An Introduction to Econophysics

This book concerns the use of concepts from statistical physics in the description of financial systems. Specifically, the authors illustrate the scaling concepts used in probability theory, in critical phenomena, and in fully developed turbulent fluids. These concepts are then applied to financial time series to gain new insights into the behavior of financial markets. The authors also present a new stochastic model that displays several of the statistical properties observed in empirical data.

Usually in the study of economic systems it is possible to investigate the system at different scales. But it is often impossible to write down the 'microscopic' equation for all the economic entities interacting within a given system. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behavior of economic systems without first having to work out a detailed microscopic description of the same system. This book will be of interest both to physicists and to economic systems interesting and challenging, as economic systems are among the most intriguing and fascinating complex systems that might be investigated. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems.

This book is intended for students and researchers studying economics or physics at a graduate level and for professionals in the field of finance. Undergraduate students possessing some familarity with probability theory or statistical physics should also be able to learn from the book.

DR ROSARIO N. MANTEGNA is interested in the empirical and theoretical modeling of complex systems. Since 1989, a major focus of his research has been studying financial systems using methods of statistical physics. In particular, he has originated the theoretical model of the truncated Lévy flight and discovered that this process describes several of the statistical properties of the Standard and Poor's 500 stock index. He has also applied concepts of ultrametric spaces and cross-correlations to the modeling of financial markets. Dr Mantegna is a Professor of Physics at the University of Palermo.

DR H. EUGENE STANLEY has served for 30 years on the physics faculties of MIT and Boston University. He is the author of the 1971 monograph *Introduction to Phase Transitions and Critical Phenomena* (Oxford University Press, 1971). This book brought to a much wider audience the key ideas of scale invariance that have proved so useful in various fields of scientific endeavor. Recently, Dr Stanley and his collaborators have been exploring the degree to which scaling concepts give insight into economics and various problems of relevance to biology and medicine.

AN INTRODUCTION TO ECONOPHYSICS Correlations and Complexity in Finance

ROSARIO N. MANTEGNA

Dipartimento di Energetica ed Applicazioni di Fisica, Palermo University

H. EUGENE STANLEY

Center for Polymer Studies and Department of Physics, Boston University

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain

© R. N. Mantegna and H. E. Stanley 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2000 Reprinted 2000

Printed in the United Kingdom by Biddles Ltd, Guildford & King's Lynn

Typeface Times 11/14pt System IAT_FX [UPH]

A catalogue record of this book is available from the British Library

Library of Congress Cataloguing in Publication data Mantegna, Rosario N. (Rosario Nunzio), 1960– An introduction to econophysics: correlations and complexity in finance / Rosario N. Mantegna, H. Eugene Stanley. p. cm. ISBN 0 521 62008 2 (hardbound)

ISBN 0 521 62008 2 (hardbound) 1. Finance–Statistical methods. 2. Finance–Mathematical models. 3. Statistical physics. I. Stanley, H. Eugene (Harry Eugene), 1941– II. Title HG176.5.M365 1999 332'.01'5195–dc21 99-28047 CIP

ISBN 0 521 62008 2 hardback

Contents

Preface			viii
1	Introduction		
	1.1	Motivation	1
	1.2	Pioneering approaches	2
	1.3	The chaos approach	4
	1.4	The present focus	5
2	Efficient market hypothesis		8
	2.1	Concepts, paradigms, and variables	8
	2.2	Arbitrage	8
	2.3	Efficient market hypothesis	9
	2.4	Algorithmic complexity theory	11
	2.5	Amount of information in a financial time series	12
	2.6	Idealized systems in physics and finance	12
3	Random walk		14
	3.1	One-dimensional discrete case	14
	3.2	The continuous limit	15
	3.3	Central limit theorem	17
	3.4	The speed of convergence	19
		3.4.1 Berry–Esséen Theorem 1	20
		3.4.2 Berry–Esséen Theorem 2	20
	3.5	Basin of attraction	21
4	Lévy stochastic processes and limit theorems		23
	4.1	Stable distributions	23
	4.2	Scaling and self-similarity	26
	4.3	Limit theorem for stable distributions	27
	4.4	Power-law distributions	28
		4.4.1 The St Petersburg paradox	28
		4.4.2 Power laws in finite systems	29

vi		Contents	
	4.5	Price change statistics	29
	4.6	Infinitely divisible random processes	31
		4.6.1 Stable processes	31
		4.6.2 Poisson process	31
		4.6.3 Gamma distributed random variables	32
		4.6.4 Uniformly distributed random variables	32
	4.7	Summary	33
5	Scal	es in financial data	34
	5.1	Price scales in financial markets	35
	5.2	Time scales in financial markets	39
	5.3	Summary	43
6	Stati	ionarity and time correlation	44
	6.1	Stationary stochastic processes	44
	6.2	Correlation	45
	6.3	Short-range correlated random processes	49
	6.4	Long-range correlated random processes	49
	6.5	Short-range compared with long-range correlated noise	51
7	Tim	e correlation in financial time series	53
	7.1	Autocorrelation function and spectral density	53
	7.2	Higher-order correlations: The volatility	57
	7.3	Stationarity of price changes	58
	7.4	Summary	59
8	Stoc	hastic models of price dynamics	60
	8.1	Lévy stable non-Gaussian model	61
	8.2	Student's <i>t</i> -distribution	62
	8.3	Mixture of Gaussian distributions	63
	8.4	Truncated Lévy flight	64
9	Scal	ing and its breakdown	68
	9.1	Empirical analysis of the S&P 500 index	68
	9.2	Comparison with the TLF distribution	72
	9.3	Statistical properties of rare events	74
10	ARG	CH and GARCH processes	76
	10.1	ARCH processes	77
	10.2	GARCH processes	80
	10.3	Statistical properties of ARCH/GARCH processes	81
	10.4	The GARCH(1,1) and empirical observations \tilde{a}	85
	10.5	Summary	87
11	Fina	incial markets and turbulence	88
	11.1	Turbulence	89
	11.2	Parallel analysis of price dynamics and fluid velocity	90

