Author Index

Abelson, R. P., 327, 339
Adébiyi, B., 117
Agrawala, M., 276
Ainsworth, S., 72
Ainsworth, S. E., 237
Alberto, P., 188
Alexander, P. A., 357
Allende-Pellot, F., 359
Almstrum, V., 255
Anderson, C. M. B., 196
Anderson, D., 146, 160
Anderson, D. R., 146
Anderson, J. R., 123, 198
Anderson, K., 8
Anderson, R. B., 30, 41, 265
André, E., 189, 191
Anglin G. J., 32, 143
Anzai, Y., 72, 185, 200
Atkinson, C., 93
Atkinson, R. K., 45
Ayres, P., 12, 188
Baddeley, A., 33, 93, 169, 330
Baek, Y. K., 304
Baggett, P., 160
Bailenson, J., 121
Bannert, M., 72, 88, 93, 142, 143
Barkley, R. A., 175, 176
Barlow, S., 287, 293, 294
Barnett, S. M., 177
Barron, B. J., 121
Bates, J., 287, 293
Bauer-Morrison, J., 208, 209, 210, 242
Beaver, J., 296
Belynne, K., 116, 125
Benford, S., 296
Bennett, C. K., 7
Bernieri, F., 121
Bertus, E. L., 366
Bétrancourt, M., viii, 3, 32, 49, 104, 123,
126, 141, 144, 145, 166, 169, 171, 208, 209,
210, 212, 216, 229, 231, 242, 263, 265, 289,
290, 291, 304, 348
Bhogal, R., 287, 293, 294
Bibby, P. A., 72, 237
Biggs, J., 174
Biswas, G., viii, 114, 116, 117, 120, 122, 125,
127, 166
Black, J. B., 10
Blair, K., viii, 114, 117
Blake, R., 330
Blaschke, K., 77
Bloom, J. W., 170
Blumberg, B., 287
Böckheler, J., 49, 72, 73, 88, 104, 117, 145
Bodemer, D., viii, 71, 75, 88, 89, 166, 170,
171, 172, 173, 174, 175, 176, 304
Boire, M., 41
Boucheix, J. M., viii, 208, 210, 211, 213, 221,
230, 263, 304
Boyle, R. A., 185
Bradshaw, J. M. (Ed.), 183
Brandon, L. J., 143
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bransford, J. D.</td>
<td>120, 122, 129, 137, 366</td>
</tr>
<tr>
<td>Brennan, S. E.</td>
<td>127</td>
</tr>
<tr>
<td>Brewer, W. F.</td>
<td>321</td>
</tr>
<tr>
<td>Brna, P.</td>
<td>235, 243</td>
</tr>
<tr>
<td>Broadbent, D. E.</td>
<td>169</td>
</tr>
<tr>
<td>Brown, A. L.</td>
<td>122, 127, 199, 366</td>
</tr>
<tr>
<td>Bruchmüller, K.</td>
<td>89</td>
</tr>
<tr>
<td>Bruner, J. S.</td>
<td>287</td>
</tr>
<tr>
<td>Bruning, R.</td>
<td>188</td>
</tr>
<tr>
<td>Byrne, M. D.</td>
<td>242</td>
</tr>
<tr>
<td>Campbell, J.</td>
<td>44, 208, 210</td>
</tr>
<tr>
<td>Campione, J. L.</td>
<td>199</td>
</tr>
<tr>
<td>Caramazza, A.</td>
<td>8</td>
</tr>
<tr>
<td>Carney, R. N.</td>
<td>143</td>
</tr>
<tr>
<td>Carpenter, P. A.</td>
<td>6, 330</td>
</tr>
<tr>
<td>Cassell, J.</td>
<td>117, 121, 359</td>
</tr>
<tr>
<td>Cate, C.</td>
<td>15</td>
</tr>
<tr>
<td>Caterino, L. C.</td>
<td>143</td>
</tr>
<tr>
<td>Catrambone, R. C.</td>
<td>242</td>
</tr>
<tr>
<td>Ceci, S. J.</td>
<td>177</td>
</tr>
<tr>
<td>Chan, T.</td>
<td>123, 293</td>
</tr>
<tr>
<td>Chandler, P.</td>
<td>12, 33, 42, 73, 88, 93, 94, 100, 104, 105, 147, 159, 188, 210, 211, 317, 342</td>
</tr>
<tr>
<td>Chassot, A.</td>
<td>viii, 141, 166, 199</td>
</tr>
<tr>
<td>Chernicoff, S.</td>
<td>274</td>
</tr>
<tr>
<td>Chi, M. T. H.</td>
<td>4, 5, 9, 10, 11, 75, 127, 362, 366</td>
</tr>
<tr>
<td>Chiesi, H.</td>
<td>10</td>
</tr>
<tr>
<td>Chiu, M.</td>
<td>4, 362, 366</td>
</tr>
<tr>
<td>Chon, C.</td>
<td>293</td>
</tr>
<tr>
<td>Chronbach, L.</td>
<td>7</td>
</tr>
<tr>
<td>Chun, D. M.</td>
<td>188</td>
</tr>
<tr>
<td>Clarebout, G.</td>
<td>183</td>
</tr>
<tr>
<td>Clark, H. H.</td>
<td>344</td>
</tr>
<tr>
<td>Clark, R. C.</td>
<td>73, 88</td>
</tr>
<tr>
<td>Clark, R. E.</td>
<td>192, 203</td>
</tr>
<tr>
<td>Cocking, R. R.</td>
<td>366</td>
</tr>
<tr>
<td>Cohen, P. A.</td>
<td>122</td>
</tr>
<tr>
<td>Converse, S. A.</td>
<td>287, 293, 294</td>
</tr>
<tr>
<td>Corke, G.</td>
<td>296, 297</td>
</tr>
<tr>
<td>Coté, N.</td>
<td>362, 366</td>
</tr>
<tr>
<td>Coulson, R. L.</td>
<td>367</td>
</tr>
<tr>
<td>Cox, R.</td>
<td>235, 243</td>
</tr>
<tr>
<td>Craig, S. D.</td>
<td>39, 43, 183, 190</td>
</tr>
<tr>
<td>Craik, F. I. M.</td>
<td>169, 196</td>
</tr>
<tr>
<td>Cronbach, L. J.</td>
<td>167, 168</td>
</tr>
<tr>
<td>Cunningham, K. L.</td>
<td>32</td>
</tr>
<tr>
<td>Cypher, A.</td>
<td>117</td>
</tr>
<tr>
<td>Daniele, M. P.</td>
<td>276</td>
</tr>
<tr>
<td>Dann, W.</td>
<td>255</td>
</tr>
<tr>
<td>Das, J. P.</td>
<td>168</td>
</tr>
<tr>
<td>Davis, J.</td>
<td>viii, 114, 116, 125, 166</td>
</tr>
<tr>
<td>de Jong, T.</td>
<td>72, 188</td>
</tr>
<tr>
<td>de Leeuw, N.</td>
<td>4, 362, 366</td>
</tr>
<tr>
<td>Denis, M.</td>
<td>143, 267, 270</td>
</tr>
<tr>
<td>Derman, D.</td>
<td>13</td>
</tr>
<tr>
<td>Deutsch, M.</td>
<td>120</td>
</tr>
<tr>
<td>Dewey, J.</td>
<td>186</td>
</tr>
<tr>
<td>Dillenbourg, P.</td>
<td>123, 231</td>
</tr>
<tr>
<td>Doctorow, M.</td>
<td>185</td>
</tr>
<tr>
<td>Douglas, S. A.</td>
<td>238, 255</td>
</tr>
<tr>
<td>Dow, G.</td>
<td>42, 43</td>
</tr>
<tr>
<td>Drascic, D.</td>
<td>296</td>
</tr>
<tr>
<td>Driscoll, D. M.</td>
<td>39, 43, 183, 190</td>
</tr>
<tr>
<td>Duffield, J. A.</td>
<td>357</td>
</tr>
<tr>
<td>Dunlap, J. C.</td>
<td>357</td>
</tr>
<tr>
<td>Durán, R.</td>
<td>188</td>
</tr>
<tr>
<td>Durgin, F.</td>
<td>268</td>
</tr>
<tr>
<td>Dwyer, F. M.</td>
<td>339, 351</td>
</tr>
<tr>
<td>Edwards, G.</td>
<td>270</td>
</tr>
<tr>
<td>Effken, J. A.</td>
<td>183</td>
</tr>
<tr>
<td>Eisenstadt, M.</td>
<td>241</td>
</tr>
<tr>
<td>Ekstrom, R. B.</td>
<td>13</td>
</tr>
<tr>
<td>Elen, J.</td>
<td>183</td>
</tr>
<tr>
<td>Elkerton, J.</td>
<td>52</td>
</tr>
<tr>
<td>Elliot, A. J.</td>
<td>200</td>
</tr>
<tr>
<td>Engle, R. W.</td>
<td>10, 168, 175, 176</td>
</tr>
<tr>
<td>Entwistle, N.</td>
<td>174</td>
</tr>
<tr>
<td>Erickson, T.</td>
<td>191</td>
</tr>
<tr>
<td>Ericsson, K. A.</td>
<td>75, 169</td>
</tr>
<tr>
<td>Facer, K.</td>
<td>296</td>
</tr>
<tr>
<td>Fajen, B.</td>
<td>183</td>
</tr>
<tr>
<td>Faltings, B.</td>
<td>96</td>
</tr>
<tr>
<td>Faraday, P.</td>
<td>3, 11, 51</td>
</tr>
<tr>
<td>Farmer, L.</td>
<td>44</td>
</tr>
<tr>
<td>Farrar, M. J.</td>
<td>122</td>
</tr>
<tr>
<td>Feltovich, P. J.</td>
<td>367</td>
</tr>
<tr>
<td>Fennell, S.</td>
<td>44</td>
</tr>
<tr>
<td>Ferguson, E. S.</td>
<td>3</td>
</tr>
<tr>
<td>Ferguson, G. A.</td>
<td>167, 168</td>
</tr>
</tbody>
</table>
Author Index

