
Decision
Mathematics 2

Stan Dolan

Series editor Hugh Neill

CAMBRIDGE UNIVERS ITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

www.cambridge.org
Information on this title: www.cambridge.org/9780521619158

C© Cambridge University Press 2001

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published as Discrete Mathematics 2 2001
Second edition 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-61915-8 paperback
ISBN-10 0-521-61915-7 paperback

Cover image c© Digital Vision

Please note that the following AQA (AEB) and AQA (NEAB) questions used (pp. 35, 36, 53,
54, 55, 56, 73, 74) are not from the live examinations for the current specification.

Contents

Introduction page vii

1 Matching 1

2 Network flows 23

3 Critical path analysis 39

4 Dynamic programming 60

5 Game theory 77

Revision exercise 97

Practice examinations 103

Answers 109

Glossary 124

Summary of algorithms 125

Index 126

1 Matching

This chapter is about matching the elements of one set with elements of another. When you
have completed it you should

� be able to represent a matching problem by means of a bipartite graph
� be able to find a maximal matching
� be able to apply the Matching Augmentation algorithm
� be able to interpret allocation problems as matching problems where cost must be

minimised
� know how to use the Hungarian algorithm to solve allocation problems.

1.1 Introduction

Matching the elements of two different sets is a common task which you often perform
without being aware of it. When you distribute copies of a newsletter to your friends you are
matching the set of newsletters with the set of friends. In this case the task is easy because any
copy can be assigned to any friend.

Matching becomes more difficult when the two sets to be matched have characteristics that
make certain assignments undesirable or impossible. For example, in matching people with
jobs, the skills of the people and the requirements of the jobs mean that some assignments
should not be made.

Bipartite graphs provide a useful way to represent such matching problems. You met the
idea of a bipartite graph in D1 Section 2.1.

A bipartite graph is a graph with two sets of nodes such that arcs only
connect nodes from one set to the other and do not connect nodes within
a set.

It is convenient to always consider the two sets of nodes of a bipartite graph to be the
left-nodes and the right-nodes. For example, K3,3 would be drawn as shown in Fig. 1.1.

three
left-nodes

three
right-nodes

Fig. 1.1

The two sets of nodes correspond to the two sets to be matched and the arcs correspond to the
assignments that can be made.

2 Decision Mathematics 2

For any bipartite graph, a matching is a set of arcs which have no nodes
in common.

A maximal matching is any matching which contains the largest
possible number of arcs.

You have already met a matching problem in D1 Exercise 2A Question 8. Example 1.1.1 shows
the problem again.

Example 1.1.1
Four Members of Parliament, Ann, Brian, Clare and David, are being considered for four
cabinet posts. Ann could be Foreign Secretary or Home Secretary, Brian could be Home
Secretary or the Chancellor of the Exchequer, Clare could be Foreign Secretary or the Minister
for Education and David could be the Chancellor or the Home Secretary.

(a) Draw a bipartite graph to represent this situation.

(b) How many options does the Prime Minister have?

(a) A FS

B HS

C CE

D ME

Fig. 1.2

(b)

Fig. 1.3

Figure 1.2 shows the graph, and Fig. 1.3 shows the two options.

The maximal matching of Example 1.1.1 covered all of the nodes and each diagram in Fig. 1.3
is called a complete matching. A complete matching is not always possible.

Example 1.1.2
Four couples are booked into a small hotel. The Smiths have requested a double room and the
Joneses have asked for a double room on the ground floor. The Browns require a twin-bedded
room and the Greens will be happy with any room on the ground floor. The hotel manager
has just four rooms to assign, three double and one twin-bedded. The twin-bedded room and
one of the doubles is on the ground floor. Can the manager satisfy the requirements of all the
couples?

The relevant bipartite graph is shown in Fig. 1.4.

The requirements of the Joneses, Browns and Greens
cannot all be satisfied, because the Smiths are the
only couple who are content with the double rooms
which are not on the ground floor, and they cannot
use both of them. The maximal matching has three
pairings. One example is {S, D1} , {J , DG} , {B, TG}.

