In this third edition of his popular undergraduate-level textbook, Desmond Nicholl recognises that a sound grasp of basic principles is vital in any introduction to genetic engineering. Therefore, as well as being thoroughly updated, the book also retains its focus on the fundamental principles used in gene manipulation. The text is divided into three sections: Part I provides an introduction to the relevant basic molecular biology; Part II, the methods used to manipulate genes; and Part III, applications of the technology. There is a new chapter devoted to the emerging importance of bioinformatics as a distinct discipline. Other additional features include text boxes, which highlight important aspects of topics discussed, and chapter summaries, which include aims and learning outcomes. These, along with key word listings, concept maps, and a glossary, will enable students to tailor their studies to suit their own learning styles and ultimately gain a firm grasp on this subject that students traditionally find difficult.

Desmond S. T. Nicholl is a Senior Lecturer in Biological Sciences at the University of the West of Scotland, Paisley, UK.
An Introduction to Genetic Engineering
Third Edition

Desmond S. T. Nicholl
University of the West of Scotland, Paisley, UK
Contents

Preface to the third edition
page xi

Chapter 1 | Introduction

Chapter summary

1.1 What is genetic engineering?
1.2 Laying the foundations
1.3 First steps
1.4 What’s in store?

Concept map

Part I | The basis of genetic engineering

Chapter 2 | Introducing molecular biology

Chapter summary

2.1 The way that living systems are organised
2.2 The flow of genetic information
2.3 The structure of DNA and RNA
2.4 Gene organisation

2.4.1 The anatomy of a gene
2.4.2 Gene structure in prokaryotes
2.4.3 Gene structure in eukaryotes

2.5 Gene expression

2.5.1 From genes to proteins
2.5.2 Transcription and translation
2.5.3 Regulation of gene expression

2.6 Genes and genomes

2.6.1 Genome size and complexity
2.6.2 Genome organisation
2.6.3 The transcriptome and proteome

Concept map

Chapter 3 | Working with nucleic acids

Chapter summary

3.1 Laboratory requirements
3.2 Isolation of DNA and RNA
3.3 Handling and quantification of nucleic acids
3.4 Labelling nucleic acids

3.4.1 Types of label – radioactive or not?
3.4.2 End labelling
3.4.3 Nick translation
3.4.4 Labelling by primer extension

3.5 Nucleic acid hybridisation
3.6 Gel electrophoresis 40
3.7 DNA sequencing 41
 3.7.1 Principles of DNA sequencing 42
 3.7.2 Preparation of DNA fragments 43
 3.7.3 Maxam–Gilbert (chemical) sequencing 44
 3.7.4 Sanger–Coulson (dideoxy or enzymatic) sequencing 45
 3.7.5 Electrophoresis and reading of sequences 47
 3.7.6 Automation of DNA sequencing 48
 Concept map 49

Chapter 4 The tools of the trade 50
 Chapter summary 50
 4.1 Restriction enzymes – cutting DNA 51
 4.1.1 Type II restriction endonucleases 52
 4.1.2 Use of restriction endonucleases 53
 4.1.3 Restriction mapping 55
 4.2 DNA modifying enzymes 55
 4.2.1 Nucleases 56
 4.2.2 Polymerases 57
 4.2.3 Enzymes that modify the ends of DNA molecules 58
 4.3 DNA ligase – joining DNA molecules 58
 Concept map 60

Part II The methodology of gene manipulation 62

Chapter 5 Host cells and vectors 62
 Chapter summary 62
 5.1 Host cell types 64
 5.1.1 Prokaryotic hosts 64
 5.1.2 Eukaryotic hosts 65
 5.2 Plasmid vectors for use in E. coli 66
 5.2.1 What are plasmids? 66
 5.2.2 Basic cloning plasmids 67
 5.2.3 Slightly more exotic plasmid vectors 69
 5.3 Bacteriophage vectors for use in E. coli 70
 5.3.1 What are bacteriophages? 71
 5.3.2 Vectors based on bacteriophage λ 75
 5.3.3 Vectors based on bacteriophage M13 78
 5.4 Other vectors 79
 5.4.1 Hybrid plasmid/phage vectors 80
 5.4.2 Vectors for use in eukaryotic cells 80
 5.4.3 Artificial chromosomes 83
 5.5 Getting DNA into cells 84
 5.5.1 Transformation and transfection 84
 5.5.2 Packaging phage DNA in vitro 85
 5.5.3 Alternative DNA delivery methods 86
 Concept map 89
Chapter 6 | Cloning strategies

