
Introduction

What is it about intervals such as an octave and a perfect fifth that makes them more
consonant than other intervals? Is this cultural, or inherent in the nature of things?
Does it have to be this way, or is it imaginable that we could find a perfect octave
dissonant and an octave plus a little bit consonant?

The answers to these questions are not obvious, and the literature on the subject is
littered with misconceptions. One appealing and popular, but incorrect, explanation
is due to Galileo Galilei, and has to do with periodicity. The argument goes that if
we draw two sine waves an exact octave apart, one has exactly twice the frequency
of the other, so their sum will still have a regularly repeating pattern

whereas a frequency ratio slightly different from this will have a constantly changing
pattern, so that the ear is ‘kept in perpetual torment’.

Unfortunately, it is easy to demonstrate that this explanation cannot be correct.
For pure sine waves, the ear detects nothing special about a pair of signals exactly an
octave apart, and a mistuned octave does not sound unpleasant. Interval recognition
among trained musicians is a factor being deliberately ignored here. On the other
hand, a pair of pure sine waves whose frequencies only differ slightly give rise to
an unpleasant sound. Moreover, it is possible to synthesize musical sounding tones
for which the exact octave sounds unpleasant, while an interval of slightly more
than an octave sounds pleasant. This is done by stretching the spectrum from what
would be produced by a natural instrument. These experiments are described in
Chapter 4.

The origin of the consonance of the octave turns out to be the instruments we
play. Stringed and wind instruments naturally produce a sound that consists of exact
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2 Introduction

integer multiples of a fundamental frequency. If our instruments were different, our
musical scale would no longer be appropriate. For example, in the Indonesian
gamelan, the instruments are all percussive. Percussive instruments do not produce
exact integer multiples of a fundamental, for reasons explained in Chapter 3. So
the western scale is inappropriate, and indeed not used, for gamelan music.

We begin the first chapter with another fundamental question that needs sorting
out before we can properly get as far as a discussion of consonance and dissonance.
Namely, what’s so special about sine waves anyway, that we consider them to be the
‘pure’ sound of a given frequency? Could we take some other periodically varying
wave and define it to be the pure sound of this frequency?

The answer to this has to do with the way the human ear works. First, the
mathematical property of a pure sine wave that’s relevant is that it is the general
solution to the second order differential equation for simple harmonic motion. Any
object that is subject to a returning force proportional to its displacement from a
given location vibrates as a sine wave. The frequency is determined by the constant
of proportionality. The basilar membrane inside the cochlea in the ear is elastic, so
any given point can be described by this second order differential equation, with a
constant of proportionality that depends on the location along the membrane.

The result is that the ear acts as a harmonic analyzer. If an incoming sound can be
represented as a sum of certain sine waves, then the corresponding points on the basi-
lar membrane will vibrate, and that will be translated into a stimulus sent to the brain.

This focuses our attention on a second important question. To what extent can
sound be broken down into sine waves? Or to put it another way, how is it that
a string can vibrate with several different frequencies at once? The mathematical
subject that answers this question is called Fourier analysis, and is the subject of
Chapter 2. The version of the theory in which periodic sounds are decomposed
as a sum of integer multiples of a given frequency is the theory of Fourier series.
Decomposing more general, possibly nonperiodic sounds gives rise to a continuous
frequency spectrum, and this leads to the more difficult theory of Fourier integrals.
In order to accommodate discrete spectra into the theory of Fourier integrals, we
need to talk about distributions rather than functions, so that the frequency spectrum
of a sound is allowed to have a positive amount of energy concentrated at a single
frequency.

Chapter 3 describes the mathematics associated with musical instruments. This
is done in terms of the Fourier theory developed in Chapter 2, but it is really only
necessary to have the vaguest of understanding of Fourier theory for this purpose.
It is certainly not necessary to have worked through the whole of Chapter 2. For the
discussion of drums and gongs, where the answer does not give integer multiples of
a fundamental frequency, the discussion depends on the theory of Bessel functions,
which is also developed in Chapter 2.
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Introduction 3

Chapter 4 is where the theory of consonance and dissonance is discussed. This is
used as a preparation for the discussion of scales and temperaments in Chapters 5
and 6. The fundamental question here is: why does the modern western scale consist
of twelve equally spaced notes to an octave? Where does the twelve come from?
Has it always been this way? Are there other possibilities?

