Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkali halides</td>
<td>133, 136</td>
</tr>
<tr>
<td>alkali metals</td>
<td>115, 153</td>
</tr>
<tr>
<td>alkaline earth fluorides</td>
<td>161</td>
</tr>
<tr>
<td>alloys and compounds</td>
<td>156</td>
</tr>
<tr>
<td>amplitude function at surface, 256</td>
<td></td>
</tr>
<tr>
<td>angular momentum</td>
<td>45</td>
</tr>
<tr>
<td>angular momentum quantum numbers, 53</td>
<td></td>
</tr>
<tr>
<td>anisotropy</td>
<td>155</td>
</tr>
<tr>
<td>anisotropy and ionicity fraction</td>
<td>168</td>
</tr>
<tr>
<td>atomic vibrations and shear stiffness, 171</td>
<td></td>
</tr>
<tr>
<td>Avogadro</td>
<td>31</td>
</tr>
<tr>
<td>Balmer series</td>
<td>52</td>
</tr>
<tr>
<td>band gap density and shear stiffness, 167</td>
<td></td>
</tr>
<tr>
<td>bend-gliding</td>
<td>190</td>
</tr>
<tr>
<td>Berzelius</td>
<td>31</td>
</tr>
<tr>
<td>body forces</td>
<td>9</td>
</tr>
<tr>
<td>Bohr, 34</td>
<td></td>
</tr>
<tr>
<td>bond charge model</td>
<td>59, 69</td>
</tr>
<tr>
<td>bonding requirements (amplitude functions)</td>
<td>69</td>
</tr>
<tr>
<td>breaking mode of cracking, 249</td>
<td></td>
</tr>
<tr>
<td>bulk modulus</td>
<td>23, 110</td>
</tr>
<tr>
<td>bulk stiffness</td>
<td>7</td>
</tr>
<tr>
<td>bulk stiffness of elements, 111</td>
<td></td>
</tr>
<tr>
<td>Casimir forces</td>
<td>98, 103</td>
</tr>
<tr>
<td>Cauchy, 10</td>
<td></td>
</tr>
<tr>
<td>Cauchy ratio</td>
<td>155</td>
</tr>
<tr>
<td>Cauchy’s relations</td>
<td>27, 146, 152, 164</td>
</tr>
<tr>
<td>chain molecules (polymers)</td>
<td>89</td>
</tr>
<tr>
<td>chalcogenides</td>
<td>137</td>
</tr>
<tr>
<td>characteristic rate law, 269</td>
<td></td>
</tr>
<tr>
<td>chemical hardness</td>
<td>123, 179, 180</td>
</tr>
<tr>
<td>chemical hardness and shear stiffness, 181</td>
<td></td>
</tr>
<tr>
<td>chemical theory of dislocation mobility, 220, 224</td>
<td></td>
</tr>
<tr>
<td>cleavability and polarizability, 265</td>
<td></td>
</tr>
<tr>
<td>cleavage faces, long-range attraction, 262</td>
<td></td>
</tr>
<tr>
<td>cohesion of atoms, 63</td>
<td></td>
</tr>
<tr>
<td>collective polarization</td>
<td>262</td>
</tr>
<tr>
<td>color change, deformed AuAl2, 238</td>
<td></td>
</tr>
<tr>
<td>commutation, 40, 58</td>
<td></td>
</tr>
<tr>
<td>compatibility and fracture, 192</td>
<td></td>
</tr>
<tr>
<td>compatibility relations, 16, 19</td>
<td></td>
</tr>
<tr>
<td>compression, 16</td>
<td></td>
</tr>
<tr>
<td>computed crack in silicon, 250</td>
<td></td>
</tr>
<tr>
<td>contracted notation, 24</td>
<td></td>
</tr>
<tr>
<td>coordinate axes, 10</td>
<td></td>
</tr>
<tr>
<td>Coulomb, 31</td>
<td></td>
</tr>
<tr>
<td>Coulombic energy</td>
<td>78</td>
</tr>
<tr>
<td>covalent bonds</td>
<td>67</td>
</tr>
<tr>
<td>covalent crystals</td>
<td>129, 162</td>
</tr>
<tr>
<td>cracking, 247</td>
<td></td>
</tr>
<tr>
<td>crack kink velocity, 269, 273</td>
<td></td>
</tr>
<tr>
<td>crack propagation, 249</td>
<td></td>
</tr>
<tr>
<td>crystal anisotropy</td>
<td>23</td>
</tr>
<tr>
<td>crystallographic axes, 10</td>
<td></td>
</tr>
<tr>
<td>crystal symmetry</td>
<td>22</td>
</tr>
<tr>
<td>cubic cluster model</td>
<td>28</td>
</tr>
<tr>
<td>cubic crystals</td>
<td>23</td>
</tr>
<tr>
<td>de Broglie, 34, 37</td>
<td></td>
</tr>
<tr>
<td>deformation tensor</td>
<td>17</td>
</tr>
<tr>
<td>d-electrons, 118</td>
<td></td>
</tr>
<tr>
<td>density functional theory, 59</td>
<td></td>
</tr>
<tr>
