 1.93± 0.16n 2
ν 4/3a 0.88± 0.02c 0.689± 0.010p 0.571± 0.003q 1/2
τ 187/91r 2.186± 0.002b 2.31± 0.02r 2.355± 0.007r 5/2

aden Nijs (1979), Nienhuis (1982);bJan and Stauffer (1998). Other simulations (Lorenz
and Ziff, 1998) yieldτ = 2.189± 0.002;cGrassberger (1983; 1986);dJanet al. (1985);
eGrassberger (1992a). Earlier simulations (Herrmann and Stanley, 1988) yield
dmin = 1.130± 0.004 (d = 2); f calculated fromdmin = 1/ν`; gJanssen (1985), from
ε-expansions;hConiglio (1981; 1982);i Strenskiet al. (1991); j calculated from
dred = 1/ν; kSapovalet al. (1985), Saleur and Duplantier (1987);l Grassberger (1999a);
mPortoet al. (1997b). Series expansions (Bhattiet al., 1997) yielddBB

f = 1.605± 0.015;
nHong and Stanley (1983a);pBallesteroset al. (1997). They also find
η = 2 − γ /2 = 0.0944± 0.0017;qAdler et al. (1990); andr calculated from
τ = 1 + d/df . For the meaning ofτ , see Section 2.4. Notice also thatβ andγ may be
obtained from the other exponents, for example:β = ν(d − df), γ = β(τ − 2)/(3 − τ).

ality of space, not on other details of the percolation model. Aboved = 6 loops
in the percolation clusters are too rare to play any significant role and they can be
neglected. Consequently, the values of the critical exponents ford > 6 are exactly
the same as ford = 6. The dimensiond = dc = 6 is called theupper critical
dimension. The exponents ford ≥ dc may be computed exactly, as we show in the
next section.

2.4 Percolation on the Cayley tree and scaling

The Cayley tree is a loopless lattice, generated as follows. From a central site –
the root, or origin – there emanatez branches. The end of each branch is a site,
so there arez sites, which constitute the first shell of the Cayley tree. From each
site of the first (chemical) shell there emanatez − 1 branches, generatingz(z − 1)

sites, which constitute the second shell. In the same fashion, from each site of
the `th shell there emanatez − 1 new branches whose endpoints are sites of the
(`+1)th shell (Fig. 2.12). Thèth shell containsz(z−1)`−1 sites and therefore the
Cayley tree may be regarded as a lattice of infinite dimension, since the number of
sites grows exponentially – faster than any power law. The absence of loops in the
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0

Fig. 2.12. The Cayley tree withz = 3. The chemical shells̀= 0 (the “origin”, 0),` = 1,
and` = 2 are shown.

Cayley tree allows one to solve the percolation model (and other physics models)
exactly. We now demonstrate how to obtain the percolation exponents ford ≥ 6.

We must address the issue of distances beforehand. The Cayley tree cannot be
embedded in any lattice of finite dimension, and so instead of Euclidean distance
one must work with chemical distance. Because of the lack of loops there is only
one path between any two sites, whose length is then by definition the chemical
length`. Above the critical dimensiond ≥ dc = 6 we expect that correlations are
negligible and that any path on a percolation cluster is essentially a random walk;
r 2 ∼ `, or

dmin = 2, (2.12)

(cf. Eq. (2.10)). This connects Euclidean distance to chemical distance.
Consider now a percolation cluster on the Cayley tree. Suppose that the origin

is part of a cluster. In the first shell, there are on average〈s1〉 = pzsites belonging
to that same cluster. The average number of cluster sites in the(` + 1)th shell is
〈s̀ +1〉 = 〈s̀ 〉p(z − 1). Thus,

〈s̀ 〉 = z(z − 1)`−1 p` = zp[(z − 1)p]`−1. (2.13)

From this we can deducepc: when` → ∞ the number of sites in thèth shell
tends to zero ifp(z − 1) < 1, whereas it diverges ifp(z − 1) > 1; hence

pc = 1

z − 1
. (2.14)

For p < pc, the density of cluster sites in thèth shell is 〈s̀ 〉/ ∑∞
`=1 〈s̀ 〉.
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Therefore the correlation length in chemical distance is (using Eqs. (2.13) and
(2.14))

ξ` =
∑∞

`=1 `〈s̀ 〉∑∞
`=1 〈s̀ 〉 = pc

pc − p
, p < pc. (2.15)

The correlation length in regular space isξ ∼ ξ
ν`

` , and therefore

ξ ∼ (pc − p)−1/2, (2.16)

or ν = 1
2. The mean mass of the finite clusters (belowpc) is

S = 1 +
∞∑

`=1

〈s̀ 〉 = pc
1 + p

pc − p
= (pc − p)−γ , (2.17)

which yieldsγ = 1 for percolation on the Cayley tree.
Consider nextsns, the probability that a given site belongs to a cluster ofs sites.

