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1

Optimization Models

For the goal is not the last, but the best.

Aristotle (Second Book of Physics) (384–322B.C.)

Designing is a complex human process that has resisted comprehensive description
and understanding. All artifacts surrounding us are the results of designing. Creating
these artifacts involves making a great many decisions, which suggests that designing
can be viewed as adecision-making process. In the decision-making paradigm of
the design process we examine the intended artifact in order to identify possible
alternatives and select the most suitable one. An abstract description of the artifact
using mathematical expressions of relevant natural laws, experience, and geometry is
themathematical modelof the artifact. This mathematical model may contain many
alternative designs, and so criteria for comparing these alternatives must be introduced
in the model. Within the limitations of such a model, the best, oroptimum, design
can be identified with the aid of mathematical methods.

In this first chapter we define the design optimization problem and describe most
of the properties and issues that occupy the rest of the book. We outline the limitations
of our approach and caution that an “optimum” design should be perceived as such
only within the scope of the mathematical model describing it and the inevitable
subjective judgment of the modeler.

1.1 Mathematical Modeling

Although this book is concerned withdesign, almost all the concepts and
results described can be generalized by replacing the worddesignby the wordsystem.
We will then start with discussing mathematical models for general systems.

The System Concept

A system may be defined as a collection of entities that perform a specified
set of tasks. For example, an automobile is a system that transports passengers. It
follows that a system performs afunction, or process, which results in anoutput. It
is implicit that a system operates under causality, that is, the specified set of tasks
is performed because of some stimulation, orinput. A block diagram, Figure 1.1, is

1
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2 Optimization Models

Input Output
System Function

Figure 1.1. Block diagram representation.

a simple representation of these system elements. Causality generally implies that
a dynamic behavior is possible. Thus, inputs to a system are entities identified to
have an observable effect on the behavior of the system, while outputs are entities
measuring the response of the system.

Although inputs are clearly part of the system characterization, what exactly
constitutes an input or output depends on theviewpointfrom which one observes
the system. For example, an automobile can be viewed differently by an automaker’s
manager, a union member, or a consumer, as in Figure 1.2. A real system remains the
same no matter which way you look at it. However, as we will see soon, the definition
of a system is undertaken for the purpose of analysis and understanding; therefore the
goals of this undertaking will influence the way a system is viewed. This may appear a
trivial point, but very often it is a major block in communication between individuals
coming from different backgrounds or disciplines, or simply having different goals.

Hierarchical Levels

To study an object effectively, we always try to isolate it from its environment.
For example, if we want to apply elasticity theory on a part to determine stresses and
deflections, we start by creating thefree-body diagramof the part, where the points of
interaction with the environment are substituted by equivalent forces and moments.
Similarly, in a thermal process, if we want to apply the laws of mass and energy

(c)

Money Transportation

(b)

Labor
Salary

Benefits

(a)

Labor 

Materials 
Profits

Figure 1.2. Viewpoints of system: automobile. (a) Manufacturer manager; (b) union
member; (c) consumer.
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Combustor

Compressor Turbine
Power to Compressor

Air in
w, t, p

Control Volume Gas out
w, t, p

Heat in

q

Power
Out

Figure 1.3. A gas-turbine system.

conservation to determine flow rates and temperatures, we start by specifying thecon-
trol volume. Both the control volume and the free-body diagram are descriptions of the
system boundary. Anything that “crosses” this boundary is a link between the system
and its environment and will represent an input or an output characterizing the system.

As an example, consider the nonregenerative gas-turbine cycle in Figure 1.3.
Drawing a control volume, we see that the links with the environment are the intake
of the compressor, the exhaust of the turbine, the fuel intake at the combustor, and
the power output at the turbine shaft. Thus, the air input (mass flow rate, temperature,
pressure) and the heat flow rate can be taken as the inputs to the system, while the
gas exit (mass flow rate, temperature, pressure) and the power takeoff are the outputs
of the system. A simple block diagram would serve. Yet it is clear that the box
in the figure indeed contains the components: compressor, combustor, turbine, all
of which are themselves complicated machines. We see that the original system is
made up of components that are systems with their own functions and input/output
characterization. Furthermore, we can think of the gas-turbine plant as actually a
component of a combined gas- and steam-turbine plant for liquefied petroleum. The
original system has now become a component of a larger system.