Chapter summary 90

6.1 Which approach is best? 91
6.2 Cloning from mRNA 93
 6.2.1 Synthesis of cDNA 94
 6.2.2 Cloning cDNA in plasmid vectors 97
 6.2.3 Cloning cDNA in bacteriophage vectors 99
6.3 Cloning from genomic DNA 101
 6.3.1 Genomic libraries 102
 6.3.2 Preparation of DNA fragments for cloning 104
 6.3.3 Ligation, packaging, and amplification of libraries 105
6.4 Advanced cloning strategies 108
 6.4.1 Synthesis and cloning of cDNA 108
 6.4.2 Expression of cloned DNA molecules 110
 6.4.3 Cloning large DNA fragments in BAC and YAC vectors 113
Concept map 115

Chapter 7 | The polymerase chain reaction

Chapter summary 116

7.1 History of the PCR 117
7.2 The methodology of the PCR 120
 7.2.1 The essential features of the PCR 120
 7.2.2 The design of primers for PCR 122
 7.2.3 DNA polymerases for PCR 124
7.3 More exotic PCR techniques 125
 7.3.1 PCR using mRNA templates 125
 7.3.2 Nested PCR 126
 7.3.3 Inverse PCR 127
 7.3.4 RAPD and several other acronyms 127
7.4 Processing of PCR products 128
7.5 Applications of the PCR 130
Concept map 131

Chapter 8 | Selection, screening, and analysis of recombinants

Chapter summary 132

8.1 Genetic selection and screening methods 134
 8.1.1 The use of chromogenic substrates 134
 8.1.2 Insertional inactivation 135
 8.1.3 Complementation of defined mutations 137
 8.1.4 Other genetic selection methods 137
8.2 Screening using nucleic acid hybridisation 138
 8.2.1 Nucleic acid probes 138
 8.2.2 Screening clone banks 140
8.3 Use of the PCR in screening protocols 142
8.4 Immunological screening for expressed genes 144
8.5 Analysis of cloned genes
8.5.1 Characterisation based on mRNA translation in vitro 144
8.5.2 Restriction mapping 146
8.5.3 Blotting techniques 147
8.5.4 DNA sequencing 149
Concept map 151

Chapter 9 | Bioinformatics

Chapter summary 152
9.1 What is bioinformatics? 153
9.2 The role of the computer 154
9.3 Biological data sets
9.3.1 Generation and organisation of information 157
9.3.2 Nucleic acid databases 157
9.3.3 Protein databases 160
9.4 Using bioinformatics as a tool
9.4.1 The impact of the Internet and the World Wide Web 162
9.4.2 Avoiding the ‘GIGO’ effect – real experiments 163
9.4.3 Avoiding the test tube – computational experimentation 164
9.4.4 Presentation of database information 164
Concept map 167

Part III | Genetic engineering in action

Chapter 10 | Understanding genes, genomes, and ‘otheromes’

Chapter summary 170
10.1 Analysis of gene structure and function
10.1.1 A closer look at sequences 171
10.1.2 Finding important regions of genes 172
10.1.3 Investigating gene expression 174
10.2 From genes to genomes
10.2.1 Gene expression in a genome context 176
10.2.2 Analysing genomes 178
10.2.3 Mapping genomes 180
10.3 Genome sequencing
10.3.1 Sequencing technology 181
10.3.2 Genome projects 183
10.4 The Human Genome Project
10.4.1 Whose genome, and how many genes does it contain? 186
10.4.2 Genetic and physical maps of the human genome 188
10.4.3 Deriving and assembling the sequence 190
10.4.4 Presentation and interrogation of the sequence 192
10.5 ‘Otheromes’
10.5.1 The transcriptome 193
10.5.2 The proteome 195
10.5.3 Metabolomes and interactomes 197
Chapter 11 Genetic engineering and biotechnology

Chapter summary 202

11.1 Making proteins 204
 11.1.1 Native and fusion proteins 204
 11.1.2 Yeast expression systems 206
 11.1.3 The baculovirus expression system 207
 11.1.4 Mammalian cell lines 208

