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1

Introduction

Poisson geometry is a “transitional” subject between noncommutative
algebra and differential geometry (which could be seen as the study of
a very special class of commutative algebras). The physical counterpart
to this transition is the correspondence principle linking quantum to
classical mechanics.

The main purpose of these notes is to present an aspect of Poisson
geometry which is inherited from the noncommutative side: the notion
of Morita equivalence, including the “self-equivalences” known as Picard
groups.

In algebra, the importance of Morita equivalence lies in the fact that
Morita equivalent algebras have, by definition, equivalent categories of
modules. From this it follows that many other invariants, such as co-
homology and deformation theory, are shared by all Morita equivalent
algebras. In addition, one can sometimes understand the representation
theory of a given algebra by analyzing that of a simpler representative of
its Morita equivalence class. In Poisson geometry, the role of “modules”
is played by Poisson maps from symplectic manifolds to a given Pois-
son manifold. The simplest such maps are the inclusions of symplectic
leaves, and indeed the structure of the leaf space is a Morita invariant.
(We will see that this leaf space sometimes has a more rigid structure
than one might expect.)

The main theorem of algebraic Morita theory is that Morita equiva-
lences are implemented by bimodules. The same thing turns out to be
true in Poisson geometry, with the proper geometric definition of “bi-
module”.

Here is a brief outline of what follows this introduction.
Chapter 2 is an introduction to Poisson geometry and some of its

recent generalizations, including Dirac geometry and “twisted” Poisson
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4 1 Introduction

geometry in the presence of a “background” closed 3-form. Both of these
generalizations are used simultaneously to get a geometric understanding
of new notions of symmetry of growing importance in mathematical
physics, especially with background 3-forms arising throughout string
theory (in the guise of the more familiar closed 2-forms on spaces of
curves).

In Chapter 3, we review various flavors of the algebraic theory of
Morita equivalence in a way which transfers easily to the geometric case.
In fact, some of our examples come from geometry: algebras of smooth
functions. Others come from the quantum side: operator algebras.

Chapter 4 is the heart of these notes, a presentation of the geometric
Morita theory of Poisson manifolds and the closely related Morita theory
of symplectic groupoids. We arrive at this theory via the Morita theory
of Lie groupoids in general.

In Chapter 5, we attempt to remedy a defect in the theory of Chapter
4. Poisson manifolds with equivalent (even isomorphic) representation
categories may not be Morita equivalent. We introduce refined versions
of the representation category (some of which are not really categories!)
which do determine the Morita equivalence class. Much of the material
in this chapter is new and has not yet appeared in print. (Some of it is
based on discussions which came after the PQR Euroschool where this
course was presented.)

Along the way, we comment on a pervasive problem in the geometric
theory. Many constructions involve forming the leaf space of a foliation,
but these leaf spaces are not always manifolds. We make some remarks
about the use of differentiable stacks as a language for admitting patho-
logical leaf spaces into the world of smooth geometry.
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2

Poisson geometry and some generalizations

2.1 Poisson manifolds

Let P be a smooth manifold. A Poisson structure on P is an R-bilinear
Lie bracket {·, ·} on C∞(P ) satisfying the Leibniz rule

{f, gh} = {f, g}h + g{f, h}, for all f, g, h ∈ C∞(P ). (1)

A Poisson algebra is a commutative associative algebra which is also
a Lie algebra so that the associative multiplication and the Lie bracket
are related by (1).

For a function f ∈ C∞(P ), the derivation Xf = {f, ·} is called the
hamiltonian vector field of f . If Xf = 0, we call f a Casimir func-
tion (see Remark 2.4). It follows from (1) that there exists a bivector
field Π ∈ X 2(P ) = Γ(

∧2
TP ) such that

{f, g} = Π(df, dg);

the Jacobi identity for {·, ·} is equivalent to the condition [Π,Π] = 0,
where [·, ·] is the Schouten- Nijenhuis bracket, see e.g. [85].

In local coordinates (x1, · · · , xn), the tensor Π is determined by the
matrix

Πij(x) = {xi, xj}. (2)

If this matrix is invertible at each x, then Π is called nondegenerate or
symplectic. In this case, the local matrices (ωij) = (−Πij)−1 define a
global 2-form ω ∈ Ω2(P ) = Γ(

∧2
T ∗P ), and the condition [Π,Π] = 0 is

equivalent to dω = 0.