The above example illustrates an important aspect of a system study:Every system
is analyzed at a particular level of complexity that corresponds to the interests of the
individual who studies the system. Thus, we can identifyhierarchical levelsin the
system definition. Each system is broken down into subsystems that can be further
broken down, with the various subsystems or components being interconnected. A
boundary around any subsystem will “cut across” the links with its environment and
determine the input/output characterization. These observations are very important
for an appropriate identification of the system that will form the basis for constructing
a mathematical model.

We may then choose to represent a system as a single unit at one level or as a
collection of subsystems (for example, components and subcomponents) that must
be coordinated at an overall “system level.” This is an important modeling decision
when the size of the system becomes large.
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Mathematical Models

A real system, placed in its real environment, represents a very complex
situation. The scientist or the engineer who wishes to study a real system must make
many concessions to reality to perform some analysis on the system. It is safe to say
that in practicewe never analyze a real system but only an abstraction of it. This is
perhaps the most fundamental idea in engineering science and it leads to the concept
of a model:

A model is an abstract description of the real world giving an approximate
representation of more complex functions of physical systems.

The above definition is very general and applies to many different types of mod-
els. In engineering we often identify two broad categories of models:physicaland
symbolic. In a physical model the system representation is a tangible, material one.
For example, a scale model or a laboratory prototype of a machine would be a physi-
cal model. In a symbolic model the system representation is achieved by means of all
the tools that humans have developed for abstraction–drawings, verbalization, logic,
and mathematics. For example, a machine blueprint is apictorial symbolic model.
Words in language are models and not the things themselves, so that when they are
connected with logical statements they form more complexverbalsymbolic models.
Indeed, the artificial computer languages are an extension of these ideas.

The symbolic model of interest here is the one using amathematicaldescription
of reality. There are many ways that such models are defined, but following our
previous general definition of a model we can state that:

A mathematical model is a model that represents a system by mathematical
relations.

The simplest way to illustrate this idea is to look back at the block diagram
representation of a system shown in Figure 1.1. Suppose that the output of the system
is represented by a quantityy, the input by a quantityx, and the system function by
a mathematical function f, which calculates a value ofy for each value ofx. Then
we can write

y = f (x). (1.1)

This equation is the mathematical model of the system represented in Figure 1.1.
From now on, when we refer to a model we imply a mathematical one.

The creation of modern science follows essentially the same path as the creation
of mathematical models representing our world. Since by definition a model is only
an approximate description of reality, we anticipate that there is a varying degree of
success in model construction and/or usefulness. A model that is successful and is
supported by accumulated empirical evidence often becomes alaw of science.

Virtual reality models are increasingly faithful representations of physical sys-
tems that use computations based on mathematical models, as opposed to realistic-
looking effects in older computer games.
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Elements of Models

Let us consider the gas-turbine example of Figure 1.3. The input air for
the compressor may come directly from the atmosphere, and so its temperature and
pressure will be in principle beyond the power of the designer (unless the design is
changed or the plant is moved to another location). The same is true for the output
pressure from the turbine, since it exhausts in the atmosphere. The unit may be
specified to produce a certain amount of net power. The designer takes these as given
and tries to determine required flow rates for air and fuel, intermediate temperatures
and pressures, and feedback power to the compressor. To model the system, the
laws of thermodynamics and various physical properties must be employed. Let us
generalize the situation and identify the following model elements for all systems:

System Variables.These are quantities that specify different states of a system
by assuming different values (possibly within acceptable ranges). In the
example above, some variables can be the airflow rate in the compressor,
the pressure out of the compressor, and the heat transfer rate into the
combustor.

System Parameters.These are quantities that are givenonespecific value
in any particular model statement. They are fixed by the application of
the model rather than by the underlying phenomenon. In the example,
atmospheric pressure and temperature and required net power output will
be parameters.

System Constants.These are quantities fixed by the underlying phenomenon
rather than by the particular model statement. Typically, they are natural
constants, for example, a gas constant, and the designer cannot possibly
influence them.

Mathematical Relations.These are equalities and inequalities that relate the
system variables, parameters, and constants. The relations include some
type of functional representation such as Equation (1.1). Stating these
relations is the most difficult part of modeling and often such a relation is
referred to asthemodel. These relations attempt to describe the function
of the system within the conditions imposed by its environment.

