Contents

Preface ix

1 Introduction 1

2 Humic substances – a brief review 4
 2.1 Natural organic matter and humic substances 4
 2.2 Isolation and classification of humic substances 6
 2.3 Formation and decomposition of humic substances 10
 2.4 Chemical and physical properties of humic substances 13
 2.5 Environmental concentrations of humic substances 24
 2.6 Humic substances – accident or design? 30

3 Environmental solution and surface chemistry 32
 3.1 Solutions and solutes 32
 3.2 Natural particulate matter 34
 3.3 Physico-chemical interactions in environmental aqueous systems 37
 3.4 Equilibrium and kinetics 44
 3.5 Chemical speciation 45
 3.6 Calculation of equilibrium concentrations 46

4 Proton dissociation from weak acids 52
 4.1 Acids and bases 52
 4.2 Buffering 55
 4.3 Kinetics 55
 4.4 Diprotic acids 57
 4.5 Extension to higher polyprotic acids 59
 4.6 Electrostatic interactions among sites 61
 4.7 Proton dissociation from well-defined polymers 73
 4.8 Proton dissociation from humic substances 76

© Cambridge University Press
www.cambridge.org
Contents

5 Metal–ligand interactions
 5.1 Coordination 77
 5.2 Chemical equilibria involving metal ions, protons and simple weak
 acid ligands 86
 5.3 Multisite ligands 98
 5.4 Electrostatic interactions 99
 5.5 Results with well-defined macromolecules 99

6 Methods for measuring cation binding by humic substances 103
 6.1 The humic sample 103
 6.2 Determination of proton binding by potentiometry 104
 6.3 Analytical determination of acid group contents 108
 6.4 Direct measurement of equilibrium metal binding –
 principles 110
 6.5 Separation methods to quantify equilibrium metal binding 113
 6.6 Competition methods 119
 6.7 Electrochemical techniques 121
 6.8 Spectroscopic methods 123
 6.9 Measurement of the kinetics of metal–humic interactions 126

7 Quantitative results with isolated humic substances 128
 7.1 Proton dissociation 128
 7.2 Equilibrium binding of metal ions 136
 7.3 Kinetics of metal ion binding 151

8 Cation binding sites in humic substances 157
 8.1 Proton-dissociating groups 157
 8.2 Binding sites for metals – information from binding studies 159
 8.3 Information from spectroscopy 162
 8.4 Viscometry 169
 8.5 Summary 169

9 Parameterised models of cation–humic interactions 171
 9.1 Overview and philosophy 171
 9.2 Models that describe the binding of a single cation 173
 9.3 Simpler models that include competition 183
 9.4 The site heterogeneity/polyelectrolyte models of Marinsky and
 colleagues 192
 9.5 Modelling electrostatic effects in humic substances 194
 9.6 Humic Ion-Binding Models V and VI 201
 9.7 The NICA and NICCA models 206
 9.8 Summary 209
Contents

10 Applications of comprehensive parameterised models 210
 10.1 Interactions with protons 210
 10.2 Binding of single metal cations interpreted with Model V 216
 10.3 Binding of single metal cations interpreted with Model VI 220
 10.4 Application of the NICCA model 229
 10.5 Metal binding as a function of ionic strength 235
 10.6 Non-specific binding 240
 10.7 Competition between metals 240
 10.8 Proton–metal exchange 246
 10.9 Comparison of the NICCA-Donnan model and Model VI 249
 10.10 Applications of the models to field situations 251

11 Predictive modelling 253
 11.1 Electrostatic interactions 253
 11.2 Binding sites 254
 11.3 Prospects for predictive modelling 260

12 Cation–humic binding and other physico-chemical processes 262
 12.1 The conformation of humic matter 262
 12.2 Aggregation of humic substances 266
 12.3 Adsorption of humic substances by mineral surfaces 270
 12.4 Binding of organic cations by humic substances 278
 12.5 Colloid stability 278
 12.6 Dissolution of minerals 282
 12.7 Formation of mineral precipitates 285
 12.8 Other processes 287
 12.9 Concluding remarks 287

13 Cation binding by humic substances in natural waters 288
 13.1 Chemical speciation calculations 288
 13.2 Interactions with major ions and protons 290
 13.3 Interactions of humic substances with major cations 301
 13.4 Competition 308
 13.5 Interactions of heavy metals with humic substances in natural waters 315
 13.6 Modelling heavy metal speciation in natural waters 320
 13.7 Interactions with metallic radionuclides 331
 13.8 Binding by dissolved humic matter compared to adsorption by suspended particulates 331
14 Cation binding by humic substances in soils and sediments 334
14.1 Components of the soil system 335
14.2 Sorption of major cations by organic-rich acid soils 339
14.3 Sorption of major cations by mineral soils 347
14.4 Sorption of trace cations by soil solids 352
14.5 Dissolved organic matter (DOM) in soil solution 359
14.6 Colloids in soil and aquifer porewaters 371
14.7 Cation–humic interactions in sediments 371

15 Research needs 380
15.1 Research needs for isolated humic materials 380
15.2 Research needs in field studies 385
15.3 Cation–humic interactions in catchments 387

References 391
Index 422