Parasitic infections are the most prevalent of human diseases. Parasites’ effective evasion of their hosts’ immune defenses and their complex physiology and life cycles make them especially resistant to attack by chemotherapeutic agents. Researchers continue to face the challenge of designing drugs to successfully counteract them.

Chemotherapeutic Targets in Parasites analyzes the critical metabolic reactions and structural features essential for parasite survival and advocates the latest molecular and biochemical strategies with which to identify effective antiparasitic agents. An introduction to the early development of parasite chemotherapy is followed by an overview of biophysical techniques and genomic and proteomic analyses. Several chapters are devoted to specific types of chemotherapeutic agents and their targets in malaria, trypanosomes, leishmania, and amitochondrial protists. Chapters on helminths include metabolic, neuromuscular, microtubular, and tegumental targets. Emphasized throughout is the design of drugs that are more selective and less toxic than those used in the past.

A comprehensive discussion of selective targets in parasites for new drugs is long overdue. This up-to-date book will be especially relevant to medical and clinical researchers and to graduate students in parasitology, pharmacology, medicine, microbiology, and biochemistry.

Tag E. Mansour is Professor Emeritus in the Department of Molecular Pharmacology at the Stanford University School of Medicine. His research on biochemical and molecular parasitology and the action of antiparasitic agents has been published extensively.
Chemotherapeutic Targets in Parasites

Contemporary Strategies

Tag E. Mansour

with the assistance of

Joan MacKinnon Mansour
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 The Search for Antiparasitic Agents

- Early Beginnings of Chemotherapy
- Paul Ehrlich and the Principle of Selective Toxicity
- Rational Discovery of Antiparasitic Agents
- Biology of Parasites
- Biochemical Adaptation of Parasites to the Host
- Drug Receptor Selectivity
- Metabolic Pathways as Targets
- Empirical Screening of Antiparasitic Agents
- Use of Animal Models in Screening
- Use of *in vitro* Parasite Cultures for Screening
- Designing Chemicals for Selective Targets
- Relationship between Chemical Structure and Biological Activity of Inhibitors
- Quantitative Structure Activity Relationship
- Combinatorial Technology in Drug Discovery
- References

2 Biophysical, Genomic, and Proteomic Analysis of Drug Targets

- Biophysical Techniques for Studying Drug Targets
- X-Ray Crystallography
- Nuclear Magnetic Resonance
- Use of Recombinant DNA Technology for Studies on Drug Targets
- Identification of Potential Drug Targets and Candidate Antigens for Vaccines Using Expressed Sequence Tags
Contents

Genomic Analysis of Parasitic Helminths 24
Caenorhabditis elegans Genome 25
Genome Analysis of Trypanosomatids 25
Genome Analysis of Plasmodium falciparum 26
Structural Genomics 27
Proteomics 28
References 30

3 Energy Metabolism in Parasitic Helminths: Targets for Antiparasitic Agents 33
Life Cycles of Representative Helminths 33
Schistosomes (Blood Flukes) 34
The Liver Fluke Fasciola hepatica 34
The Intestinal Nematode Ascaris suum 34
Energy Metabolism of S. mansoni 35
Glucose Transporters 36
The Glycolytic Pathway 37
Inhibition of Glucose Utilization 39
Phosphofructokinase (PFK) 40
Regulation of PFK 40
Activation of PFK and Glycolysis by Serotonin 41
PFK as a Target for Antischistosomal Antimonials 44
Enzymes Involved in Phosphoenolpyruvate Metabolism 46
Mitochondrial Anaerobic Energy-Generating Pathways in Helminths 46
Phosphoenolpyruvate Carboxykinase (PEPCK) 49
Fumarate Reductase 49
Pyruvate Dehydrogenase Complex (PDC) 49
Anaerobic Mitochondrial Metabolism as Possible Targets for Antiparasitic Agents 50
References 54

4 Antimalarial Agents and Their Targets 58
Quinine and Quinidine 60
Chloroquine 61
Concentration of Chloroquine in Plasmodium Food Vacuoles 62
Heme Polymerization: A Target for Chloroquine Action 63
The Proteases of Hemoglobin Digestion 64
Resistance to Chloroquine 70
5 Antitrypanosomal and Antileishmanial Targets

Trypanothione and trypanothione reductase in protozoa

Trypanothione reductase as a target for drug design

Biosynthesis of trypanothione

Effect of antitrypanosomal agents on the trypanothione system

Inhibition of trypanothione reductase from Leishmania by trivalent antimonials

Tryparedoxins

Antiproteosomal effects of nifurtimox

Polyamines and ornithine decarboxylase

Ornithine decarboxylase inhibitors as antiparasitic agents

Glycolysis: A target for antitrypanosomal agents

The glycosome

Glucose transporters

Pyruvate transporters

α-Glycerophosphate oxidase

Other glycolytic targets

Suramin and glycolysis

Melarsoprol

Mitochondrial DNA as a target for antitrypanosomal agents

Purine and pyrimidine metabolism as targets

Purine salvage pathways

Nucleoside transporters

Nucleoside ribohydrolases

Purine analogs as antiparasitic agents

Pyrimidine metabolism pathways as possible targets

Pteridin reductase in Leishmania major as a target
Contents

Antigenic Variation in African Trypanosomes and the Design of Antiparasitic Agents
117