The emphasis in these chapters is on the relationship between rational numbers
and musical intervals. We concentrate on the development of the standard Western
scales, from the Pythagorean scale through just intonation, the meantone scale, and
the irregular temperaments of the sixteenth to nineteenth centuries until finally we
reach the modern equal tempered scale.

We also discuss a number of other scales such as the 31 tone equal temperament
that gives a meantone scale with arbitrary modulation. There are even some scales
not based on the octave, such as the Bohlen–Pierce scale based on odd harmonics
only, and the scales of Wendy Carlos.

These discussions of scale lead us into the realm of continued fractions, which
give good rational approximations to numbers such as log2(3) and log2( 4

√
5).

After our discussion of scales, we break off our main thread to consider a couple
of other subjects where mathematics is involved in music. The first of these is
computers and digital music. In Chapter 7 we discuss how to represent sound and
music as a sequence of zeros and ones, and again we find that we are obliged to
use Fourier theory to understand the result. So, for example, Nyquist’s theorem
tells us that a given sample rate can only represent sounds whose spectrum stops
at half that frequency. We describe the closely related z-transform for representing
digital sounds, and then use this to discuss signal processing, as a method both of
manipulating sounds and of producing them.

This leads us into a discussion of digital synthesizers in Chapter 8, where we
find that we are again confronted with the question of what it is that makes musical
instruments sound the way they do. We discover that most interesting sounds do
not have a static frequency spectrum, so we have to understand the evolution of
spectrum with time. It turns out that for many sounds, the first small fraction of
a second contains the critical clues for identifying the sound, while the steadier
part of the sound is less important. We base our discussion around FM synthesis;
although this is an old-fashioned way to synthesize sounds, it is simple enough to
be able to understand a lot of the salient features before taking on more complex
methods of synthesis.

In Chapter 9 we change the subject almost completely, and look into the role
of symmetry in music. Our discussion here is at a fairly low level, and one could
write many books on this subject alone. The area of mathematics concerned with
symmetry is group theory, and we introduce the reader to some of the elementary
ideas from group theory that can be applied to music.
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4 Introduction

I should close with a disclaimer. Music is not mathematics. While we’re dis-
cussing mathematical aspects of music, we should not lose sight of the evocative
power of music as a medium of expression for moods and emotions. About the
numerous interesting questions this raises, mathematics has little to say.

Why do rhythms and melodies, which are composed of sound, resemble the feelings, while
this is not the case for tastes, colors or smells? Can it be because they are motions, as
actions are also motions? Energy itself belongs to feeling and creates feeling. But tastes
and colours do not act in the same way.

(Aristotle, Prob. xix. 29)
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1

Waves and harmonics

1.1 What is sound?

The medium for the transmission of music is sound. A proper understanding of

music entails at least an elementary understanding of the nature of sound and how

we perceive it.

Sound consists of vibrations of the air. To understand sound properly, we must

first have a good mental picture of what air looks like. Air is a gas, which means

that the atoms and molecules of the air are not in such close proximity to each other

as they are in a solid or a liquid. So why don’t air molecules just fall down on the

ground? After all, Galileo’s experiment at the leaning tower of Pisa tells us that

objects should fall to the ground with equal acceleration independently of their size

and mass.

The answer lies in the extremely rapid motion of these atoms and molecules.

The mean velocity of air molecules at room temperature under normal conditions

is around 450–500 meters per second (or somewhat over 1000 miles per hour),

which is considerably faster than an express train at full speed. We don’t feel the

collisions with our skin, only because each air molecule is extremely light, but the

combined effect on our skin is the air pressure which prevents us from exploding!

The mean free path of an air molecule is 6 × 10−8 meters. This means that

on average, an air molecule travels this distance before colliding with another air

molecule. The collisions between air molecules are perfectly elastic, so this does

not slow them down.

We can now calculate how often a given air molecule is colliding. The collision

frequency is given by

collision frequency = mean velocity

mean free path
∼ 1010 collisions per second.

So now we have a very good mental picture of why the air molecules don’t fall

down. They don’t get very far down before being bounced back up again. The effect
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6 Waves and harmonics

of gravity is then observable just as a gradation of air pressure, so that if we go up

to a high elevation, the air pressure is noticeably lower.

