It is widely recognized that mainstream economics has failed to translate micro-consistently into macroeconomics and to provide endogenous explanations for the continual changes in the economic system. Since the early 1980s a growing number of economists have been trying to provide answers to these two key questions by applying an evolutionary approach. This new departure has yielded a rich literature with enormous variety, but the unifying principles connecting the various ideas and views presented are, as yet, not apparent. This volume brings together fifteen original articles from scholars—each of whom has made a significant contribution to the field—in their common effort to reconstruct economics as an evolutionary science. Using mesoeconomics as an analytical entity to bridge micro- and macroeconomics as well as static and dynamic realms, a unified economic theory emerges, offering an entirely new approach to the foundations of economics.

KURT DOPFER is Professor of Economics and Director of the Institute of Economics at the University of St Gallen, Switzerland.
The Evolutionary Foundations of Economics

edited by

Kurt Dopfer
Contents

List of contributors viii
List of figures x
List of tables xiii

Prolegomenon
1 Evolutionary economics: a theoretical framework 3
 KURT DOPFER

I Ontological foundations
A Evolutionary physics: a non-Cartesian bridge to economics
2 The rediscovery of value and the opening of economics 61
 ILYA PRIGOGINE
3 Synergetics: from physics to economics 70
 HERMANN HAKEN

B Evolutionary biology: the Mecca of economics
4 Darwinism, altruism and economics 89
 HERBERT A. SIMON
5 Decomposition and growth: biological metaphors in economics from the 1880s to the 1980s 105
 GEOFFREY M. HODGSON
Contents

C Evolutionary history: reconciling economic reality with theory

6 Path dependence in economic processes: implications for policy analysis in dynamical system contexts
Paul A. David
151

7 Is there a theory of economic history?
Joel Mokyr
195

II A framework for evolutionary analysis

A Evolutionary microeconomics

8 Towards an evolutionary theory of production
Sidney G. Winter
223

9 Learning in evolutionary environments
Giovanni Dosi, Luigi Marengo and Giorgio Fagiolo
255

10 The evolutionary perspective on organizational change and the theory of the firm
Ulrich Witt
339

B Evolutionary mesoeconomics

11 The self-organizational perspective on economic evolution: a unifying paradigm
John Foster
367

12 Evolutionary concepts in relation to evolutionary economics
J. Stanley Metcalfe
391

13 Understanding social and economic systems as evolutionary complex systems
Peter M. Allen
431

C Evolutionary macroeconomics

14 Perspectives on technological evolution
Richard R. Nelson
461
Contents vii

15 Evolutionary economic dynamics: persistent cycles, disruptive technology and the trade-off between stability and complexity 472
PING CHEN

16 Evolutionary theorizing on economic growth 506
GERALD SILVERBERG AND BART VERSPAGEN

Index of topics 540
Index of names 565
Contributors

ALLEN, PETER M. – Professor of Economics at Cranfield University and Director of the International Ecotechnology Research Centre, Cranfield, United Kingdom.

CHEN, PING – Research Fellow at the Ilya Prigogine Center for Studies in Statistical Mechanics and Complex Systems, the University of Texas at Austin, Austin, Texas, United States.

DAVID, PAUL A. – Professor of Economics at Stanford University, Stanford, California, United States, and at the University of Oxford, All Souls College, Oxford, United Kingdom.

DOPFER, KURT – Professor of Economics at the University of St Gallen, Director of the Institute of Economics (FGN), St Gallen, Switzerland.

DOSI, GIOVANNI – Professor of Economics at the St Anna School of Advanced Studies, Laboratory of Economics and Management (LEM), Pisa, Italy.

 FAGIOLO, GIORGIO – Professor of Economics at the St Anna School of Advanced Studies, LEM, Pisa, Italy.

 FOSTER, JOHN – Professor of Economics at the University of Queensland, Brisbane, Australia.

 HAKEN, HERMANN – Professor of Physics at the Institute for Theoretical Physics, Center for Synergetics, University of Stuttgart, Stuttgart, Germany.

 HODGSON, GEOFFREY M. – Professor of Economics at the University of Hertfordshire Business School, Hertford, United Kingdom.

 MARENGO, LUIGI – Professor of Economics at the University of Trento, Trento, Italy.
Contributors

METCALFE, J. STANLEY – Professor of Economics at the University of Manchester, Director of the Centre for Research on Innovation and Competition (CRIC), Manchester, United Kingdom.

MOKYR, JOEL – Professor of Economics at Northwestern University, Evanston, Illinois, United States.

NELSON, RICHARD R. – George Blumenthal Professor of International and Public Affairs and Henry R. Luce Professor of International Political Economy at Columbia University, New York, United States.

PRIGOGINE, ILYA – Professor of Physics at the International Solvay Institutes at the Université Libre de Bruxelles, Brussels, Belgium, and Director of the Ilya Prigogine Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas, United States (deceased).

SILVERBERG, GERALD – Professor of Economics at Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT), Maastricht, the Netherlands.

SIMON, HERBERT A. – Professor of Economics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States (deceased).

