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Discrete-time Markov chains

1.1 The Markov property and its immediate consequences

Mathematics cannot be learned by lectures alone, anymore

than piano playing can be learned by listening to a player.

C. Runge (1856–1927), German applied mathematician

Typically, the subject of Markov chains represents a logical continuation from a

basic course of probability. We will study a class of random processes describing

a wide variety of systems of theoretical and practical interest (and sometimes sim-

ply amusing). The fact that deep insight into the subject is possible without using

sophisticated mathematical tools may also be an explanation of why Markov chains

are popular in so many different disciplines which are seemingly remote from pure

mathematics.

The basic model for the first half of the book will be a system which changes

state in discrete time, according to some random mechanism. The collection of

states is called a state space and throughout the whole book will be assumed

finite or countable; we will denote it by I. Each i * I is called a state; our sys-

tem will always be in one of these states. Sometimes we will know what state the

system occupies and sometimes only that the system is in state i with some prob-

ability. Therefore it makes sense to introduce a probability measure or probability

distribution (or, more simply, a distribution) on I. A probability distribution λ on I

is simply a countable collection (λi, i * I) of non-negative numbers of total sum 1:

λi g 0, ∑
i*I

λi = 1. (1.1)
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2 Discrete-time Markov chains

We can think of a unit ‘mass’ spread over the set I where point i has mass λi.

For that reason it is sometimes convenient to speak of a probability mass function

i * I �³ λi. Then the probability of a set J ¦ I is λ (J) = ∑ j*J λ j.

If λi = 1 for some i * I and λ j = 0 when j "= i, the distribution is ‘concentrated’

at point i. Then the state of our system becomes ‘deterministic’. We will denote

such a distribution by δi (the Dirac measure being an extreme case).

Sometimes the condition ∑i*I λi = 1 is not fulfilled; then we simply say that λ is

a measure on I. If the total mass ∑i*I λi < ∞, the measure is called finite and can be

transformed into a probability distribution by the normalisation: "λi = λi

"
∑ j*I λ j

which defines a probability measure on I, since ∑i*I
"λi = ∑i*I λi

"
∑ j*I λ j = 1. But

even if ∑i*I λi = ∞ (i.e. the total mass is infinite), we still can assign a finite value

λ (J) = ∑i*J λi to finite subsets J ¢ I.

The random mechanism through which a change of state occurs is described by

a transition matrix P, with entries pi j, i, j * I. Entry pi j gives the probability that

the system will change state i to j in a unit of time. That is, pi j is the conditional

probability that the system will occupy state j at the next time-step given that it

is currently in state i. Hence, we have that each entry in P is non-negative but not

greater than 1, and the sum of entries along every row equals 1:

0 f pi j f 1 for all i, j * I and ∑
j*I

pi j = 1 for all i * I. (1.2)

A matrix P with these properties is called stochastic. By analogy, a probability

distribution (λi) on I is often called a stochastic vector. Then a stochastic matrix is

one where every row is a stochastic vector.

Example 1.1.1 The simplest case is 2× 2 (a two-state space). Without loss of

generality, we may think that the states are 0 and 1: then the entries will be pi j,

i, j = 0,1. Here, the stochastic matrix has the form

�
12α α

β 12β

�

where 0 f α ,β f 1. In particular, α = β = 0 gives the identity matrix I and α =

β = 1 the anti-diagonal matrix:

�
1 0

0 1

�
,

�
0 1

1 0

�
.

A system with the identity transition matrix remains in the initial state forever; in

the anti-diagonal case it flips state every time, from 0 to 1 and vice versa.
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1.1 The Markov property and its immediate consequences 3

On the other hand, α = β = 1/2 gives the matrix

�
1/2 1/2

1/2 1/2

�
.

In this case the system may stay in its state or change it with equal probabilities.

It is convenient to represent the transition matrix by a diagram where arrows

show possible transitions and are labelled with the corresponding transition proba-

bilities (arrows leading back to their own origin are often omitted as well as labels

for deterministic transitions). See Figure 1.1, top.

La Dolce Beta

(From the series ‘Movies that never made it to the Big Screen’.)

Example 1.1.2 The 4×4 matrix

»
¼¼½

0 1/3 1/3 1/3

1/4 1/4 1/4 1/4

1/2 1/2 0 0

0 0 0 1

¾
¿¿À

is represented in Figure 1.1, bottom.

The time will take values n = 0,1,2, . . .. To complete the picture, we have to

specify in what state our system is at the initial time n = 0. Typically, we will

assume that the system at time n = 0 is in state i with probability λi for some given

‘initial’ distribution λ on I.

Denote by Xn the state of our system at time n. The rules specifying a Markov

chain with initial distribution λ and transition matrix P are that

(i) X0 has distribution λ :

P(X0 = i) = λi, for all i * I,

(ii) more generally, for all n and i0, . . . , in * I, the probabilities P(X0 = i0,X1 =

i1, . . . ,Xn = in) that the system occupies states i0, i1, . . . , in at times 0, 1,

. . . , n is written as a product

P(X0 = i0,X1 = i1, . . . ,Xn = in) = λi0 pi0i1 · · · pin21in . (1.3)
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4 Discrete-time Markov chains

4 3
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Fig. 1.1

Of course, (i) is a particular case of (ii), with n = 0.