S D1

J D2

B DG

G TG

Fig. 1.4

1 Matching 3

As well as using bipartite graphs to represent the information
in assignment problems, you can also use adjacency matrices.

D1 D2 DG TG

S
J
B
G

1 1 1 0
0 0 1 0
0 0 0 1
0 0 1 1

Fig. 1.5

The left-nodes are put down one side, and the right-nodes
along the top. An entry of 1 means that the corresponding
nodes are linked by an arc.

For example, the matrix in Fig. 1.5 contains the same
information as the graph of Fig. 1.4.

1 1 1 0
0 0 1 0
0 0 0 1
0 0 1 1

Fig. 1.6

For a problem formulated as an adjacency matrix, the task
is to find the maximum number of 1s such that no two
of these 1s are in the same row or in the same column.
In Fig. 1.6 the solution is shown by the 1s in bold-faced
type. If you were solving this problem you would
probably wish to circle the 1s in the solution.

1.2 The Matching Augmentation algorithm

In the previous section you solved simple matching problems by inspection. As the numbers
of nodes and arcs increase, inspection becomes a hit or miss affair and the chance of
overlooking a maximal matching increases.

Fortunately, there is a simple algorithm which can be used to improve upon (or augment) an
initial matching or to show that you have already obtained a maximal matching.

Matching Augmentation algorithm

Step 1 Consider all arcs of the matching to be directed from right to left.
Consider all other arcs to be directed from left to right.

Step 2 Identify all nodes which do not belong to the matching. Create
a new node, X say, joined with directed arcs to all left-nodes
which do not belong to the matching.

Step 3 Give each arc a weighting of 1.

Step 4 Apply Dijkstra’s algorithm from X until one of the following
happens:
� a right-node which does not belong to the matching is reached
� no further labelling is possible. In this case, the initial matching

cannot be improved and the algorithm stops.

Step 5 Retrace any path from an unmatched left-node to the
unmatched right-node. This is called an alternating path.

Step 6 Remove from the original matching any arcs in the path of Step 5.
Add to the matching the other steps in the path. This increases,
by 1, the number of arcs in the matching.

4 Decision Mathematics 2

Although the following example has only 10 nodes, it is nevertheless difficult to spot a
maximal matching. This example will be used to illustrate the Matching Augmentation
algorithm.

Example 1.2.1
A builder employs five workers: Alan, who does labouring, plastering and joinery; Betty, who
does labouring and wiring; Colin, who does bricklaying and wiring; Di, who does plastering
and bricklaying; and Ed, who does plastering, joinery and bricklaying. Can each of the five
workers be assigned to a task so that all five tasks are covered?

First, draw a bipartite graph for this problem. In Fig. 1.7, the heavy lines represent a
first try at a matching, which assigns just four workers to tasks.

Alan Labouring

Betty

JoineryColin

Bricklaying

Ed Wiring

Di

Plastering

Fig. 1.7

The Matching Augmentation algorithm will show how to improve this matching, if it
is possible.

The result of applying the first four steps of the Matching Augmentation algorithm to
Example 1.2.1 is shown in Fig. 1.8.

L

J

Br

W

P

A

B

C

E

D
X 0

1
2

3

3

2

6

4

5

5

4

Fig. 1.8

You can see that all the paths have been given directions, as required in Step 1.

The new node X has been created and joined to D, the left-node which does not
belong to the initial matching.

Dijkstra’s algorithm is then applied from X, and the right-node L, which doesn’t
belong to the initial matching, is reached. At this stage Step 4 has been completed.

To carry out Step 5, you need to trace a path from D to L: there are two possibilities,
D-P-E-J-A-L and D-Br-C-W-B-L, and you could choose either one.

1 Matching 5

Looking at the first of these, as you trace the path you cover P-E and J-A, both of which
were in the initial matching. Remove them from the initial matching, and add the
other arcs from the path, D-P, E-J and A-L, to the initial matching. This increases by 1
the number of arcs in the matching. In this case, the matching is now maximal. It is

A-L, B-W, C-Br, D-P, E-J.

If you had chosen the other path, D-Br-C-W-B-L, you would have covered Br-C and W-B from
the initial matching. If you removed them, and added D-Br, C-W and B-L to the original
matching, the new matching would be

A-J, B-L, C-W, D-Br, E-P,

an alternative maximal matching.