So air consists of a large number of molecules in close proximity, continually

bouncing off each other to produce what is perceived as air pressure. When an object

vibrates, it causes waves of increased and decreased pressure in the air. These waves

are perceived by the ear as sound, in a manner to be investigated in the next section,

but first we examine the nature of the waves themselves.

Sound travels through the air at about 340 meters per second (or 760 miles per

hour). This does not mean that any particular molecule of air is moving in the

direction of the wave at this speed (see above), but rather that the local distur-

bance to the pressure propagates at this speed. This is similar to what is happening

on the surface of the sea when a wave moves through it; no particular piece of

water moves along with the wave, it is just that the disturbance in the surface is

propagating.

There is one big difference between sound waves and water waves, though. In

the case of the water waves, the local movements involved in the wave are up and

down, which is at right angles to the direction of propagation of the wave. Such

waves are called transverse waves. Electromagnetic waves are also transverse. In

the case of sound, on the other hand, the motions involved in the wave are in the

same direction as the propagation. Waves with this property are called longitudinal
waves.

−→ Direction of motion

Longitudinal waves

Sound waves have four main attributes which affect the way they are perceived.

The first is amplitude, which means the size of the vibration, and is perceived as

loudness. The amplitude of a typical everyday sound is very minute in terms of

physical displacement, usually only a small fraction of a millimeter. The second

attribute is pitch, which should at first be thought of as corresponding to frequency

of vibration. The third is timbre, which corresponds to the shape of the frequency

spectrum of the sound (see Sections 1.7 and 2.15). The fourth is duration, which

means the length of time for which the note sounds.

These notions need to be modified for a number of reasons. The first is that most

vibrations do not consist of a single frequency, and naming a ‘defining’ frequency

can be difficult. The second related issue is that these attributes should really be

defined in terms of the perception of the sound, and not in terms of the sound itself.

So, for example, the perceived pitch of a sound can represent a frequency not actually

present in the waveform. This phenomenon is called the ‘missing fundamental’,

and is part of a subject called psychoacoustics.
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1.2 The human ear 7

Attributes of sound

Physical Perceptual

Amplitude Loudness
Frequency Pitch
Spectrum Timbre
Duration Length

Further reading

Harvey Fletcher, Loudness, pitch and the timbre of musical tones and their relation to the
intensity, the frequency and the overtone structure, J. Acoust. Soc. Amer. 6 (2)
(1934), 59–69.

1.2 The human ear

In order to get much further with understanding sound, we need to study its percep-

tion by the human ear. This is the topic of this section. I have borrowed extensively

from Gray’s Anatomy for this description.

The ear is divided into three parts, called the outer ear, the middle ear or tympanum
and the inner ear or labyrinth. See Figure 1.1. The outer ear is the visible part on

the outside of the head, called the pinna (plural pinnæ) or auricle, and is ovoid in

form. The hollow middle part, or concha, is associated with focusing and thereby

magnifying the sound, while the outer rim, or helix, appears to be associated with

vertical spatial separation, so that we can judge the height of a source of sound.

The concha channels the sound into the auditory canal, called the meatus audi-
torius externus (or just meatus). This is an air filled tube, about 2.7 cm long and

hammer

anvil
stirrup

eardrum

meatus

eustachian tube

outer ear

cochleaconcha

semicircular canals

Figure 1.1 The human ear.
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8 Waves and harmonics

Figure 1.2 The osseous labyrinth laid open. (Enlarged.) From Gray (1901).

0.7 cm in diameter. At the inner end of the meatus is the ear drum, or tympanic
membrane.

The ear drum divides the outer ear from the middle ear, or tympanum, which

is also filled with air. The tympanum is connected to three very small bones (the

ossicular chain) which transmit the movement of the ear drum to the inner ear. The

three bones are the hammer, or malleus, the anvil, or incus, and the stirrup, or stapes.

These three bones form a system of levers connecting the ear drum to a membrane

covering a small opening in the inner ear. The membrane is called the oval window.