Feuerlein, I., 75, 88, 170, 171, 172, 173, 174, 175, 176, 304
Field, D. E., 146
Fischer, C., 146, 160
Fitzgerald, P., 183, 186, 190, 191, 197, 198, 202
Fitzpatrick, G., 296
Fleischer, R., 255
Fletcher, D., 30
Floyd, E., 216
Flowerday, T., 192
Fogel, B. J., 191
Foltz, P. W., 73, 178
Fontaine, S., 270
Forbus, K. D., 96
Fox, E., 357
Frederiksen, J., 127, 312
Freitas, P., 18, 208, 304
French, J. W., 13

Gable, S., 200
Gabrielli, S., 296, 297
Gaimari, R., 293
Gallini, J. K., 143, 272
Ganesan, R., 183
Garg, A. X., 9, 210, 211, 212
Garner, R., 192
Garrett, S. R., 183
Gärtner, I., 72, 73, 88
Gaver, W. W., 296
Geary, D. C., 167, 170, 175, 176
Gelman, R., 268
Gentner, D., 88, 340
Gerdes, H., 73
Gholson, B., 39, 43, 183, 190
Gibbons, J., 146
Gillingham, M., 192
Gittleman, S. S., 288, 289
Goldman, S. R., ix, 357, 359, 360, 362, 363, 366
Gonick, L., 270, 282
Gonzales, C., 49
Goodman, B., 293
Gordin, D. N., 131
Grabinger, S. R., 357
Grabowski, B., 33
Graesser, A. C., 5, 10, 127, 183, 327, 359, 366

Green, B., 8
Greenhalgh, C., 296
Greer, J. E., 198
Gregoire, J. P., 183
Gropper, G. L., 73
Grzondziel, H., 49, 72, 73, 88, 104, 117, 145
Guignard, H., 210, 211, 221

Häcker, S., 89
Hacker, W., 327
Hagen, J. (Eds.), 145–146
Hambrick, D. Z., 10
Hannafrin, M. J., 144, 146, 291
Hanrahan, P., 276
Hansen, S. R., 236, 242
Härder, J., 73
Hardiman, P., 199
Hardy, J., 313
Harman, H. H., 13
Harp, S. E., 192
Harris, E., 296, 297
Harrison, A., 73, 88
Hartman, K., 117
Hausmann, R. G., 127
Havliland, S. E., 344
Hay, D. B., 124
Hecht, H., 145, 230, 266, 268, 291
Heeter, C., 191

Heider, F., 268
Heiser, H., 38, 39
Heiser, J., ix, 192, 267, 269, 270, 271, 273, 276
Herr, H. E., 43
Hesse, F. W., 5
Heuer, D., 77
Heward, W., 188
Hidi, S., 186, 192
Hietala, P., 293
Hirtle, S., 313
Holliday, W. G., 147, 159
Holmquist, S., 23, 145, 146
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holyoak, K. J.</td>
<td>265</td>
</tr>
<tr>
<td>Hron, A.</td>
<td>74, 86, 87</td>
</tr>
<tr>
<td>Hübscher-Younger, T.</td>
<td>viii, 235, 243, 360, 366</td>
</tr>
<tr>
<td>Huck, J.</td>
<td>216</td>
</tr>
<tr>
<td>Hull, R.</td>
<td>296</td>
</tr>
<tr>
<td>Hummel, J. E.</td>
<td>265</td>
</tr>
<tr>
<td>Hundhausen, C.</td>
<td>238, 255</td>
</tr>
<tr>
<td>Isaacs, E.</td>
<td>186</td>
</tr>
<tr>
<td>Isaak, M. I.</td>
<td>8, 9, 17</td>
</tr>
<tr>
<td>Iyer, G.</td>
<td>266–267</td>
</tr>
<tr>
<td>Jackson, J.</td>
<td>38</td>
</tr>
<tr>
<td>Jacobson, M. J.</td>
<td>367</td>
</tr>
<tr>
<td>Janis, I.</td>
<td>241</td>
</tr>
<tr>
<td>Jeffres, J. A.</td>
<td>266</td>
</tr>
<tr>
<td>Jeong, H.</td>
<td>127</td>
</tr>
<tr>
<td>Johnson, M.</td>
<td>236</td>
</tr>
<tr>
<td>Johnson, O.</td>
<td>287</td>
</tr>
<tr>
<td>Johnson, W. L.</td>
<td>117, 183, 293, 359</td>
</tr>
<tr>
<td>Johnson-Laird, P. N.</td>
<td>143, 169</td>
</tr>
<tr>
<td>Joiner, R.</td>
<td>296</td>
</tr>
<tr>
<td>Jonassen, D. H.</td>
<td>186, 202</td>
</tr>
<tr>
<td>Jonassen, D. H.</td>
<td>216</td>
</tr>
<tr>
<td>Jones, S.</td>
<td>291, 357</td>
</tr>
<tr>
<td>Just, M. A.</td>
<td>4, 6, 7, 8, 9, 11, 17, 22, 213, 216, 330</td>
</tr>
<tr>
<td>Kahler, S. E.</td>
<td>287, 293, 294</td>
</tr>
<tr>
<td>Kail, H.</td>
<td>145–146</td>
</tr>
<tr>
<td>Kalyuga, S.</td>
<td>12, 43, 105, 147, 159, 188</td>
</tr>
<tr>
<td>Kane, M. J.</td>
<td>168, 175, 176</td>
</tr>
<tr>
<td>Kaufman, L.</td>
<td>268</td>
</tr>
<tr>
<td>Kehoe, C.</td>
<td>359</td>
</tr>
<tr>
<td>Keil, F.</td>
<td>11</td>
</tr>
<tr>
<td>Kennedy, A.</td>
<td>330</td>
</tr>
<tr>
<td>Kerwin, M. L.</td>
<td>229</td>
</tr>
<tr>
<td>Kinchin, I. M.</td>
<td>124</td>
</tr>
<tr>
<td>King, A.</td>
<td>197</td>
</tr>
<tr>
<td>Kini, A. S.</td>
<td>145</td>
</tr>
<tr>
<td>Kintsch, E.</td>
<td>176, 362, 364</td>
</tr>
<tr>
<td>Kintsch, W.</td>
<td>5, 10, 169, 176, 177, 178, 339, 362, 364</td>
</tr>
<tr>
<td>Kirby, J. R.</td>
<td>ix, 97, 165, 168, 171, 172, 177, 358</td>
</tr>
<tr>
<td>Kirk, D.</td>
<td>296</td>
</tr>
<tr>
<td>Kline, C.</td>
<td>287</td>
</tr>
<tr>
<td>Koedinger, K. R.</td>
<td>119, 123</td>
</tr>
<tr>
<td>Kohonen, A.</td>
<td>255</td>
</tr>
<tr>
<td>Koleva, B.</td>
<td>296</td>
</tr>
<tr>
<td>Kopp, S.</td>
<td>117</td>
</tr>
<tr>
<td>Kosslyn, S.</td>
<td>330, 352</td>
</tr>
<tr>
<td>Kozhevnikov, M.</td>
<td>172</td>
</tr>
<tr>
<td>Krapp, A.</td>
<td>186, 192</td>
</tr>
<tr>
<td>Kreuz, R.</td>
<td>183, 359</td>
</tr>
<tr>
<td>Kriz, S.</td>
<td>viii, 3, 15, 20, 25, 26, 166, 168, 169,</td>
</tr>
<tr>
<td></td>
<td>170, 173, 178, 212</td>
</tr>
<tr>
<td>Kuhn, D.</td>
<td>131, 185</td>
</tr>
<tr>
<td>Kulhavy, R. W.</td>
<td>143</td>
</tr>
<tr>
<td>Kulik, C.-L. C.</td>
<td>122</td>
</tr>
<tr>
<td>Kulik, J. A.</td>
<td>122</td>
</tr>
<tr>
<td>Kuse, A. R.</td>
<td>276</td>
</tr>
<tr>
<td>Lakoff, G.</td>
<td>236</td>
</tr>
<tr>
<td>Lanca, M.</td>
<td>97</td>
</tr>
<tr>
<td>Lang, D.</td>
<td>267</td>
</tr>
<tr>
<td>Larkin, J. H.</td>
<td>143, 161</td>
</tr>
<tr>
<td>LaVancher, C.</td>
<td>4, 362, 366</td>
</tr>
<tr>
<td>Layne, B. H.</td>
<td>304</td>
</tr>
<tr>
<td>Lee, P.</td>
<td>267, 269, 271, 276</td>
</tr>
<tr>
<td>Leelaywong, K.</td>
<td>viii, 114, 116, 117, 125, 127, 166</td>
</tr>
<tr>
<td>Lefavrais, P.</td>
<td>221</td>
</tr>
<tr>
<td>Lehman, L.</td>
<td>127</td>
</tr>
<tr>
<td>Lentz, R.</td>
<td>143</td>
</tr>
<tr>
<td>Leopold, C.</td>
<td>73</td>
</tr>
<tr>
<td>Lester, J. C.</td>
<td>43, 117, 120, 183, 184, 185, 186, 190, 191,</td>
</tr>
<tr>
<td></td>
<td>192, 193, 194, 195, 197, 198, 201, 202,</td>
</tr>
<tr>
<td></td>
<td>287, 293, 294, 359</td>
</tr>
<tr>
<td>Leutner, D.</td>
<td>73, 188</td>
</tr>
<tr>
<td>Levi, W. H.</td>
<td>143</td>
</tr>
<tr>
<td>Levin, J. R.</td>
<td>143</td>
</tr>
<tr>
<td>Liberman, A. M.</td>
<td>196, 201</td>
</tr>
<tr>
<td>Lickorish, A.</td>
<td>304</td>
</tr>
<tr>
<td>Lin, C.</td>
<td>293</td>
</tr>
<tr>
<td>Lin, X. D.</td>
<td>127</td>
</tr>
<tr>
<td>Linton, F.</td>
<td>293</td>
</tr>
<tr>
<td>Lockhart, R. S.</td>
<td>169</td>
</tr>
<tr>
<td>Lohman, D. F.</td>
<td>6</td>
</tr>
<tr>
<td>Lonn, S.</td>
<td>38, 39, 192</td>
</tr>
<tr>
<td>Loss, R.</td>
<td>73, 88</td>
</tr>
<tr>
<td>Low, R.</td>
<td>196–197, 201</td>
</tr>
</tbody>
</table>
Author Index