The next example illustrates how the Matching Augmentation algorithm recognises that a
maximal matching has already been reached.

Example 1.2.2
A school timetabling team is trying to timetable four teachers, Andy, Barbara, Chris and Dave
to four classes, denoted by R, S, T and U.

Andy can teach R or S Barbara can teach R, S, T or U
Chris can teach R or S Dave can teach S.

Draw a bipartite graph and apply the Matching Augmentation algorithm to find a maximal
matching.

An initial attempt at a matching is illustrated by the heavy lines in Fig. 1.9.

A R

B S

C T

D U

Fig. 1.9

1

2

3 R

S

T

U

A

B

C

D

2

3

Fig. 1.10

The result of applying the Matching Augmentation algorithm is then shown in
Fig. 1.10. The label X, that was initially created and then joined to C is not shown.

No further labelling is possible, so the initial matching is maximal. Notice that
although it is maximal it is not complete.

For an existing non-maximal matching, M, of a bipartite graph, G, the Matching
Augmentation algorithm produces what is called an alternating path.

An alternating path for M in G is a path which consists alternately of
arcs in M and arcs not in M.

6 Decision Mathematics 2

This definition makes it easier to see why the Matching Augmentation algorithm works. The
following argument is not a proof, however.

Consider the two situations in which Step 4 of the algorithm stops. If Step 4 stops because no
further labelling is possible, the algorithm has shown the initial matching to be maximal. If
Step 4 stops because a right-node which isn’t in the matching has been reached, Step 6 will
improve the matching. In the second case the algorithm has constructed a path from an
unmatched left-node to an unmatched right-node. The path is alternating because the only
way to go from left to right is via an arc which is not in M, and the only way to go from right
to left is via an arc which is in M. Because the path starts at the left and ends at the right it
must contain one more arc not in M than in M, and so Step 6 of the algorithm produces a
matching that contains one more arc than the initial matching.

Exercise 1A

1 Apply the Matching Augmentation algorithm to the following bipartite graphs where the
heavy lines represent matchings. In each case state what you can conclude.

(a) A

B

C

L

M

N

(b) A

B

C

L

M

N

2 Find the adjacency matrix corresponding to the bipartite
graph in the figure.

A

B

C

D

R

S

T

U

Select four 1s in the matrix in such a way that no two 1s are
in the same row or column. Hence find a maximal matching
for the bipartite graph.

3 A large department store employs five students, Anita, Bruce, Chloe,
Darminder and Errol, for the Christmas period.

The Hardware manager would be happy to use Anita, Chloe or Darminder.
The Bookshop manager would be happy to use Bruce or Errol.
The Sports manager would be happy to use Anita or Darminder.
The Electrical manager would be happy to use Darminder or Errol.
The Food hall manager would be happy to use Anita or Chloe.

(a) Draw a bipartite graph, G, to show which students are suitable for each department.

The managing director initially decides to place Anita in the Food hall, Chloe in Hardware,
Darminder in Electrical and Errol in the Bookshop. However, he is then unable to place
Bruce appropriately.

(b) Show the incomplete matching, M, that describes the managing director’s attempted
allocation.

(c) Use the Matching Augmentation algorithm to construct an alternating path for M in G,
and hence find a complete matching.

1 Matching 7

4 A dance team consists of four men, Ahmed, Benny, Chris and Derek, paired with four
women, Ann, Bala, Celine and Di. Ann is only prepared to dance with Ahmed, Bala will
dance with Benny or Derek, Celine will dance with Chris, and Di will dance with any of the
men. In their first competition, Di dances with Derek.

(a) Draw a bipartite graph, with the women on the left and the men on the right, to
represent the only possible matching with Di and Derek paired.

Unfortunately, Di and Derek fall out and a different pairing has to be arranged for the
second competition.

(b) Draw a bipartite graph to show the possible pairings and the incomplete matching, M,
from the first competition.

(c) Apply the Matching Augmentation algorithm to obtain a complete matching for the
second competition.