The clear distinction between variables and parameters is very important at the
modeling stage. The choice of what quantities will be classified as variables or pa-
rameters is asubjectivedecision dictated by choices in hierarchical level, boundary
isolation, and intended use of the model of the system. This issue is addressed on
several occasions throughout the book.

As a final note, it should be emphasized that the mathematical representation
y = f (x) of the system function is more symbolic than real. The actual “function”
may be a system of equations, algebraic or differential, or a computer-based procedure
or subroutine.
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Analysis and Design Models

Models are developed to increase our understanding of how a system works.
A designis also a system, typically defined by its geometric configuration, the ma-
terials used, and the task it performs. To model a design mathematically we must be
able to define it completely by assigning values to each quantity involved, with these
values satisfying mathematical relations representing the performance of a task.

In the traditional approach to design it has been customary to distinguish between
design analysisanddesign synthesis. Modeling for design can be thought of in a sim-
ilar way. In the model description we have the same elements as in general system
models: design variables, parameters, and constants. To determine how these quan-
tities relate to each other for proper performance of function of the design, we must
first conductanalysis. Examples can be free-body diagram analysis, stress analysis,
vibration analysis, thermal analysis, and so on. Each of these analyses represents a
descriptive model of the design. If we want to predict the overall performance of the
design, we must construct a model that incorporates the results of the analyses. Yet its
goals are different, since it is a predictive model. Thus, in a design modeling study we
must distinguish betweenanalysis modelsanddesign models. Analysis models are
developed based on the principles of engineering science, whereas design models are
constructed from the analysis models for specific prediction tasks and are problem
dependent.

As an illustration, consider the straight beam formula for calculating bending
stresses:

σ = My/I , (1.2)

whereσ is the normal stress at a distancey from the neutral axis at a given cross
section,M is the bending moment at that cross section, andI is the moment of inertia
of the cross section. Note that Equation (1.2) is valid only if several simplifying
assumptions are satisfied. Let us apply this equation to the trunk of a tree subjected to
a wind forceF at a heighth above the ground (Alexander 1971), as in Figure 1.4(a).
If the tree has a circular trunk of radiusr , the moment of inertia isI =πr 4/4 and the
maximum bending stress is aty = r :

σmax= 4Fh/πr 3. (1.3)

If we take the tree as given (i.e.,σmax, h, r are parameters), then Equation (1.3) solved
for F can tell us the maximum wind force the tree can withstand before it breaks. Thus
Equation (1.3) serves as an analysis model. However, a horticulturist may view this as
a design problem and try to protect the tree from high winds by appropriately trimming
the foliage to decreaseF andh. Note that the forceF would depend both on the wind
velocity and the configuration of the foliage. Now Equation (1.3) is a design model
with hand (partially)F as variables. Yet another situation exists in Figure 1.4(b) where
the cantilever beam must be designed to carry the loadF . Here the load is a parameter;
the lengthh is possibly a parameter but the radiusr would be normally considered
as the design variable. The analysis model yields yet another design model.
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Figure 1.4. (a) Wind force acting on a tree trunk. (b) Cantilever beam carrying a load.

The analysis and design models may not be related in as simple a manner as
above. If the analysis model is represented by a differential equation, the constants in
this equation are usually design variables. For example, a gear motor function may
be modeled by the equation of motion

J(d2θ/dt2)+ b(dθ/dt) = − fgr, (1.4)

where J is the moment of inertia of the armature and pinion,b is the damping
coefficient, fg is the tangential gear force,r is the gear radius,θ is the angle of
rotation, andt is time. HereJ, b, and fgr are constantsfor the differential equation.

However, the design problem may be to determine proper values for gear and
shaft sizes, or the natural frequency of the system, which would require makingJ,
b, andr design variables. An explicit relation among these variables would require
solving the differential equation each time with different (numerical) values for its
constants. If the equation cannot be solved explicitly, the design model would be
represented by a computer subroutine that solves the equation iteratively.

Before we conclude this discussion we must stress that there is no single design
model, but different models are constructed for different needs. The analysis models
are much more restricted in that sense, and, once certain assumptions have been
made, the analysis model is usually unique. The importance of the influence of a
given viewpoint on the design model is seen by another simple example. Let us
examine a simple round shaft supported by two bearings and carrying a gear or
pulley, as in Figure 1.5. If we neglect the change of diameters at the steps, we can say
that the design of the shaft requires a choice of the diameterd and a material with
associated properties such as density, yield strength, ultimate strength, modulus of
elasticity, and fatigue endurance limit. Because the housing is already specified, the
length between the supporting bearings,l , cannot be changed. Furthermore, suppose
that we have in stock only one kind of steel in the diameter range we expect.