Lowe, R., 32
Lowe, R. K., i, viii, ix, 11, 32, 49, 50, 51, 52,
72, 73, 88, 96, 104, 116, 123, 144, 147, 148,
149, 159, 160, 166, 172, 173, 175, 208, 209,
210, 212, 213, 214, 215, 229, 230, 231, 237,
267, 289, 290, 291, 304, 308, 309, 315, 321,
322, 329, 332, 333, 334, 338, 340, 341, 344,
345, 346, 357, 360, 362, 363, 366, 367, 368
Lozano, S. C., ix, 279

Macaulay, D., 24
MacKenzie, R., ix, 270
MacLeod, C. M., 170
MacLeod, S., 359
Maes, P., 192
Magliano, J., 127
Maheshwari, P., 9, 210, 211
Malmi, L., 255
Marey, E. J., 320
Mark, M. A., 198
Markman, A. B., 88
Marks, C., 185
Marron, M. A., 178
Marshall, P., 294
Martin, B., 267, 268, 279
Martin, V., 197
Marx, R. W., 185
Massaro, D. W., 190, 192
Mathias, A., 42–43
Mathon, S., 199
Mautoné, P., 39, 42–43, 45, 216
Mayer, R. E., viii, 7, 9, 12, 22, 30, 32, 33, 35,
38–45, 72–73, 88, 93, 94, 104, 120,
141–144, 159, 166, 167, 169, 172, 174, 175,
176, 178, 185, 188, 192, 193, 194, 195,
196–197, 199, 201, 202, 208, 210, 211, 216,
236, 265, 272, 281, 304, 333, 334, 338, 342, 344
Mayer, S., 42, 43, 208, 210
McCloskey, M., 8
McCLOUD, S., 270, 282, 310
McCune, V., 174
McGee, M. G., 6
McGregor, H. A., 200
McHally, M., 255
McNamara, D. S., 176, 362, 364
McNamara, T., 313

Menke, D., 197
Merrill, M. M., 45
Milgram, P., 296
Milgram, S., 241
Milroy, R., 304
Mitrovic, A., 190, 191
Miyake, A., 6, 10, 221
Miyake, N., 7, 19
Moon, Y., 191
Moore, P. J., 171, 172
Moreno, R., viii, 23, 38, 39, 40, 41, 43, 44,
93, 120, 142, 145, 146, 159, 183, 185, 186,
188, 192, 193, 194, 195, 196–197, 198, 199,
201, 202, 203, 304, 333, 334, 359, 365, 366
Morris, A., 183
Morrison, J. B., ix, 3, 104, 123, 126, 144, 263,
266, 289, 290, 291, 348
Moss, A., 296, 297
Motoda, H., 5
Moundridou, M., 191
Mousavi, S., 196–197, 201
Mulholland, P., 241
Muller, H., 296, 297
Müller, J., 189, 191
Muybridge, E., 266

Naglieri, J., 168
Nakamura, G. V., 321
Naps, T., 255

Narayanan, N. H., viii, 4, 5, 10, 15, 18, 23,
24, 50, 51, 52, 53, 54, 66, 67, 142, 144, 145,
146, 149, 208, 210, 235, 236, 242, 243, 304,
313, 345, 360, 366
Nass C., 44, 136, 191
Nation, K., 178
Neale. H., 298
Neisser, U., 329, 339
Neudert, S., viii, 71, 166
Nielsen, P., 96
Niemi, C., 43
Niemirepo, T., 293
Norman, D. A., 192, 196
Norman, G. R., 9, 210, 211, 212
Novak, J. D., 124

O’Day, T., 359
O’Malley, C., 296, 297
Author Index

O’Neil, H. F., 43
Oberlander, J., 71
Oestermeier, U., 5
Ohlsson, S., 321
Olin, K., 43
Paas, F., 35, 36, 45, 72, 88, 93, 94, 111, 192, 305, 317, 338
Paivio, A., 33, 143, 169, 189, 197
Palincsar, A. S., 122, 127
Palmer, S. E., 4–5, 52
Pani, J. R., 266
Park, O., 288, 289
Pea, R. D., 131
Peck, K. L., 186, 202
Pedhazur, E. J., 168
Pedone, R., 265
Peek, J., 143
Penney, C. G., 201
Perfetti, C. A., 178
Person, N., 127
Phan, D., 276
Phelps, T., 296, 297
Phillips, T. L., 291
Picard, E., 74, 86, 87
Pintrich, P. R., 174, 185
Plass, J. L., 188
Ploetzner, R., viii, 32, 71, 73, 75, 88, 89, 166, 170, 171, 172, 173, 174, 175, 176, 304
Pollatsek, A., 199
Pramono, H., 329, 340
Preece, J., 292
Pressley, M., 197
Pretz, J. E. (Ed.), 168
Price, S., 288, 290, 291, 296, 297, 298
Proffitt, D. R., 8, 49, 145, 230, 266, 268, 291
Prothero, W., 42–43
Quilici, J., 23, 145, 146
Radach, R., 330
Radinsky, J., 363
Randell, C., 296, 297
Rasch, T., viii, 92, 96, 100, 166, 168, 173, 174, 176, 177, 317
Réalini, N., 212, 229
Rebetz, C., 231
Reeves, B., 44, 136, 191
Reid, J., 296
Renkl, A., 35, 36, 45, 122
Renninger, K. A., 186, 192
Resnick, M., 287
Rickel, J. W., 117, 183, 293, 359
Riding, R. J., 144
Rieber, L. P., 144, 145, 146, 160, 188, 288
Riemann, R., 67, 210, 211, 213, 214, 229, 230, 304
Robinson, H. A., 73
Rodger, S., 255
Roessling, G., 255
Rogers, Y., ix, 294, 295, 296, 297, 298, 362, 363, 365
Ronning, R. R., 188
Rosch, E., 323
Rosenthal, R., 121
Rozenblit, L., 188
Ryu, J., 295, 359
Salomon, G., 87, 92, 100, 104, 309
Salthouse, T. A., 6, 7
Sangin, M., 231
Saul, E. U., 362, 366
Schank, R. C., 327, 339
Schmelkin, L. P., 168
Schnadelbach, H., 296
Schneider, E., 210, 213
Schofield, N. J., 171, 172
Schraw, G. J., 188
Schwan, S., 67, 210, 211, 213, 214, 229, 230, 304
Schwartz, D. L., viii, 10, 114, 116, 117, 118, 120, 121, 122, 125, 127, 129, 137, 166, 172, 177
Schwartz, K. T., 266
Sears, D., 118
Author Index