The quantityns is the analogous probabilityper cluster site, or the probability
distribution of cluster sizes in a percolation system. Suppose that a cluster ofs sites
possessest perimeter sites (empty sites adjacent to the cluster). The probability of
such a configuration isps(1 − p)t . Hence,

ns =
∑

t

gs,t ps(1 − p)t , (2.18)

wheregs,t is the number of possible configurations ofs-clusters witht perimeter
sites. In the Cayley tree alls-site clusters have exactly 2+ (z−2)s perimeter sites,
and Eq. (2.18) reduces to

ns(p) = gs ps(1 − p)2+(z−2)s, (2.19)

where nowgs is simply the number of possible configurations of ans-cluster. We
are interested in the behavior ofns near the percolation transition. Expanding
Eq. (2.19) aroundpc = 1/(z − 1) to lowest order inp − pc yields

ns(p) ∼ ns(pc) exp[−(p − pc)
2s]. (2.20)

To estimatens(pc) we need to computegs, which can be done through exact
combinatorics arguments. The end result is thatns behaves as a power law,
ns(pc) ∼ s−τ , with τ = 5

2. The above behavior ofns is also typical of percolation
in d < 6 dimensions. Generally,

ns ∼ s−τ f ((p − pc)s
σ ), (2.21)

where f (x) is ascaling functionthat decays rapidly for large|x|. Thusns decays
ass−τ until some cutoff sizes∗ ∼ |p − pc|1/σ , whereupon it quickly drops to zero.
For percolation in the Cayley treef (x) is the exponential in Eq. (2.20), and so
σ = 1

2.
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We will now use the scaling form ofns to computeτ in yet another way. To this
end we re-compute the mean mass of finite clusters,S, in terms ofns. Sincesns is
the probability that an arbitrary site belongs to ans-cluster,

∑
sns = p (p < pc).

The mean mass of finite clusters is

S =
∑∞

s s sns∑∞
s sns

∼ 1

p

s∗∑
s

s2ns ∼ (pc − p)−(3−τ)/σ , (2.22)

where we have used the scaling ofns (and of the cutoff ats∗), and we assume that
τ < 3. By comparing this to Eq. (2.17) one obtains the scaling relation

γ = 3 − τ

σ
. (2.23)

For percolation in the Cayley tree we see thatτ = 5
2 (consistent with the

assumption thatτ < 3).
Finally, let us compute the order-parameter exponentβ. Any site in the

percolation system is (a) empty, with probability 1− p, (b) occupied and on the
infinite cluster, with probabilitypP∞, or (c) occupied but not on the infinite cluster,
with probability p(1 − P∞). Therefore,

P∞ = 1 − 1

p

∑
s

sns. (2.24)

For p < pc all clusters are finite,
∑

sns = p, and P∞ = 0. Above criticality∑
sns is smaller thanp, because there are occupied sites that belong to the infinite

cluster. The correction comes from the upper cutoff of the sum ats = s∗;
∑

sns ∼∑s∗ s1−τ ∼ p − [constant× (p − pc)
−(2−τ)/σ ]. We then find the scaling relation

β = τ − 2

σ
, (2.25)

and soβ = 1 for percolation on the Cayley tree and for percolation ind ≥ 6.
In closing this chapter, we would like to mention that there exist several

variations of the percolation model that lie in different universality classes than
regular percolation. These include directed percolation, invasion percolation, and
long-range correlated percolation.