Faced with this situation, the diameterd will be the only design variable we can
use; the material properties and the lengthl would be considered as design parameters.
This is what the viewpoint of the shaft designer would be. However, suppose that after
some discussion with the housing designer, it is decided that changes in the housing
dimensions might be possible. Thenl could be made a variable. The project manager,
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Figure 1.5. Sketch of a shaft design.

who might order any materialsandchange the housing dimensions, would viewd, l ,
and material properties all as design variables. In each of the three cases, the model
will be different and of course this would also affect the results obtained from it.

Decision Making

We pointed out already that design models are predictive in nature. This
comes rather obviously from our desire to study how a design performs and how we
can influence its performance. The implication then is that a design can be modified
to generate different alternatives, and the purpose of a study would be to select “the
most desirable” alternative. Once we have more than one alternative, a need arises for
making a decision and choosing one of them. Rational choice requires acriterion by
which we evaluate the different alternatives and place them in some form of ranking.
This criterion is a new element in our discussion on design models, but in fact it is
always implicitly used any time a design is selected.

A criterion for evaluating alternatives and choosing the “best” one cannot be
unique. Its choice will be influenced by many factors such as the design application,
timing, point of view, and judgment of the designer, as well as the individual’s po-
sition in the hierarchy of the organization. To illustrate this, let us return to the shaft
design example. One possible criterion is lightweight construction so that weight
can be used to generate a ranking, the “best” design being the one with minimum
weight. Another criterion could be rigidity, so that the design selected would have
maximum rigidity for, say, best meshing of the attached gears. For the shop manager
the ease of manufacturing would be more important so that the criterion then would
be the sum of material and manufacturing costs. For the project or plant manager,
a minimum cost design would be again the criterion but now the shaft cost would
not be examined alone, but in conjunction with the costs of the other parts that the
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shaft has to function with. A corporate officer might add possible liability costs and
so on.

A criterion may change with time. An example is the U.S. automobile design
where best performance measures shifted from maximum power and comfort to
maximum fuel economy and more recently to a rather unclear combination of criteria
for maximum quality and competitiveness. One may argue that the ultimate criterion
is always cost. But it is not always practical to use cost as a criterion because it can
be very difficult to quantify. Thus, the criterion quantity shares the same property as
the other elements of a model: It is an approximation to reality and is useful within
the limitations of the model assumptions.

A design model that includes an evaluation criterion is adecision-making model.
More often this is called anoptimization model, where the “best” design selected is
called the optimal design and the criterion used is called theobjectiveof the model.
We will study some optimization models later, but now we want to discuss briefly
the ways design optimization models can be used in practice.

The motivation for using design optimization models is the selection of a good
design representing a compromise of many different requirements with little or no aid
from prototype hardware. Clearly, if this attempt is successful, substantial cost and
design cycle time savings will be realized. Such optimization studies may provide
the competitive edge in product design.

In the case ofproduct development, a new original design may be represented by
its model. Before any hardware are produced, design alternatives can be generated by
manipulating the values of the design variables. Also, changes in design parameters
can show the effect of external factor changes on a particular design. The objective
criterion will help select the best of all generated alternatives. Consequently, a prelim-
inary design is developed. How good it is depends on the model used. Many details
must be left out because of modeling difficulties. But with accumulated experience,
reliable elaborate models can be constructed anddesign costswill be drastically re-
duced. Moreover, the construction, validation, and implementation of a design model
in the computer may take very much less time than prototype construction, and, when
a prototype is eventually constructed, it will be much closer to the desired production
configuration. Thus, design cycle time may be also drastically reduced.

In the case ofproduct enhancement, an existing design can be described by a
model. We may not be interested in drastic design changes that might result from
a full-scale optimization study but in relatively small design changes that might
improve the performance of the product. In such circumstances, the model can be
used to predict the effect of the changes. As before, design cost and cycle time will
be reduced. Sometimes this type of model use is called asensitivity study, to be
distinguished from a completeoptimization study.

