MUSIC: A MATHEMATICAL OFFERING

Since the time of the Ancient Greeks, much has been written about the relation between mathematics and music: from harmony and number theory to musical patterns and group theory. Benson provides a wealth of information here to enable the teacher, the student or the interested amateur to understand, at varying levels of technicality, the real interplay between these two ancient disciplines.

The story is long as well as broad and involves physics, biology, psychoacoustics, the history of science and digital technology as well as, of course, mathematics and music. Fundamental to it is how we actually hear sound, so the book starts with the structure of the human ear and its relationship with Fourier analysis. Combining this with the mathematics of musical instruments leads to the ideas of consonance and dissonance, and from there to an understanding of the development of scales and temperaments. Later chapters introduce some separate but related threads involving symmetry in music and the modern introduction of digital techniques to produce and analyze music and sound. This is a must-have book if you want to know about the music of the spheres or digital music, and many things in between.

DAVE BENSON is Sixth Century Professor of Pure Mathematics at the University of Aberdeen. He has held positions in Georgia, Oxford, and at Northwestern and Yale, and visiting positions at many places throughout the world. He is a keen amateur singer and has performed in many operas.

MUSIC: A MATHEMATICAL OFFERING

DAVE BENSON

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521619998

© David J. Benson 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2007 6th printing 2013

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-85387-3 Hardback ISBN 978-0-521-61999-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Christine Natasha

Ode to an Old Fiddle from The Musical World (London, 1834), quoted in Nicolas Slonimsky's Book of Musical Anecdotes, Schirmer, 1998.

The poor fiddler's ode to his old fiddle

Torn Worn Oppressed I mourn B a d Sad Three-quarters mad Money gone Credit none Duns at door Half a score Wife in lain Twins again Others ailing Nurse a railing Billy hooping Betsy crouping Besides poor Joe With fester'd toe. Come, then, my Fiddle, Come, my time-worn friend, With gay and brilliant sounds Some sweet tho' transient solace lend, Thy polished neck in close embrace I clasp, whilst joy illumines my face. When o'er thy strings I draw my bow, My drooping spirit pants to rise; A lively strain I touch-and, lo! I seem to mount above the skies. There on Fancy's wing I soar Heedless of the duns at door; Oblivious all, I feel my woes no more; But skip o'er the strings, As my old Fiddle sings, "Cheerily oh! merrily go! "PRESTO! good master, "You very well know "I will find Music, "If you will find bow, "From E, up in alto, to G, down below." Fatigued, I pause to change the time For some Adagio, solemn and sublime. With graceful action moves the sinuous arm; My heart, responsive to the soothing charm, Throbs equably; whilst every health-corroding care Lies prostrate, vanquished by the soft mellifluous air. More and more plaintive grown, my eyes with tears o'erflow, And Resignation mild soon smooths my wrinkled brow. Reedy Hautboy may squeak, wailing Flauto may squall, The Serpent may grunt, and the Trombone may bawl; But, by Poll,* my old Fiddle's the prince of them all. Could e'en Dryden return, thy praise to rehearse, His Ode to Cecilia would seem rugged verse. Now to thy case, in flannel warm to lie, Till call'd again to pipe thy master's eye. *Apollo.

Contents

	Preface Acknowledgements		<i>page</i> xi
			xiii
	Intro	1	
1	Wave	es and harmonics	5
	1.1	What is sound?	5
	1.2	The human ear	7
	1.3	Limitations of the ear	13
	1.4	Why sine waves?	17
	1.5	Harmonic motion	18
	1.6	Vibrating strings	19
	1.7	Sine waves and frequency spectrum	21
	1.8	Trigonometric identities and beats	23
	1.9	Superposition	26
	1.10	Damped harmonic motion	28
	1.11	Resonance	31
2	Fouri	ier theory	36
	2.1	Introduction	37
	2.2	Fourier coefficients	38
	2.3	Even and odd functions	44
	2.4	Conditions for convergence	46
	2.5	The Gibbs phenomenon	50
	2.6	Complex coefficients	54
	2.7	Proof of Fejér's theorem	55
	2.8	Bessel functions	58
	2.9	Properties of Bessel functions	61
	2.10	Bessel's equation and power series	63
	2.11	Fourier series for FM feedback and planetary motion	68
	2.12	Pulse streams	71