<td>dependence of inelastic work on intrinsic surface energy, 252</td>
<td></td>
</tr>
<tr>
<td>Derjaguin forces</td>
<td>103</td>
</tr>
<tr>
<td>deviator part of stress tensor, 14</td>
<td></td>
</tr>
<tr>
<td>diamond, 165</td>
<td></td>
</tr>
<tr>
<td>diatomic chains</td>
<td>90</td>
</tr>
<tr>
<td>difference between C_4 and C^*, 145</td>
<td></td>
</tr>
<tr>
<td>dilatational strain, 9</td>
<td></td>
</tr>
<tr>
<td>dilation tensor</td>
<td>17</td>
</tr>
<tr>
<td>dipole debris</td>
<td>196</td>
</tr>
<tr>
<td>dipole–dipole crystals, 103</td>
<td></td>
</tr>
<tr>
<td>dipole–dipole energy, 97</td>
<td></td>
</tr>
<tr>
<td>dipole forces, induced, 263</td>
<td></td>
</tr>
<tr>
<td>dipole interaction, 99</td>
<td></td>
</tr>
<tr>
<td>dipole moment, 97</td>
<td></td>
</tr>
<tr>
<td>dipole polarizability, 148</td>
<td></td>
</tr>
<tr>
<td>dipole vibration frequency, 98</td>
<td></td>
</tr>
<tr>
<td>direction cosines, 10</td>
<td></td>
</tr>
<tr>
<td>dislocated crystal</td>
<td>194</td>
</tr>
<tr>
<td>dislocation, definition, 202</td>
<td></td>
</tr>
<tr>
<td>dislocation kinematics, 198</td>
<td></td>
</tr>
<tr>
<td>dislocation kinks, 227</td>
<td></td>
</tr>
<tr>
<td>dislocation mobility, 199, 201</td>
<td></td>
</tr>
<tr>
<td>dislocation mobility and chemical stability, 234</td>
<td></td>
</tr>
</tbody>
</table>
dislocation mobility, chemical theory, 224
dislocation mobility in carbides, 216
dislocation mobility in Group V elements, 225
dislocation mobility in ionic compounds, 213
dislocation mobility in molecular solids, 234
dislocation mobility in silicon carbide, 218
dislocation mobility in transition metals, 211
dislocation mobility in tungsten carbide, 223
dislocation motion in oxides (including silicates),
double cantilever crack, 248
ductility, 250
dynamic fatigue, 273
dynamic fatigue, 273
edge dislocation, 194
Edison, 31
effective atom, 147
effect of dynamic interactions on dislocation mobility, 241
effect of pressure on compressibility, 112
effect of symmetry, 69, 72
elastic compliances, 20
elastic displacements, 16
elastic stiffness, 5, 20
elastomers, 175
electron affinity, 36
electron charge, 36
electron density at surface, 256
electron negativity difference, 137
electron negativity difference densities of alkali halides, 137
electron exchange, 65, 83
electronic chemical potential, 180
electron magnetic moment (spin), 36, 49
electron mass, 36
electron mechanics, 31
electron tunneling, 263
electron viscosity, 207
element of a plane, 11
embedded reactions at dislocation cores, 220, 228
energy balance, 249
electron bands, 95
energy condition for cracking, 249
enthalpic elasticity, 174
entropic elasticity, 174
entropic stiffness, 175
environmental effects on cracking, 252
exponential dislocation growth, 196
extension, 16
extrinsic barriers to dislocation motion, 206
extrinsic resistance to dislocation motion, 206
Faraday, 31
fluctuating dipoles, 98
fluorites, 137
force constant, 98
force to move dislocation kink, 230
forms of anisotropy, 210
fracture energies, 248
fracture mechanics, 248
fracture surface energy, 249
fracturing rates, 267
Frank definition of close-packing, 212
Franklin, 31
free energy, 175
free radicals, 273
Galileo, 9
Gaussian pulse envelope, 59
generalized deformation rate equation, 195
generalized strain, 16
generalized stress, 9
glide activation energies and LUMO–HOMO gaps, 219
glide in rocksalt on cube plane, 214