1.3* Maximal matching–minimum cover

This section contains extension material and may be omitted.

There is an important connection between the matching problem and the problem of finding
sets of nodes which cover every arc, that is sets of nodes which contain at least one end-node
of each arc of the bipartite graph. These are called cover sets of the graph.

Consider, for example, the graph drawn for Example 1.2.2,
redrawn as Fig. 1.11.

A R

B S

C T

D U

Fig. 1.11

Since A-R, B-T and D-S is a matching, a cover set must
contain at least one of A or R, at least one of B or T and
at least one of D or S.

In general it is clear that:

The number of arcs in the number of nodes in
�

any matching any cover set.

The smallest possible number of nodes in a cover set cannot, therefore, be less than the
number of arcs in a maximal matching. In Example 1.2.2, this minimum is actually achieved
for the cover set {B, R, S}. The interesting aspect of the connection between the matching
problem and the cover set problem is that this result is always true. That is:

The number of arcs in the minimum number of=
a maximal matching nodes in a cover set.

This is called the maximal matching–minimum cover result.

You can prove this result by considering the effect of applying the Matching Augmentation
algorithm to bipartite graphs for which the maximal matching has already been achieved.

8 Decision Mathematics 2

First, consider the following examples:

3

1

3

2

2

A

B

C

D

R

S

T

U

Maximal matching: 3
Minimum cover set: {B, R, S }

Fig. 1.12

A

B

C

D

Maximal matching: 5
Minimum cover set: {A, B, C, D, E }

E

L

P

J

Br

W

Fig. 1.13

The key to proving the maximal matching–minimum cover
result is to note how the examples of cover sets in
Figs. 1.12 to 1.14 are formed. In each case, they consist
of the unlabelled left-nodes and labelled right-nodes.

1

3

2A

B

C

X

Y

U

Maximal matching: 2
Minimum cover set: {A, X }

Fig. 1.14

To prove the maximal matching–minimum cover result it is
therefore necessary to prove:

� the unlabelled left-nodes and labelled right-nodes form a cover set;
� the number of these nodes equals the number of arcs in a maximal matching.

These two facts follow from the following features of maximal matchings to which the
Matching Augmentation algorithm has been applied. In each case, you should try to explain
the reason for these features (see Miscellaneous exercise 1 Question 12).

� Each arc of the bipartite graph either has an unlabelled left-node or a labelled right-node.
� All unlabelled left-nodes are in the matching.
� All labelled right-nodes are in the matching.
� Each arc of the matching joins nodes which are either both labelled or both unlabelled.

Then:

Number of arcs of maximal matching

= number of right-nodes of matching

= number of unlabelled right-nodes of matching
+ number of labelled right-nodes of matching

= number of unlabelled left-nodes of matching
+ number of labelled right-nodes of matching

= number of unlabelled left-nodes + number of labelled right-nodes.

Each arc of the bipartite graph has either an unlabelled left-node or a labelled
right-node, but not both. So the set of unlabelled left-nodes and labelled right-nodes
is a cover set. It must be a minimum cover set since it has the same number of nodes
as the number of arcs in a matching.

1 Matching 9

The maximal matching–minimum cover result can be useful for seeing quickly that you have
found a maximal matching and need not apply the Matching Augmentation algorithm.

A

B

C

E

D

R

T

U

V

S

Fig. 1.15

Example 1.3.1
For the bipartite graph shown in Fig. 1.15, find

(a) a cover set containing four nodes,

(b) a matching containing four arcs.

What can you conclude about your answers to (a) and (b)?

(a) A, B, T, V.

(b) {A, R}, {B, S}, {C, T}, {E , V}.
A cover set and a matching of the same sizes have been found. The solution to part (a)
is therefore a minimum cover set and the solution to part (b) is a maximal matching.

1.4 Allocation problems

Suppose that a building company has four contracts which must be completed at the same
time. The work is to be done by subcontractors, each of whom can carry out only one
contract. The subcontractors’ quotes for each of the four jobs are shown in Table 1.16.

Contract
A B C D

1 10 5 9 −
2 9 6 9 6 Quotes are in £1000s.