vi	ii	Contents	
	2.13	The Fourier transform	73
	2.14	Proof of the inversion formula	77
	2.15	Spectrum	80
	2.16	The Poisson summation formula	81
	2.17	The Dirac delta function	82
	2.18	Convolution	86
	2.19	Cepstrum	88
	2.20	The Hilbert transform and instantaneous frequency	89
3	A ma	athematician's guide to the orchestra	91
	3.1	Introduction	91
	3.2	The wave equation for strings	92
	3.3	Initial conditions	100
	3.4	The bowed string	103
	3.5	Wind instruments	107
	3.6	The drum	112
	3.7	Eigenvalues of the Laplace operator	117
	3.8	The horn	120
	3.9	Xylophones and tubular bells	122
	3.10	The mbira	130
	3.11	The gong	133
	3.12	The bell	138
	3.13	Acoustics	142
4	Cons	sonance and dissonance	144
	4.1	Harmonics	144
	4.2	Simple integer ratios	145
	4.3	History of consonance and dissonance	148
	4.4	Critical bandwidth	151
	4.5	Complex tones	152
	4.6	Artificial spectra	153
	4.7	Combination tones	155
_	4.8	Musical paradoxes	158
5	Scale	es and temperaments: the fivefold way	161
	5.1	Introduction	162
	5.2	Pythagorean scale	162
	5.3	The cycle of fifths	164
	5.4	Cents	165
	5.5	Just intonation	167
	5.6	Major and minor	168
	5.7	The dominant seventh	170
	5.8	Commas and schismas	171

		Contents	ix
	5.9	Eitz's notation	172
	5.10	Examples of just scales	174
	5.11	Classical harmony	181
	5.12	Meantone scale	185
	5.13	Irregular temperaments	189
	5.14	Equal temperament	198
	5.15	Historical remarks	202
6	More	scales and temperaments	210
	6.1	Harry Partch's 43 tone and other just scales	210
	6.2	Continued fractions	214
	6.3	Fifty-three tone scale	223
	6.4	Other equal tempered scales	227
	6.5	Thirty-one tone scale	228
	6.6	The scales of Wendy Carlos	231
	6.7	The Bohlen–Pierce scale	233
	6.8	Unison vectors and periodicity blocks	237
	6.9	Septimal harmony	242
7	Digita	al music	245
	7.1	Digital signals	245
	7.2	Dithering	247
	7.3	WAV and MP3 files	248
	7.4	MIDI	251
	7.5	Delta functions and sampling	251
	7.6	Nyquist's theorem	254
	7.7	The <i>z</i> -transform	256
	7.8	Digital filters	257
	7.9	The discrete Fourier transform	261
	7.10	The fast Fourier transform	263
8	Synth	nesis	265
	8.1	Introduction	265
	8.2	Envelopes and LFOs	266
	8.3	Additive synthesis	268
	8.4	Physical modelling	270
	8.5	The Karplus–Strong algorithm	273
	8.6	Filter analysis for the Karplus–Strong algorithm	275
	8.7	Amplitude and frequency modulation	276
	8.8	The Yamaha DX7 and FM synthesis	280
	8.9	Feedback, or self-modulation	287
	8.10	CSound	291
	8.11	FM synthesis using CSound	298