Sekuler, R., 330
Self, J., 123
Shah, P., 6, 7, 216, 221
Sharp, H., 292
Shaw, E., 183
Shaw, R., 183
Shepard, R. N., 266
Shiffrar, M. M., 266
Shiffrin, R. M., 93
Shimoda, T. A., 127
Shippey, G. T., 266
Shneiderman, B., 127
Simmel, M., 268
Simon, H. A., 75, 126, 143, 161, 185, 200
Sims, V. K., 6, 8, 9, 41, 67, 96, 265, 281, 330
Singer, M., 5, 363
Smith, D. C., 117
Smith, H., 296, 297
Smith, R., 146, 160
Smith, W., 270, 282
Snow, R. E., 7
Sobko, K., 45
Soirat, A., 230
Soller, A., 293
Sonder, N. B., 176, 362, 364
Spada, H., 88, 304
Spero, L., 9, 210, 211
Sperotable, L., 210, 212
Spilich, G., 10
Spries, H. A., 43, 120, 185, 192, 193, 194, 195, 201, 202
Spiro, R. J., 367
Spoehr, K. T., 18
Spohrer, J., 117
Sproull, L., 192
Stanton, D., 296, 297, 298
Stanton-Fraser, D., 296
Stasko, J. T., 238, 242, 255
Steiner, I., 121
Steinhoff, K., 216
Stelling, G., 117, 184, 190, 359
Stenning, K., 71, 290
Sternberg, R. J., 168
Steuer, J. S., 191
Stolte, C., 276
Stone, B. A., 117, 184, 190, 287, 293, 294, 359
Stryer, L., 274
Subramani, R., 192
Suraweera, P., 190, 191
Sutcliffe, A., 3, 11, 51
Suwa, M., 5
Sweller, J., 32, 33, 35, 36, 45, 72, 73, 88, 93, 94, 100, 105, 111, 147, 159, 168, 188, 196–197, 198, 201, 202, 305, 317, 333, 334, 338, 344
Tabbers, H., 192
TAG-V, 120, 122, 127
Tang, J. C., 186
Tasker, R., 268
Tassini, S., 210, 212
Taylor, H. A., 312
Taylor, I., 296, 297
Tepper, P., 117
Thomas, E. L., 73
Thomas, F., 287
Thompson, S. V., 144
Thurman, R. A., 43
Thurstone L. L., 221
Thustone T. G., 221
Toibias, S., 30
Tomaseillo, M., 122
Towns, S. G., 183, 186, 190, 191, 197, 198, 202
Trabasso, T., 5
Trafton, G., 267
Treagust, D., 73, 88
Troutman, A., 188
Tseng, H., 191
Tu, E. R., 312, 351
Tuovinen, J. E., 188, 192, 198, 202
Ullman, S., 329
Uretsi, J. A. R., 127
Vaez, H., 32
Vagge, S., 99A, 77, 160A
Valazquez-Iturbide, J. A., 255
Van Gerven, P., 192
van Joolingen, W. R., 72, 188
van Merriënboer, J. G., 72, 88, 93, 94, 111, 168, 305, 317, 338
Van Mulken, S., 189, 191
Vandenberg, S. G., 276
Vandendorpe, Ch., 148, 160
Vaucelle, C., 359
Virvou, M., 191
Viswanath, K., 116, 117, 125
Volk, T., 170
Vosniadou, S., 10
Voss, J, 10
Vye, N., 116, 125, 127
Vygotsky, L. S., 93, 107, 369
Wächter, M., 72, 73, 88
Walker, J. H., 174, 192
Waller, D., 6, 210, 215
Weal, M., 296
Weil, A., 199
Wertheimer, M., 321
Wetzell, K., 42–43
Whelan, S., 49, 145, 230, 266, 268, 291
White, B., 127, 312
White, C., 192
Wiener-Hastings, K., 183, 359
Wiener-Hastings, P., 183, 359
Wilson, B. G., 186, 202
Wilson, M., 192
Winn, W. D., 52
Wittrock, M. C., 33, 185
Woloshyn, V., 197
Wood, B., 183
Wood, D. J., 72, 237
Wood, E., 197
Wright, P., 304
Yamauchi, T., 127
Yee, N., 121
Yeo, S., 73, 88
Zacks, J., 266–267, 269, 271, 323
Zadnik, M., 73, 88
Zettlemoyer, L. S., 183
Zhang, J., 147
Subject Index

Adele described, 183
Agent thought structure, adoption of,
124–125
Alberti, L.B., 307
Animated pedagogical agents (APAs). See also Informal instruction,
animations in
botany multimedia game scenario,
184–185
cognitive processing enhancement by,
197, 201
design, principles of, 202–203
experiments
agent vs. non-agent environment,
192–194, 201
interactivity & guidance hypotheses,
199–200, 201–202, 359
visual vs. auditory agent cues,
194–197
learning enhancement by, 188–190, 198
learning impedance by, 191–192, 201
overview, 183, 359–360
roles of, 183–184, 186–188
Animations
appeal of, 263
applications of, 264, 271, 288, 300–301
benefits of, 5, 92, 125–126, 143, 235–236, 286
as compensation for lack of spatial ability, 7
comprehension of (See Comprehension; Learning)
as content representations, 360–361
defined, 141, 264–265, 304
directive function of, 315–316
feature usage, verification of, 18–19 (See also Interrogation strategies)
history of, 286–287, 307–308
instructional uses of, 142–148
and judgment of mechanical events, 8, 266
limitations of, 33, 263–264
narrative structure in, 278
online processing of, 146–148
production cost, justification of, 26
realism in, 308
representational function of, 315–316
senses of, 359
spatial/temporal structures in, 317–318
student-authored (See Expository representations, student-authored)
types
effectiveness of, 100–105, 111–112
overview, 309
versatility of, 114
vs. static diagrams, 304–305
Anthropomorphism, 191
Arrows, 11, 18, 265, 270, 271–275, 281, 312
Assembly instructions study, 276–279, 281
Attention
Animated Pedagogical Agents
conditions and, 190
in cognitive load theory, 175
directing
for learning enhancement, 215–216,
308, 316, 350, 361–362, 365
visual, 333–334
issues in processing, 331–333, 363–364
measurement of, 19
overwhelming and, 331–333
pictorial/verbal guidance of, 343–344
problems, resolving through design,
11–12
split, effects, 209
visual
comprehension and, 11, 142–143
AutoTutor described, 183
Baldi, 189–190
Behavioral realism, 335–337, 341–342
Behaviors, decomposition of, 327
Being-Taught condition, 128–130
Betty's Brain. See Teachable Agents (TAs)
Bicycle tire pump experiment
cognitive processing requirements, 173
multimedia effect in, 30
Botany multimedia game scenario. See
also Animated pedagogical agents
(APAs)
described, 184–185, 187
experiments
agent vs. non-agent environment,
192–194
visual vs. auditory agent cues,
194–197
Bottom-up processing
in animation comprehension, 4, 50
temporal changes, 323
Breakpoints in events, patterns of
thought regarding, 267
Camouflage, 322
Canal, Giovanni (Canaletto), 307
CAROUSEL tool, 243, 244
Categorization, principles of, 323–328
CATLMs, 183, 186, 189, 194, 197, 198, 202
Causal relationships, portrayal of, 315
Cell metabolism study, 124–125
Children
animation applications for, 145–146
as research subjects, 142
social situations, learning, 295–296
Chunking, 325–327
Circumnavigation study
animation types, effectiveness of, 99,
100–103, 105
ANOVA analysis, 97–99, 103–104
cognitive processing requirements, 100
materials, 97, 102
results, 99
Cistern, flushing. See Flushing cistern
study
Cognitive capacity
allocation of, 38–39
processing demands for, 35–36, 71–72,
348
Cognitive design principles
in animation effectiveness, 30–32,
291–292
described, 3, 202–203, 280–282
integrated approach to, 350–351
of multimedia learning, 45, 88
Cognitive load theory
and animation design, 88
animations and cognitive processing,
100, 237, 290, 316–317, 365–366
attention in, 175
described, 72–73, 93–94
domain knowledge in, 197, 202, 230
enabling/facilitating functions in,
94–100
and zone of proximal development,
105–107
Cognitive processing
ability as challenge to learning,
146–148, 209, 363–364
cognitive load theory, 100, 237, 290,
316–317, 365–366 (See also
Cognitive load theory)
complexity issues in, 51–52
in comprehension
overview, 6–7, 328–329
static diagrams, 6–7, 71, 328–329
display panel interrogation patterns and user control, 214, 229–230
and domain knowledge, 343–344
dynamic visualizations study
instructional materials, differences in, 86–87
strategies employed, 87–88
times, differences in, 84, 87
encoding in, 175–176
enhancement by Animated Pedagogical Agents, 197, 201
eye-mind assumption, 330
immediacy assumption, 330–331
integration in, 35, 88, 186, 305
long-term memory in, 93–94
meaningful learning outcomes in, 35, 36
mental representation in depth aspect of, 169, 170, 174
overview, 169–170, 173, 290, 313, 339–340
no learning outcomes in, 35, 36
organization in, 35, 38–39, 266–267
pictoral/verbal guidance of, 343–344
requirements
bicycle tire pump experiment, 173
circumnavigation study, 100
time and date difference study, 100, 173
weather map animation study, 173, 214–215
rote learning outcomes in, 35, 36
spatial/temporal inferences in, 340–343
strategies, weather map animation study, 147, 237
support, as animation application, 145
working memory in, 35, 93–94, 106–107, 176, 316–317, 342–343
Cognitive theory of multimedia learning described, 33–36, 72–73
Coherence principle, 37–38
Comenius, J.A., 307
Communication in design, 12
tools for arrows, 11, 18, 265, 270, 271–275, 281, 312
dots, 312
language, 12, 196 (See also Text)
lines, 271–275, 281
points, 280
static diagrams, 268–270
visual, history of, 306–308
Complexity issues in processing, 51–52
Comprehension. See also Learning bottom-up model of, 4, 50
challenges to, 51, 71–72
cognitive processes in overview, 6–7, 328–329
static diagrams, 6–7, 71, 328–329
decomposition in (See Decomposition) defined, 93
design and, 9, 13, 50–51
and domain-general world knowledge, 9–10, 11
domain knowledge and, 9–12, 209
domain-relevant knowledge and, 9–10
and domain-specific knowledge, 10–11, 15–17, 19–21
exposure and, 26
impedance of by animations, 8, 86, 148, 176, 230, 237
by user control, 212
individual differences, effects on, 16
integrated model of, 5–6, 10
interactivity and, 17–18, 52, 294, 361–362
low-spatial ability, 6–9, 15, 22, 215
of machines (See Machines) measurement, flushing cistern experiments, 13
mental representations in dynamic systems, 50–51, 66–68, 360–361
machines, 5, 7, 15
spatial visualization ability as requirement for, 6–8, 9, 209–210, 212, 215
tests, gear function study, 220–222
Subject Index