glide in rocksalt on primary plane, 214
glide plane in galena, 216
Goudsmit, 35
Griffith, 249
hard metals, 128
hard metals (interstitial compounds), 157
hardness, 179
Heisenberg, 34, 35
Heisenberg Principle, 40, 56, 73, 78, 123
Hellman–Feynman theorem, 64
heterogeneous deformation, 186
high mobility, metals, 212
Hooke, 176
Hooke’s Law, 9, 20
Hund’s Rule, 54
hybridization, 87
hydrogen atom, 45, 60
hydrogen bonding, 66, 75, 106
hydrogen molecular ion, 77, 82
hydrogen molecule, 79
hydrostatic compression, 19
hydrostatic stress, 15
impact fatigue, 273
importance of dislocation mobility, 199
indentation hardness, 182
indentation hardness and band gaps, 235
induced dipole forces, Drude theory, 263
inelastic cracking, 251
inelastic processes, 251
inelastic work at crack tips, 251
interfacial energies, 262
intermetallic compounds, 129
intermolecular shear stiffness, 171
intramolecular cohesion, 77
intrinsic resistance to dislocation motion, 207
intrinsic surface energy, 249
inversion formulae, 26
ion core radii, 117
ionic bonding, 73
ionic crystals, 133, 159
ionization energy, 180
isoelectronic alkali halides, 147
isotope effect (diamond), 169
isotropic solids, 21
Joule, 31
Keyes parameter, 115, 181
Keyes potential, 85
kinetic energy, 78
kinetic theory of gases, 176
kinks on cracks, 269
Koehler multiple-cross-glide process, 196, 197
lanthanides, 128
LCAO theory, 69
Lennard-Jones energy, 106, 140
Lennard-Jones equation, 105
Lennard-Jones repulsion, 104
Leonardo da Vinci, 9
limiting bond types, 66
linear dipole pairs, 263
linear dislocation transport, 193
London–Casimir forces, 65
London forces, 74, 97, 171, 263
low mobility, covalent crystals, 204
macroscopic plastic deformation, 185
Madelung constant, 134
magnetic effect, 120
mechanical activation of motion, 241
mechanics of cracks, 247
mechanism of mechanochemistry, 183
mechanochemistry, 183
metallic bonding, 73
metalloid–metal compounds, 128
metals, 113
microscopic plastic deformation, 193
Miller indices, 11
Miklikan, 32
mobile fraction of dislocations, 198
mobility, definition, 202
mobility, effect of stress, 204
mobility in alloys, 236
mobility in anisotropic metals, 209
mobility in intermetallic compounds, 236
mobility in metallic glasses, 239
mobility in Nylon, 236
mobility in simple metals, 208
mobility in titanium carbide, 220
mobility theory of Grimvall and Thiessen, 222
modes of crack propagation, 249
modes of plastic deformation, 189
modulation envelope, 57
molecular crystals, 139
molecular segments, 177
Morse potential, 85, 270
motion at dislocation cores, 207
multiplication of dislocations, 195
N-atom loop, 94
Navier, 27
nitrates, 135
non-existence of “plastic modulus”, 188
normalization, 72
octahedral shear stiffness, 23, 167
operators, 58
orbital shapes, 44, 53
orientation convention, 15, 22
orientation dependence of surface energy, 257
Orowan’s equation, 193
orthogonalization condition, 88
overlap, 70
particle on a ring, 40
particle on a sphere, 42
patterns of electrons, 52
Pauli, 35
Pauli Exclusion Principle, 50, 104
Pauli repulsive forces, 104
Peter’s mobility theory, 204
phonon viscosity, 207
photon exchange, 65, 81
Planck, 35
plane biaxial stress, 15
plasmons, 124
plastic anisotropy in rocksalt structure, 215
plastic compatibility, 191
plastic deformation versus elastic strain, 193, 194
plastic equation of state, 188
plastic kinking, 190
plastic yielding, 186
polarizability, 100, 138, 160, 171, 262, 265