Subcontractor
3 10 − 10 7 ‘–’ indicates no quote.
4 9 5 9 8

Table 1.16

Here there is no difficulty in finding a matching. An example is 1-A, 2-B, 3-C, 4-D. The
problem is to find a matching which minimises the total cost; such a problem is called an
allocation problem.

A good method of tackling allocation problems is to reduce the array of costs by subtracting
from each element of a row (or column) the least element in that row (or column). For
example, Table 1.18 is obtained from Table 1.17 by subtracting 5, 6, 7 and 5 from the first,
second, third and fourth rows respectively. The smallest number in each new row is now equal
to zero.

10 5 9 − −5 →
9 6 9 6 −6 →
10 − 10 7 −7 →
9 5 9 8 −5 →

Table 1.17

5 0 4 −
3 0 3 0
3 − 3 0
4 0 4 8

Table 1.18

10 Decision Mathematics 2

The solution to the original problem will then simply be the solution to the new problem with
an extra cost of £23,000 because 5 + 6 + 7 + 5 = 23. Reducing the columns of Table 1.18 in a
similar way, in this case by subtracting 3 from the first and third columns, leads to the array in
Table 1.19.

2 0 1 −
0 0 0 0
0 − 0 0
1 0 1 3

Table 1.19

For this matrix, it is easy to see that there are no matchings of zero cost but there are several of
cost only 1. For example, Table 1.20 shows a matching of cost 1 in bold type.

2 0 1 −
0 0 0 0
0 − 0 0
1 0 1 3

Table 1.20

So the original problem has an optimal allocation, of cost £30,000, shown in Table 1.21.

10 5 9 −
9 6 9 6
10 − 10 7
9 5 9 8

Table 1.21

To solve an allocation problem, first reduce the array of costs by subtracting
the least number in a row (or column) from each element of that row (or
column).

Example 1.4.1
Choose five numbers from the array given below so that the sum of the five numbers is the
least possible. No two numbers can be in the same row or column.

10 10 9 8 10
10 12 12 9 13
16 16 14 12 15
14 15 12 12 16
15 16 14 13 14

Reducing the array by rows leads to the array on the left; then reducing by columns
leads to the array on the right, in which the minimum allocation is shown in bold type.

1 Matching 11

2 2 1 0 2
1 3 3 0 4
4 4 2 0 3
2 3 0 0 4
2 3 1 0 1

1 0 1 0 1
0 1 3 0 3
3 2 2 0 2
1 1 0 0 3
1 1 1 0 0

For the original array the pattern indicated by the emboldened numbers yields the
minimum allocation of

10 + 10 + 12 + 12 + 14 = 58.

Having negative numbers in the array does not affect the method because the stage of
’subtracting the least number in a row from each element of that row’ will make all elements
at least zero. For example, in Table 1.22 each element has −3 subtracted from it, which is just
the same as adding 3 to each element.

8 –3 4 7

Table 1.22

−(−3) or + 3 → 11 0 7 10

To maximise an allocation you can therefore simply change the sign of every element and
then minimise in the usual way, as in Table 1.23.

3 1 2

Table 1.23

Change sign → −3 −1 −2 −(−3) → 0 2 1

The same effect is produced by subtracting each element from the largest value in the array,
shown in Table 1.24.

3 1 2

Table 1.24

Subtract from 3 → 0 2 1

The next example illustrates this process.

Example 1.4.2
Choose five numbers from the array given below so that the sum of the five numbers is the
greatest possible. No two numbers can be in the same row or column.

10 10 9 8 10
10 12 12 9 13
16 16 14 12 15
14 15 12 12 16
15 16 14 13 14

12 Decision Mathematics 2

First, convert the problem to a standard minimising one by changing the sign of each
element of the array or by subtracting each element from 16. Reducing by rows then
gives:

0 0 1 2 0
3 1 1 4 0
0 0 2 4 1
2 1 4 4 0
1 0 2 3 2

Reducing by columns gives:

0 0 0 0 0
3 1 0 2 0
0 0 1 2 1
2 1 3 2 0
1 0 1 1 2

The numbers in bold type show the minimum allocation. For the original array the
same pattern yields the maximum allocation of 16 + 16 + 12 + 8 + 16 = 68.