An optimization study usually requires several iterations performed in the com-
puter. For large, complicated systems such iterations may be expensive or take too
much time. Also, it is possible that a mathematical optimum could be difficult to
locate precisely. In these situations, a complete optimization study is not performed.
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Instead, several iterations are made until a sufficient improvement in the design has
been obtained. This approach is often employed by the aerospace industry in the de-
sign of airborne structures. A design optimization model will use structural (typically
finite element) and fluid dynamics analysis models to evaluate structural and aeroe-
lastic performance. Every design iteration will need new analyses for the values of the
design variables at the current iteration. The whole process becomes very demanding
when the level of design detail increases and the number of variables becomes a few
hundred. Thus, the usual practice is to stop the iterations when a competitive weight
reduction is achieved.

1.2 Design Optimization

The Optimal Design Concept

The concept of design was born the first time an individual created an object
to serve human needs. Today design is still the ultimate expression of the art and
science of engineering. From the early days of engineering, the goal has beento
improve the design so as to achieve the best way of satisfying the original need,
within the available means.

The design process can be described in many ways, but we can see immediately
that there are certain elements in the process that any description must contain: a
recognition of need, an act of creation, and aselection of alternatives. Tradition-
ally, the selection of the “best” alternative is the phase ofdesign optimization. In
a traditional description of the design phases, recognition of the original need is
followed by a technical statement of the problem (problem definition), the creation
of one or more physical configurations (synthesis), the study of the configuration’s
performance using engineering science (analysis), and the selection of “best” alter-
native (optimization). The process concludes with testing of the prototype against the
original need.

Such sequential description, though perhaps useful for educational purposes,
cannot describe reality adequately since the question of how a “best” design is selected
within the available means is pervasive, influencing all phases where decisions are
made.

So what is design optimization?
We defined it loosely as the selection of the “best” design within the available

means. This may be intuitively satisfying; however, both to avoid ambiguity and to
have an operationally useful definition we ought to make our understanding rigorous
and, ideally, quantifiable. We may recognize that a rigorous definition of “design
optimization” can be reached if we answer the questions:

1. How do we describe different designs?

2. What is our criterion for “best” design?

3. What are the “available means”?
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The first question was addressed in the previous discussion on design models,
where a design was described as a system defined by design variables, parameters,
and constants. The second question was also addressed in the previous section in the
discussion on decision-making models where the idea of “best” design was introduced
and the criterion for an optimal design was called anobjective. The objective function
is sometimes called a “cost” function since minimum cost often is taken to characterize
the “best” design. In general, the criterion for selection of the optimal design is a
function of the design variables in the model.

We are left with the last question on the “available means.” Living, working, and
designing in a finite world obviously imposes limitations on what we may achieve.
Brushing aside philosophical arguments, we recognize that any design decision will
be subjected to limitations imposed by the natural laws, availability of material prop-
erties, and geometric compatibility. On a more practical level, the usual engineer-
ing specifications imposed by the clients or the codes must be observed. Thus, by
“available means” we signify a set of requirements that must be satisfied by any
acceptable design. Once again we may observe that these design requirements may
not be uniquely defined but are under the same limitations as the choice of problem
objective and variables. In addition, the choices of design requirements that must be
satisfied are very intimately related to the choice of objective function and design
variables.

As an example, consider again the shaft design in Figure 1.5. If we choose
minimum weight as objective and diameterd as the design variable, then possible
specifications are the use of a particular material, the fixed lengthl , and the trans-
mitted loads and revolutions. The design requirements we may impose are that the
maximum stress should not exceed the material strength and perhaps that the maxi-
mum deflection should not surpass a limit imposed by the need for proper meshing
of mounted gears. Depending on the kind of bearings used, a design requirement for
the slope of the shaft deflection curve at the supporting ends may be necessary. Alter-
natively, we might choose to maximize rigidity, seeking to minimize the maximum
deflection as an objective. Now the design requirements might change to include a
limitation in the spaceD available for mounting, or even the maximum weight that
we can tolerate in a “lightweight” construction. We resolve this issue by agreeing that
the design requirements to be used are relative to the overall problem definition and
might be changed with the problem formulation. The design requirements pertaining
to the current problem definition we will calldesign constraints. We should note
that design constraints include all relations among the design variables that must be
satisfied for proper functioning of the design.

