
1.

Introduction

One of Agile Modeling’s (AM) practices (discussed in Chap-
ter 17) is Apply Modeling Standards, the modeling version of
Extreme Programming (XP)’s Coding Standards (Beck 2000).
Developers should agree to and follow a common set of stan-
dards and guidelines on a software project, and some of those
guidelines should apply to modeling. Models depicted with
a common notation and that follow effective style guidelines
are easier to understand and to maintain. These models will
improve communication internally within your team and ex-
ternally to your partners and customers, thereby reducing the
opportunities for costly misunderstandings. Modeling guide-
lines will also save you time by limiting the number of stylistic
choices you face, allowing you to focus on your actual job –
to develop software.

A lot of the communication value in a UML diagram
is still due to the layout skill of the modeler.

—Paul Evitts, A UML Pattern Language (Evitts
2000)

When you adopt modeling standards and guidelines within
your organization, your first step is to settle on a common
notation. The Unified Modeling Language (UML) (Object
Management Group 2004) is a good start because it defines the
notation and semantics for common object-oriented models.
Some projects will require more types of models than the UML
describes, as I show in The Object Primer 3/e (Ambler 2004),
but the UML will form the core of any modern modeling
effort.

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


2 THE ELEMENTS OF UML 2.0 STYLE

Your second step is to identify modeling style guidelines to help
you to create consistent and clean-looking diagrams. What is
the difference between a standard and a style guideline? For
source code, a standard would, for example, involve naming
the attributes in the format attributeName, whereas a style
guideline would involve indenting your code within a control
structure by three spaces. For models, a standard would involve
using a squared rectangle to model a class on a class diagram,
whereas a style would involve placing subclasses on diagrams
below their superclass(es). This book describes the style guide-
lines that are missing from many of the UML-based method-
ologies that organizations have adopted, guidelines that are
critical to your success in the software development game.

The third step is to enact your modeling standards and guide-
lines. To do this, you will need to train and mentor your staff in
the modeling techniques appropriate to the projects on which
they are working. You will also need to train and mentor them
in your adopted guidelines, and a good start is to provide them
with a copy of this book. I’ve been amazed at the success of
The Elements of Java Style (Vermeulen et al. 2000) with respect
to this—hundreds of organizations have adopted that book
for their internal Java coding standards because they rec-
ognized that it was more cost-effective for them to buy a
pocketbook for each developer than to develop their own
guidelines.

1.1 Organization of This Book
This book is organized in a straightforward manner. Chapter 2
describes general diagramming principles that are applicable
to all types of UML diagrams (and many non-UML diagrams
for that matter). Chapter 3 describes guidelines for com-
mon UML elements such as stereotypes, notes, and frames.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


INTRODUCTION 3

Chapters 4 through 16 describe techniques pertinent to each
type of UML diagram. Chapter 17 provides an overview of the
values, principles, and practices of AM, with a quick reference
to this popular methodology.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


2.

General

Diagramming

Guidelines

The guidelines presented in this chapter are applicable to all
types of diagrams, UML or otherwise. The terms “symbols,”
“lines,” and “labels” are used throughout:

■ Symbols represent diagram elements such as class boxes,
object boxes, use cases, and actors.

■ Lines represent diagram elements such as associations, de-
pendencies, and transitions between states.

■ Labels represent diagram elements such as class names, as-
sociation roles, and constraints.

2.1 Readability Guidelines

1. Avoid Crossing Lines
When two lines cross on a diagram, such as two associations on
a UML class diagram, the potential for misreading a diagram
exists.

4

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


GENERAL DIAGRAMMING GUIDELINES 5

A

B

C D

A

B

C D

Figure 1. Depiction of crossing lines.

2. Depict Crossing Lines as a Jump
You can’t always avoid crossing lines; for example, you cannot
fully connect five symbols (try it and see). When you need to
have two lines cross, one of them should “hop” over the other
as in Figure 1.

3. Avoid Diagonal or Curved Lines
Straight lines, drawn either vertically or horizontally, are eas-
ier for your eyes to follow than diagonal or curved lines. A
good approach is to place symbols on diagrams as if they
are centered on the grid point of a graph, a built-in feature of
many computer-aided system-engineering (CASE) tools. This
makes it easier to connect your symbols by only using hori-
zontal and vertical lines. Note how three lines are improved in
Figure 2 when this approach is taken. Also note how the line
between A and C has been depicted in “step fashion” as a line
with vertical and horizontal segments.

4. Apply Consistently Sized Symbols
The larger a symbol appears, the more important it seems
to be. In the first version of the diagram in Figure 2, the A
symbol is larger than the others, drawing attention to it. If
that isn’t the effect that you want, then strive to make your
symbols of uniform size. Because the size of some symbols is

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


6 THE ELEMENTS OF UML 2.0 STYLE

Figure 2. Improving the attractiveness of a diagram.

determined by their contents—for example, a class will vary
in size based on its attributes and operations—this rule is
not universally applicable. Ideally you should only deviate if
you want to accentuate an aspect of your diagram (Koning,
Dormann, and Van Vliet 2002).

5. Attach Lines to the Middle of Bubbles
As you can see in Figure 2, the Label 1 line between A and D
is much more readable in the updated version of the diagram.

6. Align Labels Horizontally
In Figure 2 the two labels are easier to read in the second
version of the diagram. Notice how Label 2 is horizontal even
though the line it is associated with is vertical.

7. Arrange Symbols Symmetrically
Figure 3 presents a UML activity diagram (Chapter 10) depict-
ing a high-level approach to enterprise modeling. Organizing
the symbols and lines in a symmetrical manner makes the dia-
gram easier to understand. A clear pattern will make a diagram
easier to read.