The inner ear, or labyrinth, consists of two parts, the osseous labyrinth,1 see

Figure 1.2, consisting of cavities hollowed out from the substance of the bone,

and the membranous labyrinth, contained in it. The osseous labyrinth is filled with

various fluids, and has three parts, the vestibule, the semicircular canals and the

cochlea. The vestibule is the central cavity which connects the other two parts and

which is situated on the inner side of the tympanum. The semicircular canals lie

above and behind the vestibule, and play a role in our sense of balance. The cochlea

is at the front end of the vestibule, and resembles a common snail shell in shape.

See Figure 1.3. The purpose of the cochlea is to separate out sound into various

frequency components (the meaning of this will be made clearer in Chapter 2)

before passing it onto the nerve pathways. It is the functioning of the cochlea which

is of most interest in terms of the harmonic content of a single musical note, so let

us look at the cochlea in more detail.

1 Illustrations taken from the 1901 edition of Henry Gray, F.R.S. Anatomy, Descriptive and Surgical, reprinted
by Running Press, 1974.
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1.2 The human ear 9

Figure 1.3 The cochlea laid open. (Enlarged.) From Gray (1901).

Basal end Apical end

Oval window

Round window

Helicotrema
Basilar membrane

Figure 1.4 The cochlea, uncoiled.

The cochlea twists roughly two and three quarter times from the outside to

the inside, around a central axis called the modiolus or columnella. If it could be

unrolled, it would form a tapering conical tube roughly 30 mm (a little over an inch)

in length. See Figure 1.4.

At the wide (basal) end where it meets the rest of the inner ear it is about 9 mm

(somewhat under half an inch) in diameter, and at the narrow (apical) end it is

about 3 mm (about a fifth of an inch) in diameter. There is a bony shelf or ledge

called the lamina spiralis ossea projecting from the modiolus, which follows the

windings to encompass the length of the cochlea. A second bony shelf called

the lamina spiralis secundaria projects inwards from the outer wall. Attached to

these shelves is a membrane called the membrana basilaris or basilar membrane.

This tapers in the opposite direction to the cochlea (see Figure 1.5), and the bony

shelves take up the remaining space.

The basilar membrane divides the interior of the cochlea into two parts with

approximately semicircular cross-section. The upper part is called the scala vestibuli
and the lower is called the scala tympani. There is a small opening called the

helicotrema at the apical end of the basilar membrane, which enables the two parts
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10 Waves and harmonics

Lamina spiralis ossea

Lamina spiralis secundaria

Basilar membrane

Figure 1.5 The basilar membrane.

to communicate with each other. At the basal end there are two windows allowing

communication of the two parts with the vestibule. Each window is covered with

a thin flexible membrane. The stapes is connected to the membrane called the

membrana tympani secundaria covering the upper window; this window is called

the fenestra ovalis or oval window, and has an area of 2.0–3.7 mm2. The lower

window is called the fenestra rotunda or round window, with an area of around

2 mm2, and the membrane covering it is not connected to anything apart from the

window. There are small hair cells along the basilar membrane which are connected

with numerous nerve endings for the auditory nerves. These transmit information

to the brain via a complex system of neural pathways. The hair cells come in four

rows, and form the organ of Corti on the basilar membrane.

Now consider what happens when a sound wave reaches the ear. The sound wave

is focused into the meatus, where it vibrates the ear drum. This causes the hammer,

anvil and stapes to move as a system of levers, and so the stapes alternately pushes

and pulls the membrana tympani secundaria in rapid succession. This causes fluid

waves to flow back and forth round the length of the cochlea, in opposite directions

in the scala vestibuli and the scala tympani, and causes the basilar membrane to

move up and down.

Let us examine what happens when a pure sine wave is transmitted by the stapes

to the fluid inside the cochlea. The speed of the wave of fluid in the cochlea at

any particular point depends not only on the frequency of the vibration but also

on the area of cross-section of the cochlea at that point, as well as the stiffness

and density of the basilar membrane. For a given frequency, the speed of travel

decreases towards the apical end, and falls to almost zero at the point where the

narrowness causes a wave of that frequency to be too hard to maintain. Just to the

wide side of that point, the basilar membrane will have to have a peak of amplitude

of vibration in order to absorb the motion. Exactly where that peak occurs depends

on the frequency. So by examining which hairs are sending the neural signals to

the brain, we can ascertain the frequency of the incoming sine wave.
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