Insect predator–prey dynamics

Much of our understanding about insect predator–prey dynamics derives from studies on insect parasitoids. But do true predators such as ladybird beetles really operate in a similar way and how does this affect their use in biological control? The extensive literature on ladybirds as biocontrol agents shows that their size and rate of development is very dependent on the nature of their prey. This volume explores the basic biology of ladybirds, their association with their prey and its effect on development rate and body size. Optimal foraging theory, field observations and laboratory experiments are used to illustrate how ladybird larvae maximize their rate of energy intake, and ladybird adults their fitness. The interdependence of these life-history parameters is then used to develop a simple predator–prey model, which with an analysis of the literature highlights the specific attributes of potentially successful biocontrol agents for all those interested in predator–prey dynamics.

A.F.G. Dixon is an Emeritus Professor in the School of Biological Sciences at the University of East Anglia. He has written over 200 papers on aphids and their natural enemies in scientific journals, and has written or edited nine other books. In 1992, he was awarded the Gregor Mendel Gold Medal by the Czech Academy of Science.
Insect predator–prey dynamics

Ladybird beetles and biological control

A. F. G. DIXON

University of East Anglia
Insect predator–prey dynamics: ladybird beetles and biological control
A. F. G. Dixon

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521622035

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000
This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Dixon, A. F. G. (Anthony Frederick George)
 Insect predator–prey dynamics : ladybird beetles and biological control /
 A. F. G. Dixon.
 p. cm.
 Includes bibliographical references (p.).
 ISBN 0 521 62203 4
 1. Ladybugs. 2. Predation (Biology) 3. Insect pests–Biological control. I. Title.
 QL596.C65 D58 2000
 595.76/9 99-045440

ISBN-10 0-521-62203-4 hardback
ISBN-10 0-521-01770-X paperback
Contents

Preface ix
1 Introduction 1
2 Basic biology and structure 6
 Introduction 6
 Life cycle 8
 Morphology 10
 Mouthparts 12
 Alimentary canal 14
 Legs 14
 Development 15
 Survival 17
 Reproduction 18
 Fecundity and longevity 18
 Effect of food supply on egg and cluster size 21
 Interspecific relationships 23
 Overwintering 27
 Defence 29
3 Body size 36
 Introduction 36
 Intraspecific plasticity in size 36
 Sex and size 42
 Sexual size dimorphism 44
 Protandry 46
 Gonadal constraint 50
 Fecundity advantage 52
 Time and energy constraint 52
 Body size distribution 55
 Theory 55
 Empirical data 57
4 Slow–fast continuum in life history parameters
 Introduction
 Speed of movement
 Developmental time and metabolic rate
 Fecundity and longevity
 Trade-off

5 Foraging behaviour
 Introduction
 Functional response
 Prey recognition
 Relative risk as a determinant of diet breadth
 Prey specificity
 Switching
 Adult foraging behaviour
 Location of prey
 Patch quality
 Egg distribution
 Larval foraging behaviour
 Location of prey
 Survival
 Ladybird abundance

6 Cannibalism
 Introduction
 Theory
 Cannibalism by adults
 Cannibalism by larvae
 Fitness
 Currency
 Model
 Empirical data
 Avoidance of cannibalism
 Eggs
 Pupae
 Cannibalism as a means of harvesting prey – the icebox hypothesis

7 Theory of predator–prey interactions
 Introduction
Preface

Ladybird beetles are familiar and popular insects and therefore need no introducing. The objective of this book is to give university students and research workers a better understanding of predation by insects than is to be found in most current ecological texts.

As stated in the Introduction the foundations of this book were built upon the enthusiasm for and understanding of ladybirds of my colleagues and students. In addition Jean-Louis Hemptinne kindly read and commented on the whole manuscript, and Pavel Kindlmann, on Chapter 7. Other people too have helped in the preparation of the book. I am especially grateful to CSIRO Entomology and Veronica Brancatini for supplying, with permission to use, the photograph of *Rodolia cardinalis* that is on the back cover, and to CAB International and Roger Booth for permission to reproduce the habitus drawing of *Hyperaspis pantherina* in Chapter 9.

I also wish to express special thanks to Diane Alden for preparing the figures and to Karen Harris for typing some of the manuscript.

I dedicate this book to June.

Tony Dixon