1.5 The Hungarian algorithm

The opening example of Section 1.4 led to the reduced array in Table 1.25.

2 0 1 −
0 0 0 0
0 − 0 0
1 0 1 3

Table 1.25

At this stage you had to ‘spot’ that an allocation of four zeros was impossible and that it was
necessary to use a 1. In larger and more complicated examples it is better to have a systematic
procedure. One such method, called the Hungarian algorithm, is based upon the ideas of
Section 1.3 and depends upon covering the zero elements with the minimum number of
vertical or horizontal lines or both.

In this case, three lines are needed, shown in Table 1.26.

2 0 1 –
0 0 0 0
0 – 0 0
1 0 1 3

Table 1.26

1 Matching 13

Note the least uncovered element, in this case 1. Add this element to the elements of each
covered row and then to the elements of each covered column. Where an element is covered
twice, add the least uncovered element twice. See Table 1.27 for the result of this process.

2 1 1 −
1 2 1 1
1 − 1 1
1 1 1 3

Table 1.27

Then subtract this element from every element of the array. The result is shown in Table 1.28.

1 0 0 −
0 1 0 0
0 − 0 0
0 0 0 2

Table 1.28

1 0 0 −
0 1 0 0
0 − 0 0
0 0 0 2

Table 1.29

It is now possible to allocate four zeros in several ways; one is shown by the numbers in bold
type in Table 1.29. This pattern, applied to the original array, yields the minimum value of
9 + 5 + 9 + 7 = 30, that is £30,000.

The reason that this procedure further reduces the array is that the minimum number is added
on 3 × 4 = 12 times but is then subtracted 16 times. The following statement of the Hungarian
algorithm shortens this procedure.

Hungarian algorithm

Step 1 Reduce the array of costs by both row and column subtractions.

Step 2 Cover the zero elements with the minimum number of lines. If
this minimum number is the same as the size of the array
(which for a square matrix means the number of rows) then go to
Step 4.

Step 3 Let m be the minimum uncovered element. The array is
augmented by reducing all uncovered elements by m and
increasing all elements covered by two lines by m. Return to
Step 2. This process is called augmenting the elements.

Step 4 There is a maximal matching using only zeros. Apply this pattern
to the original array.

14 Decision Mathematics 2

Example 1.5.1
A company has four sales representatives to allocate to four groups of retailers. The table
shows the estimated weekly mileage of each representative when assigned a particular group.
How should the groups be allocated to minimise the total mileage?

1 2 3 4

Alex 280 280 260 210
Ben 470 480 460 420
Charles 370 390 380 330
Davinia 220 250 240 220

The array on the right shows the situation after Step 1, after
row and column reductions. The numbers are tens of miles. 7 4 3 0

5 3 2 0
4 3 3 0
0 0 0 0

The array below on the left shows the situation after
Step 2, where two lines are needed to cover the zeros.
The array below on the right shows Step 3, where 2, the
minimum uncovered element, has been subtracted from
all uncovered elements, and elements covered by two lines
have been increased by 2. After this, the algorithm returns
to Step 2.

7 4 3 0
5 3 2 0
4 3 3 0
0 0 0 0

5 2 1 0
3 1 0 0
2 1 1 0
0 0 0 2

Steps 2 and 3 are carried out again, as before.

5 2 1 0
3 1 0 0
2 1 1 0
0 0 0 2

4 1 0 0
3 1 0 1
1 0 0 0
0 0 0 3

At this stage, carrying out Step 2 requires four lines. As this is the same as the size of
the array, you can go to Step 4, where the pattern of zeros is shown in bold type.

4 1 0 0
3 1 0 1
1 0 0 0
0 0 0 3

4 1 0 0
3 1 0 1
1 0 0 0
0 0 0 3

Using the pattern of zeros, the optimum allocation is 1-Davinia, 2-Charles, 3-Ben,
4-Alex, with mileage 220 + 390 + 460 + 210 = 1280.