Cambridge University Press
0521620082 - An Introduction to Econophysics: Correlations and Complexity in Finance
Rosario N. Mantegna and H. Eugene Stanley
Frontmatter
More information

		Contents	vii
	11.3	Scaling in turbulence and in financial markets	94
	11.4	Discussion	96
12	Corr	elation and anticorrelation between stocks	98
	12.1	Simultaneous dynamics of pairs of stocks	98
		12.1.1 Dow-Jones Industrial Average portfolio	99
		12.1.2 S&P 500 portfolio	101
	12.2	Statistical properties of correlation matrices	103
	12.3	Discussion	103
13	Taxo	pnomy of a stock portfolio	105
	13.1	Distance between stocks	105
	13.2	Ultrametric spaces	106
	13.3	Subdominant ultrametric space of a portfolio of stocks	111
	13.4	Summary	112
14	Opti	ons in idealized markets	113
	14.1	Forward contracts	113
	14.2	Futures	114
	14.3	Options	114
	14.4	Speculating and hedging	115
		14.4.1 Speculation: An example	116
		14.4.2 Hedging: A form of insurance	116
		14.4.3 Hedging: The concept of a riskless portfolio	116
	14.5	Option pricing in idealized markets	118
	14.6	The Black & Scholes formula	120
	14.7	The complex structure of financial markets	121
	14.8	Another option-pricing approach	121
	14.9	Discussion	122
15	Options in real markets		
	15.1	Discontinuous stock returns	123
	15.2	Volatility in real markets	124
		15.2.1 Historical volatility	124
	150	15.2.2 Implied volatility	125
	15.3	Hedging in real markets	127
	15.4	Extension of the Black & Scholes model	127
	15.5	Summary	128
App	Appendix A: Notation guide		
App	Appendix B: Martingales		
Kefe	Keferences		
Inde	Index		145

Preface

Physicists are currently contributing to the modeling of 'complex systems' by using tools and methodologies developed in statistical mechanics and theoretical physics. Financial markets are remarkably well-defined complex systems, which are continuously monitored – down to time scales of seconds. Further, virtually every economic transaction is recorded, and an increasing fraction of the total number of recorded economic data is becoming accessible to interested researchers. Facts such as these make financial markets extremely attractive for researchers interested in developing a deeper understanding of modeling of complex systems.

Economists – and mathematicians – are the researchers with the longer tradition in the investigation of financial systems. Physicists, on the other hand, have generally investigated economic systems and problems only occasionally. Recently, however, a growing number of physicists is becoming involved in the analysis of economic systems. Correspondingly, a significant number of papers of relevance to economics is now being published in physics journals. Moreover, new interdisciplinary journals – and dedicated sections of existing journals – have been launched, and international conferences are being organized.

In addition to fundamental issues, practical concerns may explain part of the recent interest of physicists in finance. For example, risk management, a key activity in financial institutions, is a complex task that benefits from a multidisciplinary approach. Often the approaches taken by physicists are complementary to those of more established disciplines, so including physicists in a multidisciplinary risk management team may give a cutting edge to the team, and enable it to succeed in the most efficient way in a competitive environment.

This book is designed to introduce the multidisciplinary field of econophysics, a neologism that denotes the activities of physicists who are working

Preface

on economics problems to test a variety of new conceptual approaches deriving from the physical sciences. The book is short, and is not designed to review all the recent work done in this rapidly developing area. Rather, the book offers an introduction that is sufficient to allow the current literature to be profitably read. Since this literature spans disciplines ranging from financial mathematics and probability theory to physics and economics, unavoidable notation confusion is minimized by including a systematic notation list in the appendix.

We wish to thank many colleagues for their assistance in helping prepare this book. Various drafts were kindly criticized by Andreas Buchleitner, Giovanni Bonanno, Parameswaran Gopikrishnan, Fabrizio Lillo, Johannes Voigt, Dietrich Stauffer, Angelo Vulpiani, and Dietrich Wolf.

Jerry D. Morrow demonstrated his considerable T_EX skills in carrying out the countless revisions required. Robert Tomposki's tireless library research greatly improved the bibliography. We especially thank the staff of Cambridge University Press – most especially Simon Capelin (Publishing Director in the Physical Sciences), Sue Tuck (Production Controller), and Lindsay Nightingale (Copy Editor), and the CUP Technical Applications Group – for their remarkable efficiency and good cheer throughout this entire project.

As we study the final page proof, we must resist the strong urge to re-write the treatment of several topics that we now realize can be explained more clearly and precisely. We do hope that readers who notice these and other imperfections will communicate their thoughts to us.

Rosario N. Mantegna

H. Eugene Stanley

To Francesca and Idahlia