х		Contents	
	8.12	Simple FM instruments	300
	8.13	Further techniques in CSound	304
	8.14	Other methods of synthesis	308
	8.15	The phase vocoder	309
	8.16	Chebyshev polynomials	309
9	Symm	netry in music	312
	9.1	Symmetries	312
	9.2	The harp of the Nzakara	322
	9.3	Sets and groups	324
	9.4	Change ringing	329
	9.5	Cayley's theorem	331
	9.6	Clock arithmetic and octave equivalence	333
	9.7	Generators	335
	9.8	Tone rows	337
	9.9	Cartesian products	339
	9.10	Dihedral groups	340
	9.11	Orbits and cosets	342
	9.12	Normal subgroups and quotients	343
	9.13	Burnside's lemma	345
	9.14	Pitch class sets	348
	9.15	Pólya's enumeration theorem	353
	9.16	The Mathieu group M_{12}	358
A	ppendi	x A Bessel functions	361
A	ppendi	x B Equal tempered scales	365
A]	ppendi	x C Frequency and MIDI chart	367
A	ppendi	x D Intervals	368
A	ppendi	x E Just, equal and meantone scales compared	372
A	ppendi	x F Music theory	374
Appendix G Recordings			381
	Refe	rences	386
	Bibl	iography	389
	Inde	x	393

Preface

This book has been a long time in the making. My interest in the connections between mathematics and music started in earnest in the early nineties, when I bought a second-hand synthesizer. This beast used a simple frequency modulation model to produce its sounds, and I was fascinated at how interesting and seemingly complex the results were. Trying to understand what was going on led me on a long journey through the nature of sound and music and its relations with mathematics, a journey that soon outgrew these origins.

Eventually, I had so much material that I decided it would be fun to try to teach a course on the subject. This ran twice as an undergraduate mathematics course in 2000 and 2001, and then again in 2003 as a Freshman Seminar. The responses of the students were interesting: each seemed to latch onto certain aspects of the subject and find others less interesting; but which parts were interesting varied radically from student to student.

With this in mind, I have tried to put together this book in such a way that different sections can be read more or less independently. Nevertheless, there *is* a thread of argument running through the book; it is described in the introduction. I strongly recommend the reader not to try to read this book sequentially, but at least to read the introduction first for orientation before dipping in.

The mathematical level of different parts of the book varies tremendously. So if you find some parts too taxing, don't despair. Just skip around a bit.

I've also tried to write the book in such a way that it can be used as the text for an undergraduate course. So there are exercises of varying difficulty, and outlines of answers in an appendix in the online version.

Cambridge University Press has kindly allowed me to keep a version of this book available for free online at www.maths.abdn.ac.uk/~bensondj/html/maths-music.html. No version of the online book will ever be identical to the printed

xii

Preface

book. Some ephemeral information is contained in the online version that would be inappropriate for the printed version; and the quality of the images in the printed version is much higher than in the online version. Moreover, the online version is likely to continue to evolve, so that *references to it will always be unstable*.

Acknowledgements

I would like to thank Manuel Op de Coul for reading an early draft of these notes, making some very helpful comments on Chapters 5 and 6, and making me aware of some fascinating articles and recordings (see Appendix G). Thanks to Paul Erlich, Xavier Gracia and Herman Jaramillo for emailing me various corrections and other helpful comments. Thanks to Robert Rich for responding to my request for information about the scales he uses in his recordings (see Section 6.1 and Appendix G). Thanks to Heinz Bohlen for taking an interest in these notes and for numerous email discussions regarding the Bohlen–Pierce scale in Section 6.7. Thanks to an anonymous referee for carefully reading an early version of the manuscript and making many suggestions for improvement. Thanks to my students, who patiently listened to my attempts at explanation of this material, and who helped me to clean up the text by understanding and pointing out improvements, where it was comprehensible, and by not understanding where it was incomprehensible. Finally, thanks as always to David Tranah of Cambridge University Press for accommodating my wishes concerning the details of publication.

This document was typeset with AMSIAT_EX. The musical examples were typeset using MusicT_EX, the graphs were made as encapsulated postscript (eps) files using MetaPost, and these and other pictures were included in the text using the graphicx package.