Contents

Preface xi

1 The multi-ring basin problem 1
  1.1 Multi-ring basins and their significance 1
  1.2 Overview of the lunar multi-ring basin controversy 3
    1.2.1 Recognition of multi-ring basins 3
    1.2.2 The problem of the original crater of excavation 5
    1.2.3 The origin of basin rings 8
    1.2.4 Basin ejecta and deposit emplacement 10
  1.3 The approach of this book 12
    1.3.1 Photogeologic evidence 13
    1.3.2 Geology and petrology of Apollo and Luna landing sites 13
    1.3.3 Remote sensing of the chemistry and mineralogy of basin ejecta 14
    1.3.4 Geophysical data 16
    1.3.5 Synthesis 17

2 From crater to basin 18
  2.1 The cratering process 18
    2.1.1 Impact mechanics 18
    2.1.2 Impact craters: the terrestrial example 23
  2.2 The morphology of fresh lunar craters 29
  2.3 Size-dependent morphologic thresholds: crater to basin 35
  2.4 Inventory of lunar multi-ring basins 37

3 The ‘archetype’ basin: Orientale 42
  3.1 Regional geology of the Orientale impact site 42
  3.2 Orientale morphology and geological units 45
    3.2.1 Basin interior units 45
    3.2.2 Basin exterior units 50
  3.3 Rings and basin structures 52
Table of Contents

3.4 Remote sensing of Orientale basin deposits 57
3.5 Orientale ejecta at Apollo landing sites? 62
3.6 The formation and evolution of the Orientale basin 63

4 An ancient basin: Nectaris 67
4.1 Regional geology and setting 67
4.2 Nectaris morphology and geological units 69
4.3 Remote sensing observations of Nectaris basin deposits 77
4.4 Apollo 16 site petrology – the Nectaris component 82
4.5 The formation and evolution of the Nectaris Basin 86

5 A modified basin: Crisium 89
5.1 Regional geological setting 89
5.2 Crisium morphology and geological units 90
5.3 Structural geology and rings of the Crisium basin 95
5.4 Composition of Crisium basin deposits 101
5.5 Crisium ejecta: petrology of the Luna 20 site 103
5.6 The formation and evolution of the Crisium basin 106

6 A transitional basin: Serenitatis 109
6.1 Regional geological setting and basin definition 109
6.2 Serenitatis morphology and geological units 112
6.3 Serenitatis basin rings and structure 117
6.4 Orbital geochemical data for Serenitatis basin deposits 118
6.5 Apollo 17 site geology – the Serenitatis basin “melt sheet” 121
6.6 The formation and evolution of the Serenitatis basin 128

7 The largest basin: Imbrium 131
7.1 Regional geology and setting 131
7.2 Imbrium morphology and geological units 134
7.3 Imbrium rings and basin structures 143
7.4 Remote-sensing data: the composition of Imbrium ejecta 146
7.5 The Fra Mauro Formation: petrology of the Apollo 14 site 151
7.6 The Apennine Mountains: petrology of the Apollo 15 site 153
7.7 Petrology of the Apollo 16 site – Imbrium basin ejecta? 161
7.8 The formation and evolution of the Imbrium basin 161

8 Geological processes in the formation of lunar basins 165
8.1 Composition and structure of the lunar crust 165
8.2 Excavation 167
8.3 Impact melt and ejecta 172
8.4 Ring formation 180
8.5 Long-term modification of basin topography 188
Table of Contents

Contents ix

9 Multi-ring basins on the terrestrial planets 191
  9.1 Earth 191
  9.2 Mercury 194
    9.2.1 Ancient mercurian basins 197
    9.2.2 The Caloris basin 200
  9.3 Mars 204
    9.3.1 Ancient martian basins 209
    9.3.2 Argyre and Hellas basins 212
    9.3.3 Polar basins and the hemispheric dichotomy 213
  9.4 Icy satellites of Jupiter and Saturn 214
    9.4.1 Ganymede and Callisto 214
    9.4.2 Saturnian satellites 217
  9.5 Venus 219

10 Multi-ring basins and planetary evolution 224
  10.1 The building blocks of planetary surfaces 224
  10.2 Effects of basins on planetary evolution 225
    10.2.1 The Moon 225
    10.2.2 Mercury 227
    10.2.3 Mars 228
    10.2.4 Icy satellites of Jupiter and Saturn 229
    10.2.5 Earth 229
  10.3 Conclusion 231

References 232
Index 255