2.5 Exercises

1. Simulate percolation on the computer, following the simple-minded method
of Section 2.1. Devise an algorithm to find out whether there is a spanning
percolation cluster between any two sites, and to identify all the sites of the
incipient percolation cluster.
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2. The Leath algorithm. Percolation clusters can be built one chemical shell
at a time, by using the Leath algorithm. Starting with an origin site (which
represents the chemical shell` = 0) its nearest neighbors are assigned to
the first chemical shell with probabilityp. The sites which were not chosen
are simply marked as having been “inspected”. Generally, given the first`

shells of a cluster, the(` + 1)th shell is constructed as follows: identify the
set of nearest neighbors to the sites of shell`. From this set discard any sites
that belong to the cluster, or which are already marked as “inspected”. The
remaining sites belong to shell(` + 1) with probability p. Remember to mark
the newly inspected sites which were left out. Simulate percolation clusters at
p slightly larger thanpc and confirm the crossover of Eq. (2.5).

3. Imagine ananisotropicpercolation system ind = 2 with long range correla-
tions, such that the correlation length depends on direction:

ξx ∼ (p − pc)
−νx , ξy ∼ (p − pc)

−νy .

Generalize the formuladf = d − β/ν for this case. (Answer:dx
f = 1 + (νy −

β)/νx; dy
f = 1 + (νx − β)/νy.)

4. From our presentation of the Cayley tree it would seem that the root of the tree
is a special point. Show, to the contrary, that in an infinite Cayley tree all sites
are equivalent!

5. Show that, in the Cayley tree, ans-cluster has exactly 2+ (z − 2)s perimeter
sites. (Hint: prove it by induction.)

6. The exponentα is defined by the relation
∑

s ns ∼ |p − pc|2−α. In thermo-
dynamic phase transitions,α characterizes the divergence of thespecific heat.
Show that 2− α = (τ − 1)/σ .

7. The critical exponentδ characterizes the response to an external ordering field
h. For percolation, it may be defined as

∑
s s nse−hs ∼ h1/δ. Show thatδ =

1/(τ − 2).

8. The exponentsα, β, γ , andδ can all be written in terms ofσ andτ . Therefore,
any two exponents suffice to express the others. As an example, expressα, δ,
σ , andτ as functions ofβ andγ .

9. Percolation in one dimension may be analyzed exactly. Notice that only the
subcritical phase exists, sincepc = 1. Analyze this problem directly and
compare it with the limit of percolation in the Cayley tree whenz → 2.

10. Define the largest cluster in a percolation system as having rankρ = 1, the
second largestρ = 2, and so on. Show that, at criticality, the mass of the
clusters scales with rank ass ∼ ρ−d/df .
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2.6 Open challenges

Percolation is the subject of much ongoing research. There remain many difficult
theoretical open questions, such as finding exact percolation thresholds, and the
exact values of various critical exponents. Until these problems are resolved, there
is a point in improving the accepted numerical values of such parameters through
simulations and other numerical techniques. Often this can be achieved using well-
worn approaches, simply because computers get better with time! Here is a sample
of interesting open problems.

1. The critical exponentsβ andν are known exactly ford = 2, due to the relation
of percolation to the one-state Potts model. However, no exact values exist for
β andν in 2 < d < 6, nor fordBB

f anddmin in all 1 < d < 6. Also, isdh truly
equal todf in three-dimensional percolation, as is commonly assumed?

2. Series expansions (Bhattiet al., 1997) suggest thatdmin is nonuniversal: for
the square latticedmin = 1.106 ± 0.007, whereas for the triangular lattice
dmin = 1.148± 0.007. Extensive numerical analysis is needed to clinch this
issue. Numerical estimates for critical exponents in continuum percolation
are currently markedly different than the universal values on lattices (Okazaki
et al., 1996; Balberg, 1998a; Rubinet al., 1999). Simulations of larger
systems, and closer to the transition point, are necessary to probe this issue.

3. Most values of the critical percolation thresholds are not known exactly. There
is an ongoing search for expressions containing the variouspc which might be
universal (Galam and Mauger, 1997; 1998; Babalievski, 1997; van der Marck,
1998).

4. Improve existing numerical algorithms for percolation, or invent new fresh
ones. Researchers in the area keep finding better ways to perform the same old
tricks! An example of this trend is the recent introduction of a new efficient
algorithm for the identification of percolation backbones (Moukarzel, 1998).
See also Babalievski (1998) and Stoll (1998).

5. Little is known about anisotropic percolation (see, for example, Dayanet al.
(1991)). Transport properties of such models have not been studied.