1 Matching 15

The dependence of the Hungarian algorithm upon the minimum number of lines covering
zeros is explained in the starred Section 1.3. If the maximal matching is shown in the form of
an adjacency matrix, zero-cost arcs are represented by entries of zero. A maximal matching is
required, so the minimum cover is needed.

1.6 Non-square arrays

Suppose that five workers are available for four tasks. The times each worker would take at
each task are given in Table 1.30. How can each task be allocated to a different worker to
minimise the total time?

1 2 3 4

Angel 170 220 190 200
Britney 140 230 150 160
Cleo 180 210 170 170
Dimitri 190 240 210 220
Ed 160 220 170 170

Table 1.30

To be able to apply the methods of this chapter it is first necessary to create a square array by
adding in a dummy column.

The trick is to add in a column of equal numbers so that this column does not influence the
choice of workers for the other tasks. It is conventional (but not necessary) to make these
numbers equal to the largest number in the array. This technique is shown in the next
example.

Example 1.6.1
Select four numbers from the array given below so that the sum of the four numbers is the
least possible. No two numbers can be in the same row or column.

170 220 190 200
140 230 150 160
180 210 170 170
190 240 210 220
160 220 170 170

Add in a column of 240s to obtain a square array.

170 220 190 200 240
140 230 150 160 240
180 210 170 170 240
190 240 210 220 240
160 220 170 170 240

16 Decision Mathematics 2

Reducing rows and then columns, and dividing by 10, so that the entries are in tens,
gives the following array, which requires three lines to cover the zeros.

0 1 2 3 2
0 5 1 2 5
1 0 0 0 2
0 1 2 3 0
0 2 1 1 3

After covering the first column, and the third and fourth rows, and augmenting the
elements (only one return to Step 2 is required), you obtain the following array in
which the zeros in each row and column are in bold type.

0 0 1 2 1
0 4 0 1 4
2 0 0 0 2
1 1 2 3 0
0 1 0 0 2

The solution to the original problem is 160 + 220 + 150 + 170 = 700.

To apply the Hungarian algorithm to a non-square array, first add in
dummy rows or columns to make the numbers of rows and columns equal.

Exercise 1B

1 The four members of a swimming relay team must, between them, swim 100 metres of each
of backstroke, breaststroke, butterfly and crawl.

Five hopefuls for the team have personal best times as follows.

Back Breast Butterfly Crawl

A 66 68 71 60
B 69 69 72 60
C 68 70 73 61 Times in seconds
D 65 66 71 63 for 100 metres.
E 63 65 74 60

(a) Convert the array into a square one to which the Hungarian algorithm can be applied.

(b) Hence find which four swimmers should be chosen and the stroke for which each
should be used.

1 Matching 17

2 The scores of the four members of a quiz team on practice questions are as follows.

Sport Music Literature Science

Ali 16 18 17 14
Bea 19 17 14 18
Chris 12 16 16 15
Deepan 11 15 17 14

A different person needs to be picked for each of the four different topics.

(a) How could the table be altered in order to use the Hungarian algorithm?

(b) Hence allocate the topics to the members of the team.

3 Apply the Hungarian algorithm to find the minimum possible total of six numbers, chosen
from the table below in such a way that no two numbers lie in the same row or column.

3 2 1 3 1 2
2 1 3 1 2 3
3 4 5 2 5 3
4 3 2 1 3 4
5 4 3 3 2 3
3 1 4 1 2 1

4 Find the maximum possible total for six numbers chosen as in Question 3.

5 Suppose that the Hungarian algorithm is being applied to an array.

(a) Suppose further that the zeros in a 5 × 5 array are covered by three lines and the least
non-covered element is a 2. When the array is augmented once, what is the reduction in
the total of all the elements?

(b) Suppose that the zeros of an n × n array are covered by k lines and that the least
non-covered element is l. What is the reduction in the total of all elements when this
array is augmented once?

6 A builder has four labourers who must be assigned to four tasks. The estimates of the times
each labourer would take for the different tasks are as shown in the table.

Task
1 2 3 4

A 3 4 4 3
B 3 3 1 2

Times in hours.
C 4 3 2 4
D 4 1 2 3

Given that no labourer can be assigned to more than one task, use the Hungarian algorithm
to find the optimum assignment.