Comprehension. See also Learning (cont.)
 text
 domain knowledge in, 5, 22
 flushing cistern experiments, 21–24
 high-spatial ability learners, 22
 overview, 21–24, 26
 top-down model of, 4, 50
 and visualization, 11, 142–143
 Computer algorithm learning study
 conventional simulations, similarity to
 and student rating, 248–249, 253, 254, 256–257
 learning progression in, 254–255
 media use and student rating, 246, 248, 252–254, 255–256
 overview, 235–238, 255
 representations
 evaluation of, study II, 240, 244–247, 249
 evaluation of, study III, 249–255
 student use of, 238–242, 256
 Computer tutors, 123
 Concept formation theory, 236
 Concept mapping, 124, 129
 Concurrency issues in processing, 51, 65–66
 Congruence Principle, 265–266
 Consequences, portrayal of, 271, 273
 Content, static vs. dynamic, 309–315
 Continuous simulation pictures
 circumnavigation study, 103
 facilitating function of, 101, 109–111
 in time differences display, 101, 102
 Cosmo described, 183
 Cost-efficient principle, 202–203
 Curtate cycloid illusion, 9
 Cycles/processes, portrayal of, 271, 273

Decomposition
 of behaviors, 327
 of complex objects, 312–314
 of dynamic systems, 50–51, 66
 temporal changes, 323

Deduction learning studies, 130–133, 137

Degree of control and learning, 213–214, 219, 226

Demonstrations study, 278–279, 281

Depth aspect of mental representation in
cognitive processing, 169, 170, 174

Depth-First Search algorithm, 251

Design of animations
 Animated Pedagogical Agents, 202–203
 approaches to, 365–366
 attentional problems, resolving, 11–12
 cognitive load theory and, 88
 cognitive principles of (See Cognitive
design principles)
 communication in, 12
 and comprehension, 9, 13, 50–51
 and extraneous overload, 36–37, 40–41
 for formal instruction, 291–292
 history of, 287
 for informal instruction, 295
 interactivity, benefits of, 123–124, 292
 learner centered approach to, 32
 limitations of, vii
 minimalism in, 351–352
 for playful instruction, 299–300
 realism, domain knowledge and, 338–339
 realism in, 338–339
 segmenting principle, 41–42
 Teachable Agents, 123–124, 136
 technology centered approach to, 32, 167
 user-controlled, 52, 231, 352

Differential theory described, 167–168

Directive function of animation, 315–316

Display panel interrogation patterns
 multimedia learning research study,
 151, 155–156, 157–158, 161
 and user control in cognitive
 processing, 214, 229–230

Domain-general knowledge
 comprehension and, 9–10, 11
 individual differences, effects on, 16

Domain knowledge
 and animation design realism, 338–339
 in cognitive load theory, 197, 202, 230
 cognitive processing and, 343–344
 and comprehension, 9–12, 209
 flushing cistern experiments, 13, 19–21

© Cambridge University Press
Subject Index

interrogation of animations and, 66, 212, 215–216
and intrinsic load, 106–107
learning enhancement by, 9–12, 15–17, 25, 170, 177–178, 209, 364–365
and mental representations, 19–21, 66
in text comprehension, 5, 22
user-controllable animations, 220, 223, 224, 225, 230
Domain-relevant knowledge, comprehension and, 9–10
Domain-specific knowledge
animation and text learning, 22
comprehension and, 10–11, 15–17, 19–21
individual differences, effects on, 16
Dots, 312
Dual-channel theory
Animated Pedagogical Agents in, 189
described, 33, 143, 169
Dynamic contrast, 322, 334, 343
Dynamic visualizations
as content representations, 360–361
design and learning strategies, 72–74, 88–89
processing issues in, 71–72
Dynamic visualizations study
achievement
differences in, 82–86
overall, 79–82
cognitive processing
instructional materials, differences in, 86–87
strategies employed, 87–88
times, differences in, 84, 87
design
described, 74–75
and learning strategies, 72–74
materials/procedure, 75–79
user-control, results of, 211–212
Effectiveness of animations
by animation type, 100–105, 111–112
described, vii–viii, 3, 13
design and, 30–32, 242, 270, 291–292, 308, 349
enabling/facilitation functions, 100
in formal instruction, 288–289
hunting the Snark game, 297–298
in informal instruction, 293–294, 300
multimedia learning, 141, 142
playful instruction, 297–298, 300–301
sequential presentation, 40–41
simultaneous presentation, 40–41
time and date difference study, 100–102, 105, 107–109
user-controllable, 52–53, 66–68, 72, 210–212, 230–231
Enabling functions in animations
as application, 145
defined, 105, 316–317
factors affecting, 102, 111–112, 366
manipulation pictures, 101, 107–109
stepwise simulation pictures, 104
Encoding in cognitive processing,
175–176
Essential processing. See also Intrinsic load
described, 35–36
management, principles of, 38, 41–43
Events as discrete thought forms, 266–267
Executable models, Teachable Agents,
118–119
Exhibits, 280
Expertise Reversal Effect, 12
Explanations, design of, 281–282
Exploded diagrams, 275
Expository representations, student-authored
conventional simulations, similarity to
and student rating, 248–249, 253, 254, 256–257
domain knowledge in, 367
evaluation of, 240, 244–247, 249–255
learning, approaches to, 242–243
learning progression in, 254–255, 367–368
media use and student rating, 246, 248, 252–254, 255–256
overview, 235–238, 255, 366–367
student use of, 238–242, 256
Extra-pictoral devices, diagram
enrichment with, 271, 278, 281.
See also Signaling cues; specific devices
Extraneous cognitive load
animation type and, 105
described, 36–38, 41
factors affecting, 94
management, principles of, 37, 41–43, 176
reduction of, 36–37, 39–40, 41, 88, 111–112, 342–343
and the redundancy principle, 39, 147–148

Extraneous processing
described, 35
reduction of, 36, 38

Eye-mind assumption, 330

Facilitating functions in animations
continuous simulation pictures, 101, 109–111
defined, 105, 316–317
factors affecting, 102, 111–112
learning, effects on, 104–105, 110–111
spatial-temporal invariants, 319–320
stepwise simulation pictures, 110, 111

Facilitation and learning, 100
Feasibility, factors affecting, vii

Fibonacci Number Series, 245, 247, 250

Flushing cistern study
described, 13–14
diagram/text of, 14
feature usage, verification of, 18–19
results

animation-only, 14–15
animation vs. static diagrams, 15–17
domain knowledge in, 13, 19–21
hybermedia computer manuals, 23–24
interactivity, effects of, 17–18
text comprehension, 21–24
visual signaling effects, 18

Formal instruction, animations in

design implications, 291–292
effectiveness of, 288–289
learning process supported, 289–291
overview, 288