VERSPOGEN, BART – Research Fellow at the Eindhoven Centre for Innovation Studies (ECIS), Eindhoven University of Technology, Maastricht, the Netherlands.

WINTER, SIDNEY G. – Professor of Economics at the Wharton School of the University of Pennsylvania, Philadelphia, Pennsylvania, United States.

WITT, ULRICH – Professor of Economics at the University of Jena and Director of the Max Planck Institute for Research into Economic Systems, Evolutionary Economics Group, Jena, Germany.
Figures

1.1 Analytical schema
1.2 Human behaviour in internal and external environments
1.3 Neural-cognitive and neural-behavioural compartments of HSO
1.4 Rules and carriers in several domains
1.5 Meso-trajectory composed of micro-trajectories: time scale and time scope
3.1 The amplitude of the light wave versus time
3.2 In a fluid heated from below a rolling pattern can emerge
3.3 Visualization of the behaviour of an order parameter of size q by means of a ball that moves in a landscape; below the threshold there is only one valley
3.4 As in figure 3.3, except that the system is at the instability point: the valley has become very flat
3.5 As in figure 3.3, but above the instability point: instead of one valley, two valleys are now formed
3.6 Development of the prototype patterns during the learning process
3.7 An example of the recognition of a face that was learned by the computer, including its family name encoded by a letter
6.1 A schematic representation of the ‘snow shovelling model’
6.2 A dual representation for the snow shovelling process
9.1 Substantive and procedural uncertainty: a taxonomy of problems
9.2 Taxonomic dimensions of knowledge assets
9.3 Dimensions of learning and constraints on the learning process: a guide to the (modelling) literature
13.1 The evolution of complex systems 433
13.2 Interactions between i and j 435
13.3 With no exploration in character space, fidelity $f = 1$, the system remains homogeneous, but its performance will support total activity of only 36 437
13.4 Here the exploration of neighbouring possibilities leads activity 11 to hill-climb into activities 10 and 13; these lead to an improved pay-off 438
13.5 Here the occasional random explorations have allowed the system to find new hills to climb, and to climb them; total activity is 60, and synergy per unit is 31 439
13.6 Here the frequent trials lead to some confusion, as the precise synergies and antagonisms are not clearly marked; total activity is high, nonetheless 439
13.7 For the same parameters, different initial conditions lead to different structural attractors 440
13.8 Here a different set of pair interactions is successfully explored by the system, leading to a high level of total activity 441
13.9 The pair-wise attribute interaction table for a possible 'glass' leads to at least two alternative 'structural attractors' 443
13.10 An example of an emergent structural attractor 444
13.11 Cladistic diagram for automobile manufacturing organizational forms 447
13.12 The co-occurrences of fifty-three possible attributes in the sixteen different organizational forms 448
13.13 An evolutionary model tries to 'launch' possible innovative practices in a random order; if they invade, they change the 'invadability' of the new system 448
13.14 Throughout the economy, exploratory behaviour is amplified or suppressed as a result of both internal and external trade-offs 452
13.15 The evolutionary process of exploration and selection is nested in successive levels of the system; the 'innovation' arises within an individual system, and is 'judged' by its environment: the context 452
15.1 Three detrending references and their autocorrelations of detrended cycles from the logarithmic SPX, Standard and Poor's 500 Price Index monthly series (1947002), $N = 672$ 475
15.2 Filtered and original HP cycles (1947–1992) 482
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3</td>
<td>Phase portraits of the unfiltered (left-hand) and filtered (right-hand) FSPCOM HP cycles; the time delay T is 60 months</td>
<td>482</td>
</tr>
<tr>
<td>15.4</td>
<td>The time path of the basic period Pb of FSPCOMln (the S & P 500 Price Index) HP cycles stock market indicators</td>
<td>484</td>
</tr>
<tr>
<td>15.5</td>
<td>The stability pattern of the Samuelson model in parameter space</td>
<td>485</td>
</tr>
<tr>
<td>15.6</td>
<td>The stability pattern in parameter space</td>
<td>486</td>
</tr>
<tr>
<td>15.7</td>
<td>The staged economic growth characterized by the dynamic path of equation (7)</td>
<td>490</td>
</tr>
<tr>
<td>15.8</td>
<td>Risk aversion and risk-taking behaviour in the competition for market share and technology advancement</td>
<td>492</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Fifty-three characteristics of manufacturing organizations.</td>
<td>446</td>
</tr>
<tr>
<td>13.2</td>
<td>A particular sequence of evolutionary events describing the organizational changes that occurred over time</td>
<td>449</td>
</tr>
<tr>
<td>15.1</td>
<td>The relative deviation and implied number of degrees of freedom for several macro-indexes by HP detrending (1947000)</td>
<td>478</td>
</tr>
<tr>
<td>15.2</td>
<td>The statistical properties of linear stochastic processes</td>
<td>479</td>
</tr>
<tr>
<td>15.3</td>
<td>Concepts and representations in the mechanical and biological approaches</td>
<td>500</td>
</tr>
</tbody>
</table>