Example 2.1 (Constant Poisson structures)
Let P = R

n, and suppose that the Πij(x) are constant. By a linear
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6 2 Poisson geometry and some generalizations

change of coordinates, one can find new coordinates

(q1, · · · , qk, p1, · · · , pk, e1, · · · , el), 2k + l = n,

so that

Π =
∑

i

∂

∂qi
∧ ∂

∂pi
.

In terms of the bracket, we have

{f, g} =
∑

i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

which is the original Poisson bracket in mechanics. In this example, all
the coordinates ei are Casimirs.

Example 2.2 (Poisson structures on R
2)

Any smooth function f : R
2 → R defines a Poisson structure in

R
2 = {(x1, x2)} by

{x1, x2} := f(x1, x2),

and every Poisson structure on R
2 has this form.

Example 2.3 (Lie-Poisson structures)
An important class of Poisson structures are the linear ones. If P

is a (finite-dimensional) vector space V considered as a manifold, with
linear coordinates (x1, · · · , xn), a linear Poisson structure is determined
by constants ck

ij satisfying

{xi, xj} =
n∑

k=1

ck
ijxk. (3)

(We may assume that ck
ij = −ck

ji.) Such Poisson structures are usually
called Lie-Poisson structures, since the Jacobi identity for the Poisson
bracket implies that the ck

ij are the structure constants of a Lie algebra
g, which may be identified in a natural way with V ∗. (Also, these Poisson
structures were originally introduced by Lie [56] himself.) Note that we
may also identify V with g∗. Conversely, any Lie algebra g with structure
constants ck

ij defines by (3) a linear Poisson structure on g∗.

Remark 2.4 (Casimir functions)
Deformation quantization of the Lie-Poisson structure on g∗, see e.g.

[10, 45], leads to the universal enveloping algebra U(g). Elements of the
center of U(g) are known as Casimir elements (or Casimir operators,
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2.2 Dirac structures 7

when a representation of g is extended to a representation of U(g)).
These correspond to the center of the Poisson algebra of functions on g∗,
hence, by extension, the designation “Casimir functions” for the center
of any Poisson algebra.

2.2 Dirac structures

We now introduce a simultaneous generalization of Poisson structures
and closed 2-forms. (We will often refer to closed 2-forms as presym-
plectic.)

Each 2-form ω on P corresponds to a bundle map

ω̃ : TP → T ∗P, ω̃(v)(u) = ω(v, u). (4)

Similarly, for a bivector field Π ∈ X 2(P ), we define the bundle map

Π̃ : T ∗P → TP, β(Π̃(α)) = Π(α, β). (5)

The matrix representing Π̃ in the bases (dxi) and (∂/∂xi) corresponding
to local coordinates induced by coordinates (x1, . . . , xn) on P is, up to
a sign, just (2). So bivector fields (or 2-forms) are nondegenerate if and
only if the associated bundle maps are invertible.

By using the maps in (4) and (5), we can describe both closed 2-
forms and Poisson bivector fields as subbundles of TP ⊕T ∗P : we simply
consider the graphs

Lω := graph(ω̃), and LΠ := graph(Π̃).

To see which subbundles of TP ⊕T ∗P are of this form, we introduce the
following canonical structure on TP ⊕ T ∗P :

1) The symmetric bilinear form 〈·, ·〉+ : TP ⊕ T ∗P → R,

〈(X,α), (Y, β)〉+ := α(Y ) + β(X). (6)

2) The bracket [[·, ·]] : Γ(TP ⊕T ∗P )×Γ(TP ⊕T ∗P ) → Γ(TP ⊕T ∗P ),

[[(X,α), (Y, β)]] := ([X,Y ],LXβ − iY dα). (7)

Remark 2.5 (Courant bracket)
The bracket (7) is the non-skew-symmetric version, introduced in [57]

(see also [80]), of T. Courant’s original bracket [27]. The bundle TP ⊕
T ∗P together with the brackets (6) and (7) is an example of a Courant
algebroid [57].
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8 2 Poisson geometry and some generalizations

Using the brackets (6) and (7), we have the following result [27]:

Proposition 2.6 A subbundle L ⊂ TP ⊕ T ∗P is of the form LΠ =
graph(Π̃) (resp. Lω = graph(ω̃)) for a bivector field Π (resp. 2-form ω)
if and only if

i) TP ∩ L = {0} (resp. L ∩ T ∗P = {0}) at all points of P ;
ii) L is maximal isotropic with respect to 〈·, ·〉+;

furthermore, [Π,Π] = 0 (resp. dω = 0) if and only if

iii) Γ(L) is closed under the Courant bracket (7).