Protein Farnesylation as a Drug Target
119

Cysteine Proteases as Targets for Antitrypanosomal and Antileishmanial Agents
120

References
122

6 Targets in Amitochondrial Protists

Biology of Amitochondrial Protists
129

Entamoeba histolytica
130

Giardia intestinalis (*G. duodenalis*)
130

Trichomonas vaginalis
131

Carbohydrate Metabolism of *Entamoeba histolytica*
131

Energy Metabolism of *Giardia intestinalis*
134

Hydrogenosomes and Energy Metabolism in Trichomonads
135

Pyruvate:Ferredoxin Oxireductase
137

Mechanism of Antiprotozoal Effects of Metronidazole and Related 5-Nitroimidazoles
138

Resistance to Metronidazole
141

Potentials for New Drug Targets
143

Pyrophosphate Kinases
143

Alcohol Dehydrogenases and Identification of Antiparasitic Drugs by Complementation of *E. coli* Mutants
146

PFOR as a Target
147

Proteinas as Targets
148

References
150

7 Neuromuscular Structures and Microtubules as Targets

Neuromuscular Physiology of Nematodes
156

Nicotinic Acetylcholine Receptors (nAChRs)
157

Nicotinic Acetylcholine Receptors in Nematodes
158

γ-Amino Butyric Acid (GABA)
163

The Action of Piperazine (Diethylenediamine) on GABA Receptors
164

Glutamate as a Neurotransmitter in Nematodes
164

Action of Avermectins on Glutamate-Gated Chloride Channels
165

Glutamate Receptors in the Pharynx of Nematodes
167

Bioamine Receptors in Nematodes
169

Microtubules as a Target for Benzimidazoles in Nematodes
170

Antimicrotubule Drugs
171

Benzimidazoles as Anthelmintics
173

Resistance to Benzimidazoles
173
Contents

Neuroactive Peptides in Nematodes 174
The Neuromuscular System of Flatworms 175
Evaluation of Motility of Flatworms 176
5-Hydroxytryptamine (Serotonin) in Parasitic Flatworms 176
Cholinergic Systems in Flatworms 178
Influence of Parasite Motility on Parasite Location in the Host 178
 Anthelmintics That Act on Motility in Platyhelminths 180
Neuropeptides in Flatworms 180
Potential Research on Anthelmintics 181
References 183

8 Targets in the Tegument of Flatworms 189
Structure and Function of Schistosome Tegument 189
 Some Proteins Identified in Schistosome Tegument 192
 Protein Attachment to the Tegument 193
Glucose Transport across the Tegument 194
 Tegumental Acetylcholine Receptors, Acetylcholinesterase,
 and Glucose Uptake by Schistosomes 196
 Metrifonate (Bilarcil) as AChE Inhibitor
 and Antischistosomal Agent 197
 Potential Studies on Tegumental Nicotinic Targets 198
Praziquantel (PZQ) 199
 Mechanism of Action of Praziquantel 199
 Antigens That Attract the Host’s Immune System 201
 Resistance of Schistosomes to PZQ 202
 Potential Studies on Ca^{2+} Influx across the Tegument 204
Oxamniquine 205
 Dyneins in Schistosoma mansoni 206
 The Effect of Triclabendazole on Fasciola hepatica Tegument 207
Drugs Acting on the Tegument of Cestodes (Tapeworms) 208
References 209

Epilogue 215
References 219

Index 221
I became intrigued with parasites when I started my research career as a graduate student in England. I was rightly told that the field of parasites has a great future for a starting biochemist/pharmacologist. The field of parasite research was not crowded and therefore was designated as a neglected area of research. Subsequently, a large number of talented and highly sophisticated young scientists were attracted by the urgent need for modern studies on parasites and antiparasitic agents. The fields of parasite biology and biochemistry accumulated a large volume of information that led to the possibility of rational design of antiparasitic agents. There is renewed hope for discovery of more selective and less toxic drugs against parasites.

At the present time infections by parasites, both protozoal and helminthic, constitute the most prevalent diseases in the world. The World Health Organization estimates that there are at least 3 billion people in the world who are infected with parasites. Many of these harbor more than one infection. The prevalence of these infections, especially in developing countries, is not only a cause of untold human suffering and mortality but a growing impediment to better local and global economies.