8. Don’t Indicate “Exploding” Bubbles
The rake symbol in the upper right corner of each activity in
Figure 3 is the UML way to indicate that they “explode” to

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


GENERAL DIAGRAMMING GUIDELINES 7

Requirements
Analyst Enterprise ArchitectStakeholder

Model
Enterprise

Requirements

Model
Enterprise
Business

Architecture

Model
Enterprise
Technical

Architecture

Support
Project
Teams

Describe
Enterprise

Requirements

Prioritize
Enterprise

Requirements

Figure 3. UML activity diagram for a software process.

another diagram showing a greater level of detail. Although
this seems like a good idea, the reality is that people using a
CASE tool know enough to double click on it, or whatever
strategy the tool implements, to get more detail. The rake isn’t
adding any extra value.

9. Minimize the Number of Bubble Types
Koning, Dormann, and Van Vliet (2002) recommend that
you have six or fewer bubbles on a diagram; any more risks
overwhelming the user of the model.

10. Include White Space in Diagrams
White space is the empty areas between modeling elements
on your diagrams. In the first version of Figure 2 the symbols
are crowding each other, whereas in the second version, the
symbols are spread out from one another, thus improving the

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


8 THE ELEMENTS OF UML 2.0 STYLE

readability of the diagram. Observe that in the second version
there is adequate space to add labels to the lines.

11. Organize Diagrams Left to Right, Top to Bottom
In Western cultures, people read left to right and top to bottom
and therefore this is how they will read your diagrams. If there
is a starting point for reading the diagram, such as the initial
state of a UML state chart diagram or the beginning of the flow
of logic on a UML sequence diagram, then place it toward the
top left corner of your diagram and continue appropriately
from there.

12. Avoid Many Close Lines
Several lines close together are hard to follow.

13. Provide a Notation Legend
If you’re not sure that all of the users of a model under-
stand the notation that you’re using, provide them with a
legend that overviews it. A good legend indicates the nota-
tional symbols used, the name of the symbol, and a description
of its usage. Figure 4 provides an example for robustness dia-
grams (Jacobson, Christerson, Jonsson, and Overgaard 1992;
Rosenberg and Scott 1999), a modification of UML commu-
nication diagrams (Chapter 8).

2.2 Simplicity Guidelines

14. Show Only What You Have to Show
Diagrams showing too many details are difficult to read be-
cause they are too information-dense. One of the practices
of Agile Modeling (Chapter 17) is to Depict Models Simply :
to include only critical information on your diagrams and to
exclude anything extraneous. A simple model that shows the
key features that you are trying to depict—perhaps a UML

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


GENERAL DIAGRAMMING GUIDELINES 9

Actor

Process/
Controller
Class

Domain
Class

Interface
Class

Actor Name

Process Name

Entity Name

Interface Name

Association

Actors represent people, organizations, or other
systems which interact with our system. Examples:
Student, Financial Institution, and Payment Processor.

Process/controller classes implement logic which
crosses several business entities. Examples: Print a
student transcript and Drop student from a seminar.

Domain classes implement fundamental business
entities. Examples: Student, Seminar, Course.

Whenever an actor interacts with a class, or two
classes interact, there is an association between them.

Interface classes enable actors to interact with our
system, other via a user interface or a system interface.
Examples: Student registration screen and Payment
Processing System Interface.

Figure 4. A legend for robustness diagrams.

class diagram depicting the primary responsibilities of classes
and the relationships between them—often proves to be suf-
ficient. Yes, you could model all of the scaffolding code that
you will need to implement, but what value would that add?
Very little.

15. Prefer Well-Known Notation over Esoteric Notation
Diagrams that include esoteric notation, instead of just the
20 percent “kernel notation” that does 80 percent of the job,
can be difficult to read. Of course, what is well known in one
organization may not be so well known in another, and so, you
may want to consider supplying people with a brief summary
of the notation that you’re using.

16. Reorganize Large Diagrams into Several
Smaller Ones
It is often better to have several diagrams showing vari-
ous degrees of detail than one complex diagram that shows

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org


10 THE ELEMENTS OF UML 2.0 STYLE

everything. A good rule of thumb is that a diagram shouldn’t
have more than nine symbols on it, based on the 7 ± 2 rule
(Miller 1957), because there is a limit on the amount of in-
formation that someone can deal with at once. “Wallpaper”
diagrams, particularly enterprise data models or enterprise ob-
ject models, may look interesting but they’re too information-
dense to be effective. When you are reorganizing a large dia-
gram into several smaller ones, you may choose to introduce
a high-level UML package diagram (Chapter 6).

17. Prefer Single-Page Diagrams
To reduce complexity, a diagram should be printable on a
single sheet of paper to help reduce its scope as well as to
prevent wasted time cutting and taping several pages together.
Be aware that you will reduce the usability of a diagram if you
need to reduce the font too much or crowd the symbols and
lines.

18. Focus on Content First, Appearance Second
There is always the danger of adding hours onto your CASE
tool modeling efforts by rearranging the layout of your sym-
bols and lines to improve the diagram’s readability. The best
approach is to focus on the content of a diagram at first and
only try to get it looking good in a rough sort of way—it
doesn’t have to be perfect while you’re working on it. Once
you’re satisfied that your diagram is accurate enough, and that
you want to keep it, then invest the appropriate time to make it
look good. An advantage of this approach is that you don’t in-
vest significant effort improving diagrams that you eventually
discard.

19. Apply Consistent, Readable Fonts
Consistent, easy-to-read fonts improve the readability of your
diagrams. Good ideas include fonts in the Courier, Arial,

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521616786 - The Elements of UML™ 2.0 Style
Scott W. Ambler
Excerpt
More information

http://www.cambridge.org/0521616786
http://www.cambridge.org
http://www.cambridge.org