So whatis design optimization?
Informally, but rigorously, we can say that design optimization involves:

1. The selection of a set of variables to describe the design alternatives.

2. The selection of an objective (criterion), expressed in terms of the design
variables, which we seek to minimize or maximize.
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3. The determination of a set of constraints, expressed in terms of the design
variables, which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimize
(or maximize) the objective, while satisfying all the constraints.

By now, one should be convinced that this definition of optimization suggests a
philosophical and tactical approach during the design process. It is not a phase in the
process but rather a pervasive viewpoint.

Philosophically, optimization formalizes what humans (and designers) have al-
ways done. Operationally, it can be used in design, in any situation where analysis is
used, and is therefore subjected to the same limitations.

Formal Optimization Models

Our discussion on the informal definition of design optimization suggests
that first we must formulate the problem and then solve it. There may be some iter-
ation between formulation and solution, but, in any case, any quantitative treatment
must start with a mathematical representation. To do this formally, we assemble all
the design variablesx1, x2, . . . , xn into avectorx = (x1, x2, . . . , xn)T belonging to
a subsetX of then-dimensional real spaceRn , that is,x ∈ X ⊆ R

n. The choice of
Rn is made because the vast majority of the design problems we are concerned with
here have real variables. The setX could represent certainrangesof real values or
certaintypes, such as integer or standard values, which are very often used in design
specifications.

Having previously insisted that the objective and constraints must be quantifiably
expressed in terms of the design variables, we can now assert that the objective is a
functionof the design variables, that is,f (x), and that the constraints are represented
by functional relationsamong the design variables such as

h(x) = 0 and g(x) ≤ 0. (1.5)

Thus we talk aboutequalityand inequalityconstraints given in the form of equal
to zero and less than or equal to zero. For example, in our previous shaft design,
suppose we used a hollow shaft with outer diameterdo, inner diameterdi , and thick-
nesst . These quantities could be viewed as design variables satisfying the equality
constraint

do = di + 2t, (1.6)

which can be rewritten as

do − di − 2t = 0 (1.7)

so that the constraint function is

h(do, di , t) = do − di − 2t. (1.8)
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We could also have an inequality constraint specifying that the maximum stress does
not exceed the strength of the material, for example,

σmax≤ S, (1.9)

whereSis some properly defined strength (i.e., maximum allowable stress). However,
σmax should be expressed in terms ofdo, di , andt . If we neglect the effect of bending
for simplicity, we can write

σmax= τmax= Mt (do/2)/J, (1.10)

whereMt is the torsional moment andJ is the polar moment of inertia,

J = (π/32)
(
d4

o − d4
i

)
. (1.11)

At this point we may view (1.10) and (1.11) as additional equality constraints withσmax

andJ being additional design variables. Note thatMt would be a design parameter.
Thus, we can rewrite them as follows:

σmax− S≤ 0,

σmax− Mt (do/2J) = 0, (1.12)

J − (π/32)
(
d4

o − d4
i

) = 0,

so that we have one inequality and two equality constraints corresponding to (1.9).
We could also eliminateσmax andJ and get

16Mtdo/π
(
d4

o − d4
i

)− S≤ 0, (1.13)

that is, just one inequality constraint. This implies thatσmax and J were considered
intermediate variablesthat with the formulation (1.13) will disappear from the model
statement. The above operation from (1.12) to (1.13) is amodel transformationand it
must be always performed judiciously so that the problem resulting from the transfor-
mation isequivalentto the original one and usually easier to solve. A strict definition
of equivalence is difficult. Normally, we simply mean that the solution set of the
transformed model is the same as that of the original model.

On the issue of transformation we may observe that the functional constraint
representation (1.5) is not necessarily unique. For example, the renderings (1.7) and
(1.13) of Equations (1.6) and (1.9), respectively, could have been written as

(do − di )/2t − 1= 0, (1.14)

16Mtdo − Sπd4
o + Sπd4

i ≤ 0. (1.15)

The functions at the left side of (l.7) and (1.14) as well as (1.13) and (1.15) arenot
the same. For example, the functionh in (1.8) varies linearly witht , which is not the
case in (1.14). Of course, both functions were arrived at through transformations of
the original (1.6). If we are careful, we should arrive at equivalent forms; yet very
often careless transformations may confuse the analysis by introducing extraneous
information not really there, or by hiding additional information. This is particularly


