Contents

Preface viii

1 Introduction 1
 1.1 Motivation 1
 1.2 Pioneering approaches 2
 1.3 The chaos approach 4
 1.4 The present focus 5

2 Efficient market hypothesis 8
 2.1 Concepts, paradigms, and variables 8
 2.2 Arbitrage 8
 2.3 Efficient market hypothesis 9
 2.4 Algorithmic complexity theory 11
 2.5 Amount of information in a financial time series 12
 2.6 Idealized systems in physics and finance 12

3 Random walk 14
 3.1 One-dimensional discrete case 14
 3.2 The continuous limit 15
 3.3 Central limit theorem 17
 3.4 The speed of convergence 19
 3.4.1 Berry–Essén Theorem 1
 3.4.2 Berry–Essén Theorem 2 20
 3.5 Basin of attraction 21

4 Lévy stochastic processes and limit theorems 23
 4.1 Stable distributions 23
 4.2 Scaling and self-similarity 26
 4.3 Limit theorem for stable distributions 27
 4.4 Power-law distributions 28
 4.4.1 The St Petersburg paradox 28
 4.4.2 Power laws in finite systems 29
Contents

4.5 Price change statistics 29
4.6 Infinitely divisible random processes 31
 4.6.1 Stable processes 31
 4.6.2 Poisson process 31
 4.6.3 Gamma distributed random variables 32
 4.6.4 Uniformly distributed random variables 32
4.7 Summary 33

5 Scales in financial data 34
 5.1 Price scales in financial markets 35
 5.2 Time scales in financial markets 39
 5.3 Summary 43

6 Stationarity and time correlation 44
 6.1 Stationary stochastic processes 44
 6.2 Correlation 45
 6.3 Short-range correlated random processes 49
 6.4 Long-range correlated random processes 49
 6.5 Short-range compared with long-range correlated noise 51

7 Time correlation in financial time series 53
 7.1 Autocorrelation function and spectral density 53
 7.2 Higher-order correlations: The volatility 57
 7.3 Stationarity of price changes 58
 7.4 Summary 59

8 Stochastic models of price dynamics 60
 8.1 Lévy stable non-Gaussian model 61
 8.2 Student’s t-distribution 62
 8.3 Mixture of Gaussian distributions 63
 8.4 Truncated Lévy flight 64

9 Scaling and its breakdown 68
 9.1 Empirical analysis of the S&P 500 index 68
 9.2 Comparison with the TLF distribution 72
 9.3 Statistical properties of rare events 74

10 ARCH and GARCH processes 76
 10.1 ARCH processes 77
 10.2 GARCH processes 80
 10.3 Statistical properties of ARCH/GARCH processes 81
 10.4 The GARCH(1,1) and empirical observations 85
 10.5 Summary 87

11 Financial markets and turbulence 88
 11.1 Turbulence 89
 11.2 Parallel analysis of price dynamics and fluid velocity 90
Contents

11.3 Scaling in turbulence and in financial markets 94
11.4 Discussion 96

12 Correlation and anticorrelation between stocks 98
12.1 Simultaneous dynamics of pairs of stocks 98
12.1.1 Dow–Jones Industrial Average portfolio 99
12.1.2 S&P 500 portfolio 101
12.2 Statistical properties of correlation matrices 103
12.3 Discussion 103

13 Taxonomy of a stock portfolio 105
13.1 Distance between stocks 105
13.2 Ultrametric spaces 106
13.3 Subdominant ultrametric space of a portfolio of stocks 111
13.4 Summary 112

14 Options in idealized markets 113
14.1 Forward contracts 113
14.2 Futures 114
14.3 Options 114
14.4 Speculating and hedging 115
14.4.1 Speculation: An example 116
14.4.2 Hedging: A form of insurance 116
14.4.3 Hedging: The concept of a riskless portfolio 116
14.5 Option pricing in idealized markets 118
14.6 The Black & Scholes formula 120
14.7 The complex structure of financial markets 121
14.8 Another option-pricing approach 121
14.9 Discussion 122

15 Options in real markets 123
15.1 Discontinuous stock returns 123
15.2 Volatility in real markets 124
15.2.1 Historical volatility 124
15.2.2 Implied volatility 125
15.3 Hedging in real markets 127
15.4 Extension of the Black & Scholes model 127
15.5 Summary 128

Appendix A: Notation guide 130
Appendix B: Martingales 136
References 137
Index 145