Format of instruction
cognitive load and, 94, 147–148

learning enhancement by, 3
preferences, 160
and spatial ability, 7, 17, 22, 25

Gear function study
comprehension tests described, 220–222
domain knowledge in, 220, 223, 224, 225, 230
learning gains in, 223–225
methods, 216–222
overview, 216, 229–231
results, 222–229
signaling cues in, 215–216, 219–220, 224, 225
spatial ability measurement, 220, 221–223, 228
study time analysis, 226–228, 229
user control in, 213–214, 219, 222–223, 226, 229

Generative processing
described, 33, 36
factors affecting, 177
fostering, principles of, 37, 38, 43–45

Germane load. See also Generative processing
described, 36, 45, 94
and working memory, 106–107, 176

Gestalt, spatial-temporal, 320–322

Gesture/word/picture parallels, 280

Granularity, spatial/temporal, 335–339

Groupthink phenomenon, 241, 243

Guidance hypothesis, Animated Pegagical Agents
experimental evaluation of, 199–200, 201–202
overview, 184, 185, 198–199

Guidance principle, 202

Herman, 184–185, 190, 293

High-domain knowledge learners
aids for, 12
iterative learning by, 20–21
 misconceptions, correction of, 19

High-spatial ability learners
amination and text comprehension, 22
assembly instructions study, 276–278
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunting the Snark game</td>
<td></td>
</tr>
<tr>
<td>effectiveness of, 297–298</td>
<td></td>
</tr>
<tr>
<td>overview, 296–297, 298</td>
<td></td>
</tr>
<tr>
<td>Hypermedia computer manuals, 23–24</td>
<td></td>
</tr>
<tr>
<td>Hypertext, design/learning strategy integration in, 73–74</td>
<td></td>
</tr>
<tr>
<td>Iconic style of learning, 172–173</td>
<td></td>
</tr>
<tr>
<td>Imagination, fostering, 296</td>
<td></td>
</tr>
<tr>
<td>Immediacy assumption, 330–331</td>
<td></td>
</tr>
<tr>
<td>Induction learning studies, 130–131, 133, 137</td>
<td></td>
</tr>
<tr>
<td>Inferences of motion</td>
<td></td>
</tr>
<tr>
<td>dynamic schemas in, 320</td>
<td></td>
</tr>
<tr>
<td>from static diagrams, 10, 15, 309–312, 340</td>
<td></td>
</tr>
<tr>
<td>spatial/temporal, 340–343</td>
<td></td>
</tr>
<tr>
<td>Informal instruction, animations in. See also Animated pedagogical agents</td>
<td></td>
</tr>
<tr>
<td>design implications, 295</td>
<td></td>
</tr>
<tr>
<td>effectiveness of, 293–294, 300</td>
<td></td>
</tr>
<tr>
<td>learning processes supported by, 294–295</td>
<td></td>
</tr>
<tr>
<td>overview, 292–293</td>
<td></td>
</tr>
<tr>
<td>Initiative in learning interactions, 121, 122, 123–124, 171</td>
<td></td>
</tr>
<tr>
<td>Intrinsic load</td>
<td></td>
</tr>
<tr>
<td>factors affecting, 93–94</td>
<td></td>
</tr>
<tr>
<td>Instruction method, learning enhancement and. See also</td>
<td></td>
</tr>
<tr>
<td>Format of instruction</td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td></td>
</tr>
<tr>
<td>challenges to, 72, 241–242</td>
<td></td>
</tr>
<tr>
<td>in cognitive processing, 35, 88, 186, 305</td>
<td></td>
</tr>
<tr>
<td>optimization of, 243</td>
<td></td>
</tr>
<tr>
<td>of Teachable Agents, 117–119 (See also Teachable Agents (TAs))</td>
<td></td>
</tr>
<tr>
<td>in text/design/learning strategy, 73</td>
<td></td>
</tr>
<tr>
<td>Interactivity</td>
<td></td>
</tr>
<tr>
<td>in Animated Pedagogical Agents, 199–200, 201–202, 359 (See also</td>
<td></td>
</tr>
<tr>
<td>Animated pedagogical agents (APAs)</td>
<td></td>
</tr>
<tr>
<td>and comprehension, 17–18, 52, 294, 361–362</td>
<td></td>
</tr>
<tr>
<td>in design, benefits of, 123–124, 292</td>
<td></td>
</tr>
<tr>
<td>learning, effects on, 17–18</td>
<td></td>
</tr>
<tr>
<td>low-domain knowledge learners, 17–18, 19, 20–21, 26</td>
<td></td>
</tr>
<tr>
<td>measurement of, 18–19</td>
<td></td>
</tr>
<tr>
<td>models of, 119–120</td>
<td></td>
</tr>
<tr>
<td>principle of, 202</td>
<td></td>
</tr>
<tr>
<td>in Teachable Agents, 115, 120 (See also Teachable Agents (TAs))</td>
<td></td>
</tr>
<tr>
<td>technologies, creation of, 123–124</td>
<td></td>
</tr>
<tr>
<td>Interactivity hypothesis</td>
<td></td>
</tr>
<tr>
<td>experimental evaluation of, 199–200, 201–202</td>
<td></td>
</tr>
<tr>
<td>overview, 184, 185, 191–192, 198–199</td>
<td></td>
</tr>
<tr>
<td>Internal visualizations, animations as augmentation of, 8</td>
<td></td>
</tr>
<tr>
<td>Interrogation strategies</td>
<td></td>
</tr>
<tr>
<td>animations, 330</td>
<td></td>
</tr>
<tr>
<td>computer algorithm learning study, 238–242</td>
<td></td>
</tr>
<tr>
<td>display panel</td>
<td></td>
</tr>
<tr>
<td>multimedia learning research study, 151, 155–156, 157–158, 161</td>
<td></td>
</tr>
<tr>
<td>and user control in cognitive processing, 214, 229–230</td>
<td></td>
</tr>
<tr>
<td>domain knowledge and, 66, 212, 215–216</td>
<td></td>
</tr>
<tr>
<td>evaluation of, 171–172</td>
<td></td>
</tr>
<tr>
<td>multimedia learning research study (See Multimedia learning)</td>
<td></td>
</tr>
<tr>
<td>static diagrams, 52, 330</td>
<td></td>
</tr>
<tr>
<td>user choices of, 170–172</td>
<td></td>
</tr>
<tr>
<td>weather map animation study (See Weather map animation study)</td>
<td></td>
</tr>
<tr>
<td>Intrinsic load. See also Essential processing</td>
<td></td>
</tr>
<tr>
<td>described, 35–36, 45</td>
<td></td>
</tr>
<tr>
<td>factors affecting, 93–94, 105–106</td>
<td></td>
</tr>
<tr>
<td>management, principles of, 38, 41–43, 111–112</td>
<td></td>
</tr>
<tr>
<td>Iterative model of learning</td>
<td></td>
</tr>
<tr>
<td>described, 10–11</td>
<td></td>
</tr>
<tr>
<td>high-domain knowledge learners, 20–21</td>
<td></td>
</tr>
<tr>
<td>measurement of, 19, 20–21</td>
<td></td>
</tr>
<tr>
<td>Key frames, 324–325, 337–338, 342–343, 349</td>
<td></td>
</tr>
<tr>
<td>Knot-tying study, 211, 213, 214, 231</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