Recall that L being isotropic with respect to 〈·, ·〉+ means that, at
each point of P ,

〈(X,α), (Y, β)〉+ = 0

whenever (X,α), (Y, β) ∈ L. Maximality is equivalent to the dimension
condition rank(L) = dim(P ).

A Dirac structure on P is a subbundle L ⊂ TP ⊕ T ∗P which is
maximal isotropic with respect to 〈·, ·〉+ and whose sections are closed
under the Courant bracket (7); in other words, a Dirac structure satisfies
conditions ii) and iii) of Prop. 2.6 but is not necessarily the graph
associated to a bivector field or 2-form.

If L satisfies only ii), it is called an almost Dirac structure, and
we refer to iii) as the integrability condition of a Dirac structure.
The next example illustrates these notions in another situation.

Example 2.7 (Regular foliations)
Let F ⊆ TP be a subbundle, and let F ◦ ⊂ T ∗P be its annihilator.

Then L = F ⊕F ◦ is an almost Dirac structure; it is a Dirac structure if
and only if F satisfies the Frobenius condition

[Γ(F ),Γ(F )] ⊂ Γ(F ).

So regular foliations are examples of Dirac structures.

Example 2.8 (Vector Dirac structures)
If V is a finite-dimensional real vector space, then a vector Dirac

structure on V is a subspace L ⊂ V ⊕ V ∗ which is maximal isotropic
with respect to the symmetric pairing (6).1

1 Vector Dirac structures are sometimes called “linear Dirac structures,” but we
will eschew this name to avoid confusion with linear (i.e. Lie-) Poisson structures.
(See Example 2.3)
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2.2 Dirac structures 9

Let L be a vector Dirac structure on V . Let pr1 : V ⊕ V ∗ → V

and pr2 : V ⊕ V ∗ → V ∗ be the canonical projections, and consider the
subspace

R := pr1(L) ⊆ V.

Then L induces a skew-symmetric bilinear form θ on R defined by

θ(X,Y ) := α(Y ), (8)

where X,Y ∈ R and α ∈ V ∗ is such that (X,α) ∈ L.

Exercise
Show that θ is well defined, i.e., (8) is independent of the choice of α.

Conversely, any pair (R, θ), where R ⊆ V is a subspace and θ is a
skew-symmetric bilinear form on R, defines a vector Dirac structure by

L := {(X,α), X ∈ R, α ∈ V ∗ with α|R = iXθ}. (9)

Exercise
Check that L defined in (9) is a vector Dirac structure on V with

associated subspace R and bilinear form θ.

Example 2.8 indicates a simple way in which vector Dirac structures
can be restricted to subspaces.

Example 2.9 (Restriction of Dirac structures to subspaces)
Let L be a vector Dirac structure on V , let W ⊆ V be a subspace, and

consider the pair (R, θ) associated with L. Then W inherits the vector
Dirac structure LW from L defined by the pair

RW := R ∩W, and θW := ι∗θ,

where ι : W ↪→ V is the inclusion map.

Exercise
Show that there is a canonical isomorphism

LW
∼=

L ∩ (W ⊕ V ∗)
L ∩W ◦ . (10)

Let (P,L) be a Dirac manifold, and let ι : N ↪→ P be a submanifold.
The construction in Example 2.9, when applied to TxN ⊆ TxP for all
x ∈ P , defines a maximal isotropic “subbundle” LN ⊂ TN ⊕ T ∗N .
The problem is that LN may not be a continuous family of subspaces.
When LN is a continuous family, it is a smooth bundle which then

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521615054 - Poisson Geometry, Deformation Quantisation and Group Representations
Edited by Simone Gutt, John Rawnsley and Daniel Sternheimer
Excerpt
More information

http://www.cambridge.org/0521615054
http://www.cambridge.org
http://www.cambridge.org


10 2 Poisson geometry and some generalizations

automatically satisfies the integrability condition [27, Cor. 3.1.4], so LN

defines a Dirac structure on N .
The next example is a special case of this construction and is one of

the original motivations for the study of Dirac structures; it illustrates
the connection between Dirac structures and “constraint submanifolds”
in classical mechanics.