polarizability and dislocation mobility, 266
polarizability tensor, 97
polyatomic chains, 92
polyatomic molecules, 87
polymer chains, 170, 174
pressure, 9, 14
principal directions, 15
principal quantum numbers, 52, 53
principal stresses, 14
probability amplitudes, 39
proton exchange, 65
punch-gliding, 190
pure plane shear, 15
quadrupolar polarizability, 149
quadrupole energy, 97
quantum states, 37
quasicrystals, 169
radial potentials (failure), 150
relativity effect, 66
resolution of a force element, 12
resolution of an area element, 11
resonance theory, 80
reversibility of crack propagation, 249
rotation, 16
rotation-gliding, 190
rotation tensor, 17
rubbery elasticity, 176
Rutherford, 33
Rydberg function, 179
Saint-Venant, 10
schematic electron distributions, 67
Schrödinger, 34, 37
Schrödinger pressure, 74
screw dislocation, 194
screw dislocation in b.c.c. structure, 212
screw dislocation in diamond structure, 228
shear, 16
shear angles at crack tips, 253
shear-induced chemical reactions, 182
shear-induced phase transitions, 182
shearing mode of cracking, 249
shear modulus, 23, 142
shear stiffness, 7, 143
shear strain, 9
shear strains at crack tips, 252
shear tensor, 17
“shuffle” versus “glide” regions of glide planes, 228
silicates, 139
simple metals, 113
solidity index, 110, 146
specification of a plane, 10
spectroscopic term symbols, 53
spherical part of stress tensor, 14
spin pairing, 69
splitting a “rail”, 247
splitting at crack tip, 250
stacking fault energies, 210
standard deviation, 56
state of stress, 12
static equilibrium, 13
static fatigue, 273–5
steadiness of dislocation motion, 205
Stem–Gerlach, 36, 50
Stoner’s Rule, 55
Stoney, 32
strain energy, 24
strain hardening, 240
strain tensor, 17
stress activation of dislocation motion, 243
stress components, 13
stress, definition, 10
stress equivalence, 270
stress-intensity factors, 248

stress-rupture, 267
stress tensor, 13
strong resonance (hopping), 82
sub-critical crack velocities, 273
surface electronic states, 250, 255
surface energy, 254
surface energy and atomic radii, 259
surface energy and Periodic Table, 255
surface energy, covalent crystals, 257
surface energy from elastic stiffness, 260
surface energy from Heisenberg’s Principle, 258
surface energy from plasmon theory, 261
surface energy, ionic crystals, 257
surface energy, Schmit–Lucas theory, 262
surface energy, simple metals, 258
surface states, 89
symmetry breaking at dislocation kinks, 227
Tamm states, 89, 250
tearing mode of cracking, 249
temperature dependence of mobility, 231
tetrahedral bonds, 87
theories of shear stiffness, 147
thermal activation, fracture, 267
thermal activation of dislocation motion, 242
Thomson, 31
tough polymers, 265
traction laws, 9
transition metals, 117
transition state for dislocation kink, 230
translation-gliding, 189
tunneling probability, 272
twin-gliding, 189
twist-gliding, 190
two shear coefficients, 145
UBER, 117, 179
unit vector, 10
universality, 179
valence electron density, 65, 163, 164, 168, 254
Van Arkel–Ketelaar diagram, 66
Variation Principle, 71
vector algebra, 58
viscous resistance to dislocation motion, 208
Voigt, 13, 27
Walsh correlation diagram for dislocation kink, 230
wave fields, 38
weak resonance (London forces), 81
yield stresses versus Peierls theory, 217
Young’s modulus, 25
Zener–Hollomon parameter, 188
Zener tunneling, 267, 271
zero-point energy, 81, 98