6. It was commonly believed until recently that, for percolation in two-
dimensional lattices atpc, there exists exactly one incipient spanning cluster.
New insight into this question was achieved by Aizenman (1997) when he
proved that the number of incipient spanning clusters can be larger than one,
and the probability of having at leastk separate clusters in a system of size
L × L, PL(k), is bounded byAe−αk2 ≤ PL(k) ≤ Ae−α′k2

, whereα andα′

are constants. Numerical estimates forA, α, andα′ were given by Shchur and
Kosyakov (1998).

7. Percolation with long-range correlations has been studied by Prakashet al.
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(1992), Makseet al. (1996), and Moukarzelet al. (1997). Makseet al. (1995)
have applied the model to the study of the structure of cities. There remain
many open questions.

8. The traditional percolation model assumes that one has only one kind of sites
or bonds. Suppose for example that the bonds are of two different kinds:ε1

andε2. One may then search for the path between two given points on which
the sum ofεi is minimal. This is the optimal-path problem (Cieplaket al.,
1994; 1996; Schwartzet al., 1998). The relation of this problem to percolation
is still open for research.

9. Are there other universal properties of percolation, in addition to the critical
exponents and amplitude ratios? For example, results of recent studies by
Cardy (1998), Aizenman (1997), and Langlands (1994) suggest that the
crossing probabilityπ(Ä) is a universal function of the shape of the boundary
Ä of the percolation system.

10. Is there self-averaging in percolation, i.e., can ensemble averages be replaced
by an average over one large (infinite) cluster? See De Martino and Giansanti
(1998a; 1998b).

2.7 Further reading

• Reference books on percolation: Stauffer and Aharony (1994), and Bunde and
Havlin (1996; 1999). For applications, see Sahimi (1994). A mathematical
approach is presented by Essam (1980), Kesten (1982), and Grimmet (1989).

• Numerical methods for the generation of the backbone: Herrmannet al.
(1984b), Portoet al. (1997b), Moukarzel (1998), and Grassberger (1999a).
Experimental studies of the backbone in epoxy-resin–polypyrrol composites
using image-analysis techniques can be found in Fournieret al. (1997).

• The fractal dimension of the red bonds: Coniglio (1981; 1982). Red bonds on
the “elastic” backbone: Sen (1997). The fractal dimension of the hull: Sapoval
et al. (1985) and Saleur and Duplantier (1987).

• Exact results for the number of clusters per site for percolation in two dimensions
were presented by Kleban and Ziff (1998).

• Series-expansion analyses: Adler (1984). The renormalization-group approach:
Reynoldset al. (1980). A renormalization-group analysis of several quantities
such as the minimal path, longest path, and backbone mass has been presented
by Hovi and Aharony (1997a). A recent renormalization-group analysis of the
fractal dimension of the backbone,dBB

f , to third-order inε = 6 − d is given by
Janssenet al. (1999).

• Forest fires in percolation: see, for example, Baket al. (1990), Drossel and
Schwabl (1992), and Claret al. (1997).
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• Continuum percolation: Balberg (1987). Experimental studies of continuum
percolation in graphite–boron nitrides: Wu and McLachlan (1997). A recent
study of percolation of finite-sized objects with applications to the transport
properties of impurity-doped oxide perovskites: Amritkar and Roy (1998).
Invasion percolation: Wilkinson and Willemsen (1983), Portoet al. (1997a),
and Schwarzeret al. (1999). Directed percolation: Kinzel (1983), Frojdh and
den Nijs (1997), and Cardy and Colaiori (1999).

• Percolation on fractal carpets: Havlinet al. (1983a) and Linet al. (1997).
• A problem related to percolation that includes also long-range bonds, the “small-

world network”, has been studied by Watts and Strogatz (1998). They find that
adding a very small fraction of randomly connected long-range bonds reduces
the chemical distance dramatically. For interesting applications of the “small-
world network” see Lubkin (1998).

• A new approach based on generating functions for percolation in the Cayley tree
can be found in Buldyrevet al. (1995a).

• Applications of percolation theory and chemical distance to recovery of oil
from porous media: Dokholyanet al. (1999), King et al. (1999), Leeet al.
(1999), and Portoet al. (1999). Applications to ionic transport in glasses and
composites: Romanet al.(1986), Bundeet al.(1994), and Meyeret al.(1996a).
Applications to the metal–insulator transition: see, for example, Ballet al.
(1994). Applications to fragmentation: see, for example, Herrmann and Roux
(1990), Sokolov and Blumen (1999), and Cheonet al. (1999).