The prime aim of this book is to discuss critical metabolic reactions and cellular structural features that are essential for survival of parasites, particularly those that differ from those of the host. A comprehensive discussion of selective targets in parasites for old and new drugs is long overdue. The term selective targets may not apply to targets of older antiparasitic agents. Most of these early drugs were not discovered by a rational procedure.

Chapter 1 includes a discussion of the development of parasite chemotherapy from Paul Ehrlich's time to our new era when the search for antiparasitic agents has been influenced by the impact of modern biochemistry and biology. Animal models and in vitro cultures for screening are discussed. Traditional ways of designing antiparasitic chemicals to inhibit the functioning of specific targets, the
more modern use of relationships between chemical structure and biological activity to design new drugs, and the latest techniques of combinatorial chemistry to prepare hundreds of thousands of new molecules are included.

In Chapter 2 I introduce several recently successful biophysical techniques with which to analyze drug–target interactions. Nuclear magnetic resonance is now used to carry out noninvasive experiments on the energy metabolism of intact parasites. Some aspects of DNA technology are discussed generally, but not in detail, because specialized laboratory manuals are readily available. Mention is made of the latest information about genomic analysis of major parasite groups. Structural genomics is a growing field that promises to have a major impact on identifying three-dimensional structure and function using DNA sequences. Proteomics is another new area that is rapidly expanding. Some scientists whose major interests are in genes seem to have forgotten that the actions of genes are manifested through proteins. This is particularly important for identification of drug targets in parasites.

In Chapters 3–6 I emphasize those aspects of parasite life in the host that have distinguishing features such as metabolic differences between host and parasite. Also included are discussions of the mechanism of action of some of the current antiparasitic agents against their targets. The concept of “selective toxicity” is emphasized and the most selective drugs are more fully described. A few examples of the value of determining the mechanism of action of both old and new drugs are given. It was in the 1950s that the discoveries of Lederberg, and Park and Strominger drew attention to bacterial cell wall synthesis as a selective target for penicillin and other antibiotics. More research on mechanisms of action will lead to discovery of new targets and new antiparasitic agents.

The subject of parasite resistance to certain antiparasitic agents has been integrated with discussion of the mechanism of action. In many cases studies on resistant strains of parasites gave clues to new drug targets with more details about drug–target interactions. There are some divergent views in the literature about parasite resistance. Information on drug resistance from in vitro cultures and from laboratory animals should always be considered in relation to human field studies.

In the Chapters 7 and 8 I discuss topics that have been less studied than parasite metabolism. Motility of parasitic helminths plays an important role in maintenance of their location in the host. Many parasites can be eliminated from the host by drugs acting on the neuromuscular receptors of the parasites. Information is given about neuromuscular receptors, neurotransmitters, and changes in parasite behavior as a result of antiparasitic agents. This is an area that has not been fully exploited in the search for new drug targets. Also included are discussions of the microtubules that are basic to control of the location of
intracellular organelles and how the benzimidazoles owe their anthelmintic ac-
tivity to blocking of the microtubular matrix. The last chapter is a discussion of the
tegment of platyhelminths as a target. Although there are several an-
thelmintics that affect components of the tegument, there have not been enough
studies of the different ways the tegument functions to help the parasites’ life
in the host. It is generally accepted that the tegument of flatworms plays an
essential role in the transport of nutrients from the host and acts as a protective
shield. The interaction between antiparasitic agents against the tegument and
the host’s immune system has a potential synergistic role in therapy.

Some of the chapters include sections titled “Potential Research.” These
cover areas that require more experimentation and are included for those who
are fortunate enough to be able to go to the laboratory to perform experiments.

The life cycles of several typical parasites are briefly given for the sake of
clarity in the discussion of targets. These are not intended as a substitute for
more detailed descriptions found in parasitology textbooks.

The bibliographies at the end of each chapter are not comprehensive, but they
should give the reader indications of where to look for additional information.

References to reviews should be useful to readers who wish to have an overview
of a particular area. Although I have been careful to refer to both old and new
publications, I may have neglected some of great distinction and so offer my
apologies to my biochemistry, pharmacology, and parasitology colleagues who
may feel overlooked.

Tag E. Mansour
Stanford, California
July, 2001
Acknowledgments

Some of the research from my laboratory discussed in this book includes work done with research assistants, graduate students, postdoctoral fellows, and other colleagues to whom I am indebted for their interest in parasites and their dedication. I also acknowledge with gratitude the most current information I received from many colleagues outside Stanford who drew my attention to exciting developments in their own fields of research. My special thanks to Professor Miklós Müller for his critique of the first draft of Chapter 6 on Amitochondrial Protists. While writing this book I have been very fortunate in using Stanford’s Lane Medical Library and Swain Chemical Library. I am indebted to the staff of both libraries for their expertise and their constant support.