Language as communication tool, 12, 196. See also Text
Learner centered approach to design described, 32
Learning. See also Comprehension ability, misconception and, 11
agent thought structure, adoption of, 12.4–12.5
algorithms, 238–239
Animated Pedagogical Agents
promotion of, 188–190, 198 (See also Animated pedagogical agents (APAs))
animation-only, 14–15
animation vs. static display, 12, 39, 96–98, 100, 126, 144, 146
animation’s role in, 166–167
assessment of, 190
challenges to, 36, 37, 38, 208–210, 363–365
defined, 93, 142
enabling/facilitating functions in, 94–100, 104–105, 109–112
enhancement of
conditions, 142, 143–145, 210–211, 237
domain knowledge and, 9–12, 15–17, 25, 170, 177–178, 209, 364–365
and instruction method, mental representations, 143, 144
spatial visualization ability, 15–17, 20, 25
facilitation and, 100
impedance of
by Animated Pedagogical Agents, 191–192, 201
by animations, 309
by user control, 212
interactions
inclusion in, 121, 12.4–12.6
initiative in, 121, 122, 123–12.4, 171
interactivity, effects of, 17–18
iterative model of
described, 10–11
measurement of, 19, 20–21
metacognition, promotion of, 127–130, 172
multiple perspective enhancement of
optimization of, 3, 26–27, 114
performance and, 177
persona effect on, 190, 294–295
self-regulation of, 186–188
spatial style of, 172–173
strategies, and dynamic visualization design, 72–74, 88–89
styles of, 172–173
success, factors affecting, 73
sweet spot social interactions in, 120–122
by Teachable Agents, 117
and text, 21–24, 334
verbal style of, 172, 173
ZPD issues in, 107
Lightning storm development study, 211
Limited capacity, 33
Lines as communication tool, 271–275, 281
Linguistic descriptions. See Text
Logical pictures, 307, 316
Long-term memory in cognitive processing, 93–94
Low-domain knowledge learners aids for, 11–12
interactive learning by, 17–18, 19, 20–21, 26
visual signaling and, 18
Low-spatial ability learners
assembly instructions study, 276–278
comprehension and, 6–9, 15, 22, 215
interactivity/cues and, 19
Machines
comprehension of, and everyday interactions, 9–10
mental animation of, 5, 7, 15
as model, 4–5
static model of, 5, 7
Manipulation pictures
in circumnavigation study, 103
effects of, 100–105
enabling functions, 94–95, 101, 107–109
in time state display, 95, 100
Maps, 268–270, 280–281
Meaningful learning outcomes in
cognitive processing, 35, 36
Mechanical ability and spatial ability, 7
Mechanical events, 8
Mechanics study
achievement
differences in, 82–86
overall, 79–82
design, 74, 76
instructional materials
described, 77–79
processing, differences in, 86–87
learning procedure, 75–79
motion, unidimensional, 78
solution frequencies/standard deviations, 80
Memory
chunking in, 325–327
in cognitive processing, 35, 93–94,
106–107, 176, 316–317, 342–343
and comprehension, 7–8
encoding of, Gestalt theory, 321
key frames in, 325
and visualization, 142–143
working (See Working memory)
Mental representations
animation in development of, 289–290,
312, 313–314, 341–342
challenges to, 72, 328–329, 331–333, 343
of children, 146
in cognitive processing
depth aspect of, 169, 170, 174
overview, 169–170, 173, 290, 313,
339–340
domain knowledge and, 19–21, 66
of dynamic systems
user comprehension and, 50–51,
66–68, 360–361
via static diagrams vs. animations,
309–312, 348–349
key frames in, 325, 342–343
learning enhancement by, 143, 144
as learning tool, 143, 144
in machine comprehension, 5, 7, 15
Metacognition
promotion of, 127–130, 172
questions, multimedia learning
research study, 157–158, 162
Misconception
creation of, from animations,
267–268
and learning ability, 11
reconciling of, 241
Mismatch challenge, 363–364
Mixed reality games, 296–297, 298–299
Moby agent, 130–133, 135
Modality effect of Animated Pedagogical
Agents, 196–197, 201
Modality principle, 37, 38, 43, 202
Motivation
Animated Pedagogical Agents and,
186–188, 191–192, 201 (See also
Social-cue hypothesis)
and animation, 146
assessment of, 190
Movement
changes in, microevents vs.
macroevents, 327–328
inference of
dynamic schemas in, 320
from static diagrams, 10, 15, 309–312,
340
Mr. Davis agent, 127–129
Multimedia effect described, 30
Multimedia learning
cognitive design principles, 45, 88
cognitive theory of described, 35–36,
72–73
documents, effectiveness of, 141, 142
research study
assessment condition, 149, 150, 152,
155, 157, 160–161
data analysis, 152–153
described, 148–149, 159
interrogation patterns and display
panel order, 151, 155–156, 157–158,
161
interrogation strategy frequency,
153–155, 156, 158
interrogation strategy types, 152, 153,
154, 159–160
Multimedia learning (cont.)
materials, 150, 151
metacognitive questions, 157–158, 162
no-assessment condition, 149, 150, 152, 157, 160–161
participants/design, 150
preferences, text vs animation, 160
procedure, 151–152
text/pictoral integration, 156, 160

Narration, benefits of, 30, 334
Newton’s laws of motion study, 146
Nitrogen cycle, portrayal of, 275

Object recognition, 322
One representational format only
strategy, 153–154, 155, 159–160
Optimization of animations, 264–265
Organization in cognitive processing, 35, 38–39, 266–267
Overconfidence and learning ability, 11
Overwhelming
Animated Pedagogical Agents, 185, 198–199
and attention, 331–333
user control and, 172
and the ZPD, 107

PAKMA, 77–79
Paper Folding Test, 13
Participant classification, flushing cistern experiments, 13–14
Partonomy, portrayal of, 271
Perceptual bias, speed issues and, 333
Perceptual processing, selectivity of, 329–333
Performance and learning, 177
Persona effect on learning, 190, 294–295
Personalization principle, 37, 38, 44.
See also Social-cue hypothesis
Perspective, portrayal of, 271
Picture/word/gesture parallels, 280
Playfair, William, 307
Playful instruction, animations in
design implications, 299–300
effectiveness of, 297–298, 300–301
learning processes supported, 298–299
overview, 287, 295–297
Points as communication tool, 280
PPPersona, 189
Pre-training principle
described, 37, 38, 42–43
mechanics/statistics study, 75, 76, 82–86
weather map study, 56
Prediction
learning and, 26, 50
Teachable agent-guided, 130–132, 133
weather-map animation study, 53–54
Premature convergence, 241, 243, 255
Principle of Apprehension, 266
Problem-solving transfer performance
increase in, via animation, 30
issues in, 72, 290–291
mechanics/statistics study, 75, 78–79, 82, 86–87
multiple representations in, 243
Productive agency, achievement of, 119–122
Pulley system study, 213–214, 267
Pumpkin World, 117–118
Pythagorean theorem study, 144

Realism
in animations, 308, 314–315
behavioral, 335–337, 341–342
in design, 338–339
granularity and, 335
Reasoning abilities, Teachable Agents, 116, 117, 124, 126
Recursion tree diagrams, 240
Redundancy principle, 37, 38, 39, 147–148
Representational function of animation, 315–316
Rote learning outcomes in cognitive
processing, 35, 36
Route maps, 268–270, 280–281

Salience, 320–322, 334
Segmenting principle, 37, 38, 41–42, 324, 344
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential presentation, effectiveness of,</td>
<td>40–41</td>
</tr>
<tr>
<td>Shared-Initiative Teaching condition,</td>
<td>128–130</td>
</tr>
<tr>
<td>Signaling cues. See also Specific cue types</td>
<td></td>
</tr>
<tr>
<td>comprehension and,</td>
<td></td>
</tr>
<tr>
<td>diagram enrichment with, 271, 278, 281</td>
<td></td>
</tr>
<tr>
<td>functions of, 316, 334, 343, 349–350</td>
<td></td>
</tr>
<tr>
<td>in gear function study, 215–216, 219–220, 224, 225</td>
<td></td>
</tr>
<tr>
<td>history of, 307</td>
<td></td>
</tr>
<tr>
<td>in user-controllable animations, 215–216, 219–220, 224, 225</td>
<td></td>
</tr>
<tr>
<td>Signaling principle,</td>
<td>37, 38–39</td>
</tr>
<tr>
<td>Simulation pictures, 95–96, 100–105</td>
<td></td>
</tr>
<tr>
<td>Simultaneous presentation, effectiveness of, 40–41</td>
<td></td>
</tr>
<tr>
<td>The Snark game effectiveness of, 297–298</td>
<td></td>
</tr>
<tr>
<td>overview, 296–297, 298</td>
<td></td>
</tr>
<tr>
<td>Social-cue hypothesis, Animated Pedagogical Agents</td>
<td></td>
</tr>
<tr>
<td>in, 184, 185, 191–192, 196, 201</td>
<td></td>
</tr>
<tr>
<td>Social situations, teaching to children, 295–296</td>
<td></td>
</tr>
<tr>
<td>Spatial chunking, 325–327</td>
<td></td>
</tr>
<tr>
<td>Spatial contiguity principle, 37, 38, 39–40</td>
<td></td>
</tr>
<tr>
<td>Spatial style of learning, 172–173</td>
<td></td>
</tr>
<tr>
<td>Spatial-temporal invariants, 318–322</td>
<td></td>
</tr>
<tr>
<td>Spatial/temporal structures in animations, 317–318</td>
<td></td>
</tr>
<tr>
<td>Spatial visualization ability in animation</td>
<td>6–8, 9, 209–210, 212, 215</td>
</tr>
<tr>
<td>comprehension, 6–8, 9, 209–210, 212, 215</td>
<td></td>
</tr>
<tr>
<td>assembly instructions study, 276–278</td>
<td></td>
</tr>
<tr>
<td>described, 6</td>
<td></td>
</tr>
<tr>
<td>in graphics comprehension, 5</td>
<td></td>
</tr>
<tr>
<td>individual differences, 16</td>
<td></td>
</tr>
<tr>
<td>learning enhancement by, 15–17, 20, 25</td>
<td></td>
</tr>
<tr>
<td>measurement, flushing cistern experiments, 13</td>
<td></td>
</tr>
<tr>
<td>and user control parameters, 213–214</td>
<td></td>
</tr>
<tr>
<td>Speed issues and perceptual bias, 333</td>
<td></td>
</tr>
<tr>
<td>in processing, 51, 331, 341–342, 345–346</td>
<td></td>
</tr>
<tr>
<td>Spitzweg, Carl, 307</td>
<td></td>
</tr>
<tr>
<td>Split attention effects, 209</td>
<td></td>
</tr>
<tr>
<td>Static diagrams</td>
<td></td>
</tr>
<tr>
<td>animations vs., 304–305</td>
<td></td>
</tr>
<tr>
<td>as communication tool, 268–270</td>
<td></td>
</tr>
<tr>
<td>comprehension processes, 6–7, 71, 328–329</td>
<td></td>
</tr>
<tr>
<td>design of, vii, 271</td>
<td></td>
</tr>
<tr>
<td>effectiveness of, as learning tool, 71</td>
<td></td>
</tr>
<tr>
<td>exploded, 275</td>
<td></td>
</tr>
<tr>
<td>extra-pictoral devices, enrichment with, 271, 278, 281</td>
<td></td>
</tr>
<tr>
<td>inference of motion from, 10, 15, 309–312, 340</td>
<td></td>
</tr>
<tr>
<td>and judgment of mechanical events, 8</td>
<td></td>
</tr>
<tr>
<td>limitations of, 288, 312</td>
<td></td>
</tr>
<tr>
<td>in machine model, 4–5</td>
<td></td>
</tr>
<tr>
<td>as narrative, 270–271</td>
<td></td>
</tr>
<tr>
<td>student-authored (See Expository representations,</td>
<td></td>
</tr>
<tr>
<td>student-authored)</td>
<td></td>
</tr>
<tr>
<td>with text, comprehension of, 22–23</td>
<td></td>
</tr>
<tr>
<td>user interrogation of, 52</td>
<td></td>
</tr>
<tr>
<td>Statistics study</td>
<td></td>
</tr>
<tr>
<td>achievement differences in, 82–85, 86</td>
<td></td>
</tr>
<tr>
<td>overall, 79–82, 83</td>
<td></td>
</tr>
<tr>
<td>design, 74</td>
<td></td>
</tr>
<tr>
<td>instructional materials described, 75–77</td>
<td></td>
</tr>
<tr>
<td>processing, differences in, 86–87</td>
<td></td>
</tr>
<tr>
<td>learning procedure, 75–79</td>
<td></td>
</tr>
<tr>
<td>Stepwise simulation pictures circumnavigation</td>
<td>103–104</td>
</tr>
<tr>
<td>study, 103–104</td>
<td></td>
</tr>
<tr>
<td>enabling functions in animations, 104</td>
<td></td>
</tr>
<tr>
<td>facilitating functions in, 110, 111</td>
<td></td>
</tr>
<tr>
<td>in time zone difference display, 101–102</td>
<td></td>
</tr>
<tr>
<td>Steve described, 183</td>
<td></td>
</tr>
<tr>
<td>Strategy shift strategy, 154, 155</td>
<td></td>
</tr>
<tr>
<td>Stroop effect, 170</td>
<td></td>
</tr>
<tr>
<td>Structure/function, portrayal of, 271</td>
<td></td>
</tr>
<tr>
<td>Structure mapping, 88</td>
<td></td>
</tr>
<tr>
<td>Successive study strategy, 153, 154, 155, 160</td>
<td></td>
</tr>
<tr>
<td>Sweet spot. See Productive agency; Teaching</td>
<td></td>
</tr>
<tr>
<td>Systematic alternation strategy, 153, 154, 155, 159</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