11.2 Protein engineering 208
 11.2.1 Rational design 208
 11.2.2 Directed evolution 211

11.3 From laboratory to production plant 211
 11.3.1 Thinking big – the biotechnology industry 212
 11.3.2 Production systems 214
 11.3.3 Scale-up considerations 215
 11.3.4 Downstream processing 215

11.4 Examples of biotechnological applications of rDNA technology 216
 11.4.1 Production of enzymes 216
 11.4.2 The BST story 218
 11.4.3 Therapeutic products for use in human healthcare 220

Chapter 12 Medical and forensic applications of gene manipulation

Chapter summary 226

12.1 Diagnosis and characterisation of medical conditions 227
 12.1.1 Diagnosis of infection 228
 12.1.2 Patterns of inheritance 228
 12.1.3 Genetically based disease conditions 230

12.2 Treatment using rDNA technology – gene therapy 238
 12.2.1 Getting transgenes into patients 239
 12.2.2 Gene therapy for adenosine deaminase deficiency 241
 12.2.3 Gene therapy for cystic fibrosis 242
 12.2.4 What does the future hold for gene therapy? 244

12.3 RNA interference – a recent discovery with great potential 244
 12.3.1 What is RNAi? 245
 12.3.2 Using RNAi as a tool for studying gene expression 245
 12.3.3 RNAi as a potential therapy 247

12.4 DNA profiling 248
 12.4.1 The history of ‘genetic fingerprinting’ 248
 12.4.2 DNA profiling and the law 250
 12.4.3 Mysteries of the past revealed by genetic detectives 252

Concept map
Preface to the third edition

As I found when preparing the second edition of this text, advances in genetics continue to be made at an ever increasing rate, which presents something of a dilemma when writing an introductory text on the subject. In the years since the second edition was published, many new applications of gene manipulation technology have been developed, covering an increasingly diverse range of disciplines and applications. The temptation in preparing this third edition, as was the case for its predecessor, was to concentrate on the applications and ignore the fundamental principles of the technology. However, in initial preparation I was convinced that a basic technical introduction to the subject should remain the major focus of the text. Thus, some of the original methods used in gene manipulation have been kept as examples of how the technology developed, even though some of these have become little used or even obsolete. From the educational point of view, this should help the reader cope with more advanced information about the subject, as a sound grasp of the basic principles is an important part of any introduction to genetic engineering. I have again been gratified by the many positive comments about the second edition, and I hope that this new edition continues to serve a useful purpose as part of the introductory literature on this fascinating subject.

In trying to strike a balance between the methodology and the applications of gene manipulation, I have retained the division of the text into three sections. Part I deals with an introduction to basic molecular biology, Part II with the methods used to manipulate genes, and Part III with the applications. These sections may be taken out of order if desired, depending on the level of background knowledge. Apart from a general revision of chapters retained from the second edition, there have been some additional changes made. The emerging importance of bioinformatics as a distinct discipline is recognised by a new chapter devoted to this topic. To help the student of genetic engineering, two additional features have been included. Text boxes highlight some of the important aspects of the topics, and chapter summaries have been provided, which include aims and learning outcomes along with a listing of key words. Along with the concept maps, I hope that these additions will help the reader to make sense of the topics and act as a support for studying the content. By using the summaries, key words, text boxes, and concept maps students should be able to tailor their study to suit their own individual learning styles. I hope that the changes have produced a balanced treatment of the field, whilst retaining the introductory nature of the text and keeping it to a reasonable length despite an overall increase in coverage.
PREFACE TO THE THIRD EDITION

My thanks go to my colleagues Peter Birch and John McLean for comments on various parts of the manuscript, also to Don Powell of the Wellcome Trust Sanger Institute for advice and critical comment on Chapter 9. Their help has made the book better; any errors of fact or interpretation of course remain my own responsibility. Special thanks to Katrina Halliday and her colleagues at Cambridge University Press, and to Katie Greczylo of Aptara, Inc., for their cheerful advice and patience, which helped bring the project to its conclusion. My final and biggest thank-you goes as ever to my wife, Linda, and to Charlotte, Thomas, and Anna. They have again suffered with me during the writing, and have put up with more than they should have had to. I dedicate this new edition to them, with grateful thanks.

Desmond S. T. Nicholl
Paisley 2007