Example 2.10 (Momentum level sets)
Let J : P → g∗ be the momentum 2 map for a hamiltonian action of a

Lie group G on a Poisson manifold P [59]. Let µ ∈ g∗ be a regular value
for J , let Gµ be the isotropy group at µ with respect to the coadjoint
action, and consider

Q = J−1(µ) ↪→ P.

At each point x ∈ Q, we have a vector Dirac structure on TxQ given by

(LQ)x :=
Lx ∩ (TxQ⊕ T ∗

xP )
Lx ∩ TxQ◦ . (11)

To show that LQ defines a smooth bundle, it suffices to verify that
Lx ∩ TxQ

◦ has constant dimension. (Indeed, if this is the case, then
Lx ∩ (TxQ ⊕ T ∗

xP ) has constant dimension as well, since the quotient
Lx ∩ (TxQ⊕ T ∗

xP )/Lx ∩ TxQ
◦ has constant dimension, and this insures

that all bundles are smooth.) A direct computation shows that Lx∩TxQ
◦

has constant dimension if and only if the stabilizer groups of the Gµ-
action on Q have constant dimension, which happens whenever the Gµ-
orbits on Q have constant dimension (for instance, when the action of
Gµ on Q is locally free). In this case, LQ is a Dirac structure on Q.

We will revisit this example in Section 2.7.

Remark 2.11 (Complex Dirac structures and generalized complex ge-
ometry)

Using the natural extensions of the symmetric form (6) and the
Courant bracket (7) to (TP ⊕ T ∗P ) ⊗ C, one can define a complex
Dirac structure on a manifold P to be a maximal isotropic complex
subbundle L ⊂ (TP ⊕ T ∗P ) ⊗ C whose sections are closed under the

2 The term “moment” is frequently used instead of “momentum” in this context. In
this paper, we will follow the convention, introduced in [61], that “moment” is
used only in connection with groupoid actions. As we will see (e.g. in Example
4.16), many momentum maps, even for “exotic” theories, are moment maps as
well.
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2.3 Twisted structures 11

Courant bracket. If a complex Dirac structure L satisfies the condition

L ∩ L = {0} (12)

at all points of P (here L is the complex conjugate of L), then it is
called a generalized complex structure; such structures were intro-
duced in [43, 46] as a common generalization of complex and symplectic
structures.

To see how complex structures fit into this picture, note that an al-
most complex structure J : TP → TP defines a maximal isotropic
subbundle LJ ⊂ (TP ⊕ T ∗P ) ⊗ C as the i-eigenbundle of the map

(TP ⊕ T ∗P ) ⊗ C → (TP ⊕ T ∗P ) ⊗ C, (X,α) �→ (−J(X), J∗(α)).

The bundle LJ completely characterizes J , and satisfies (12); moreover
LJ satisfies the integrability condition of a Dirac structure if and only
if J is a complex structure.

Similarly, a symplectic structure ω on P can be seen as a generalized
complex structure through the bundle Lω,C, defined as the i-eigenbundle
of the map

(TP ⊕ T ∗P ) ⊗ C → (TP ⊕ T ∗P ) ⊗ C, (X,α) �→ (ω̃(X),−ω̃−1(α)).

Note that, by (12), a generalized complex structure is never the com-
plexification of a real Dirac structure. In particular, for a symplectic
structure ω, Lω,C is not the complexification of the real Dirac structure
Lω of Proposition 2.6.

2.3 Twisted structures

A “background” closed 3-form φ ∈ Ω3(P ) can be used to “twist” the
geometry of P [48, 69], leading to a modified notion of Dirac structure
[80], and in particular of Poisson structure. The key point is to use φ to
alter the ordinary Courant bracket (7) as follows:

[[(X,α), (Y, β)]]φ := ([X,Y ],LXβ − iY dα + φ(X,Y, ·)). (13)

We now simply repeat the definitions in Section 2.2 replacing (7) by the
φ-twisted Courant bracket (13).

A φ-twisted Dirac structure on P is a subbundle L ⊂ TP ⊕ T ∗P
which is maximal isotropic with respect to 〈·, ·〉+ (6) and for which

[[Γ(L),Γ(L)]]φ ⊆ Γ(L). (14)
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