Taxonomy, portrayal of, 271
Teachable Agents (TAs)
 agent thought structure, adoption of, 124–125
 animated thought, benefits of, 125–126, 136
 animations, use of, 114, 169
 concept mapping, 124, 129
 described, 115–117, 119, 135–137
 design of, 123–124, 136
 inclusion studies, 124–126
 independent performance studies, 130–135
 initiative studies, 124–126, 128–135, 136–137
 interactivity in, 115, 120
 metacognition, promotion of, 127–130, 172
 Moby, 130–133, 135
 Mr. Davis, 127–129
 principles of, 114–115
 productive agency, achievement of, 119–122
Teaching
 agent thought structure, adoption of, 124–125
 algorithms, 238–239
 approaches to, 365–366
 metacognition, promotion of, 127–130, 172
 multiple perspective enhancement of, 257–258
 sweet spot social interactions in, 122
Technology centered approach to design
 described, 32, 167
Temporal categorization, principles of, 323–328
Temporal chunking, 325–327
Temporal contiguity principle, 37, 38, 40–41
Temporal patterns
 portrayal of, 271, 275–276, 314–316
 visual processing of, 333, 348
Temporal scale, animations rendition of, 269
Text
 benefits of, 5, 12, 21–22
 comprehension
 domain knowledge in, 5, 22
 flushing cistern experiments, 21–24
 high-spatial ability learners, 22
 overview, 21–24, 26
 design/learning strategy integration in, 73
 learning and, 21–24, 334
 Thought, animation of, 116
 Time and date difference study
 animation types, effectiveness of, 100–102, 105, 107–109
 cognitive processing requirements, 100, 173
 materials, 97, 102
 results, 99
 Top-down model of animation
 comprehension described, 4, 50
 Top-down model of event processing
 323
 Trajectory judgment
 animation’s role in, 266
 and spatial ability, 8–9
 Transformation defined, 144
 Transition defined, 145
 Translation defined, 144–145
 Triple-A Game Show, 118
 User-controllable animations. See also Weather map animation study
 benefits of, 52, 210, 345–346
 dynamic systems, user comprehension of, 50–51
 features of, 212–214
 gear function study
 comprehension test scores, 224
 comprehension tests described, 220–222
 domain knowledge in, 220, 223, 224, 225, 230
 learning gains in, 223–225
 methods, 216–222

© Cambridge University Press www.cambridge.org
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>overview, 216, 229–231</td>
</tr>
<tr>
<td>results, 222–229</td>
</tr>
<tr>
<td>spatial ability measurement, 220, 221–223, 228</td>
</tr>
<tr>
<td>study time analysis, 226–228, 229</td>
</tr>
<tr>
<td>overview, 345</td>
</tr>
<tr>
<td>processing challenges, 49, 51–53, 208–210</td>
</tr>
<tr>
<td>signaling cues in, 215–216, 219–220, 224, 225</td>
</tr>
<tr>
<td>strategic use of, 347</td>
</tr>
<tr>
<td>task content in, 214–215</td>
</tr>
<tr>
<td>vs. noncontrollable, 210–212</td>
</tr>
<tr>
<td>Verbal style of learning, 172, 173</td>
</tr>
<tr>
<td>Visual attention, comprehension and, 11, 142–143</td>
</tr>
<tr>
<td>Visual communication, history of, 306–308</td>
</tr>
<tr>
<td>Visualization</td>
</tr>
<tr>
<td>comprehension and, 11, 142–143</td>
</tr>
<tr>
<td>dynamic (See Dynamic visualizations; Dynamic visualizations study)</td>
</tr>
<tr>
<td>spatial (See Spatial visualization ability)</td>
</tr>
<tr>
<td>support, as animation application, 145</td>
</tr>
<tr>
<td>VISUALSTAT, 75–77</td>
</tr>
<tr>
<td>Voice principle, 37, 38, 44–45</td>
</tr>
<tr>
<td>Weak alternation strategy, 154, 155</td>
</tr>
<tr>
<td>Weather map animation study</td>
</tr>
<tr>
<td>animation section replay, 63–64</td>
</tr>
<tr>
<td>cognitive processing requirements, 173, 214–215</td>
</tr>
<tr>
<td>cognitive processing strategies, 147, 237</td>
</tr>
<tr>
<td>data analysis, 56–57</td>
</tr>
<tr>
<td>described, 53–54, 66–68, 147</td>
</tr>
<tr>
<td>domain knowledge in comprehension, 209</td>
</tr>
<tr>
<td>frame visit distribution patterns, 59–60, 61–62, 66</td>
</tr>
<tr>
<td>interrogation patterns, 57–58, 60, 62–63, 64, 66, 147, 213</td>
</tr>
<tr>
<td>interrogation scope, 60–62, 66</td>
</tr>
<tr>
<td>interrogation speeds, 60–61, 62–63, 64</td>
</tr>
<tr>
<td>mental animation adequacy in, 66</td>
</tr>
<tr>
<td>method, 55, 56</td>
</tr>
<tr>
<td>procedure/materials, 54–56</td>
</tr>
<tr>
<td>WhizLow described, 183</td>
</tr>
<tr>
<td>Woggles, 293–294</td>
</tr>
<tr>
<td>Word/picture/gesture parallels, 280</td>
</tr>
<tr>
<td>Working memory</td>
</tr>
<tr>
<td>in cognitive processing, 93–94, 106–107, 176, 316–317, 342–343</td>
</tr>
<tr>
<td>enabling/facilitating functions, 94–100</td>
</tr>
<tr>
<td>experimental vs. differential approaches to, 168</td>
</tr>
<tr>
<td>germane load and, 106–107, 176</td>
</tr>
<tr>
<td>and the modality effect, 196–197, 201</td>
</tr>
<tr>
<td>visual perception and, 329–330</td>
</tr>
<tr>
<td>Zone of proximal development (ZPD), 105–107, 108, 110</td>
</tr>
</tbody>
</table>