An important corollary of (1.3) is the equation for the conditional probability

P(Xn+1 = j|X0 = i0, . . . ,Xn21 = in21,Xn = i) that the state at time n+1 is j, given

states i0, . . . , in21 and in = i at times 0, . . . , n21, n:

P(Xn+1 = j|X0 = i0, . . . ,Xn21 = in21,Xn = i)

=
P(X0 = i0, . . . ,Xn21 = in21,Xn = i,Xn+1 = j)

P(X0 = i0, . . . ,Xn21 = in21,Xn = i)

=
λi0 pi0i1 · · · pin21i pi j

λi0 pi0i1 · · · pin21i

= pi j. (1.4)

That is, conditional on X0 = i0, . . .,Xn21 = in21 and Xn = i, we see Xn+1 has the

distribution (pi j, j * I). In particular, the conditional distribution of Xn+1 does not

depend on i0, . . ., in21, i.e., depends only on the state i at the last preceding time n.

Formula (1.4) illustrates the ‘no memory’ property of a Markov chain (only the

current state counts for determining probabilities of future states).

Another consequence of (1.3) is an elegant formula involving matrix multiplica-

tion for the marginal probability distribution of Xn. Here we ask the question: what

is the probability P(Xn = j) that at time n our system is in state j? For example, for

n = 1 we can write:

P(X1 = j) = ∑
i*I

P(X0 = i,X1 = j),
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1.1 The Markov property and its immediate consequences 5

by considering all possible initial states i. In fact, the events

{state i at time 0, state j at time 1}

do not intersect for different i * I and their union gives the event

{state j at time 1}.

Now use (1.3) and recall the rules of matrix algebra:

∑
i*I

P(X0 = i,X1 = j) = ∑
i*I

λi pi j = (λP) j.

By a direct calculation, this formula is extended to a general n:

P(Xn = j) = ∑
i0,...,in21

P(X0 = i0, . . . ,Xn21 = in21,Xn = j)

= ∑
i0,...,in21

λi0 pi0i1 · · · pin21 j = (λPn) j , (1.5)

where Pn is the nth power of the matrix P. That is, the stochastic vector describing

the distribution of Xn is obtained by applying the matrix Pn to the initial stochastic

vector λ .

Then, similarly,

P(Xn = i,Xn+1 = j)

= ∑
i0,...,in21

P(X0 = i0, . . . ,Xn21 = in21,Xn = i,Xn+1 = j)

= ∑
i0,...,in21

λi0 pi0i1 · · · pin21i pi j = (λPn)i pi j,

and, hence

P(Xn+1 = j|Xn = i) =
P(Xn = i,Xn+1 = j)

P(Xn = i)
=

(λPn)i pi j

(λPn)i

= pi j. (1.6)

In other words, the entry pi j is the conditional probability that the state at the next

time-step is j given that at the preceding one it is i.

Moreover,

P(X0 = i,Xn = j)

= ∑
i1,...,in21

P(X0 = i,X1 = i1, . . . ,Xn21 = in21,Xn = j)

= ∑
i1,...,in21

λi pii1 · · · pin21 j = λi(P
n)i j,

and

P(Xn = j|X0 = i) =
P(X0 = i,Xn = j)

P(X0 = i)
=

λi(P
n)i j

λi

= (Pn)i j. (1.7)
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6 Discrete-time Markov chains

That is, the entry (Pn)i j of matrix Pn gives the n-step transition probability from

state i to j. We also denote it sometimes by p
(n)
i j .

More generally,

P(Xk = i,Xn+k = j) = (λPk)i(P
n)i j

and

P(Xk+n = j|Xk = i) =
P(Xk = i,Xk+n = j)

P(Xk = i)
=

(λPk)i(P
n)i j

(λPk)i

= (Pn)i j. (1.8)

A corollary of this observation is that the power Pn of a stochastic matrix is

again stochastic, viz. ∑ j*I p
(n)
i j = 1 for all i * I. Of course, this fact can be verified

directly:

∑
j*I

p
(n)
i j = ∑

i1,...,in21, j

pii1 · · · pin21 j = ∑
i1

pii1 · · ·∑
j

pin21 j = 1

as at each step (beginning with ∑ j) we get the sum 1, owing to (1.2).

Another consequence is that if we apply to a stochastic vector a stochastic

matrix (P or more generally Pn), we obtain another stochastic vector. Again, direct

calculation confirms this:

∑
j

(λPn) j = ∑
i, j

λi(P
n)i j = ∑

i

λi ∑
j

(Pn)i j = ∑
i

λi = 1.

An ultimate generalisation of (1.3) is the formula

P
�
Xk1

= i1,Xk2
= i2, . . . ,Xkn

= in
�

= (λPk1)i1

�
Pk22k1

�
i1i2

· · ·
�
Pkn2kn21

�
in21in

(1.9)

valid for all times 0 f k1 < k2 < · · · < kn and states i1, . . ., in * I.

It is now time to summarise our findings. Suppose that λ = (λi) is a stochastic

vector and P = (pi j) a transition matrix on I. The random state Xn at time n is

considered as a random variable with values in I.

Definition 1.1.3 A sequence of random variables Xn with values in a finite or

countable set I is a discrete-time Markov chain (DTMC), or a Markov chain for

short, with the initial distribution λ and transition matrix P if, for all i0, . . . , in * I,

the joint probability P(X0 = i0, . . . ,Xn = in) is given by formula (1.3). In this case

we also say that (Xn) is Markov (λ ,P) or call it a (λ ,P) Markov chain.

Theorem 1.1.4 If (Xn) is Markov (λ ,P), then:

(i) the conditional probability

P(Xn+1 = j|X0 = i0, . . . ,Xn21 = in21,Xn = i)
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1.1 The Markov property and its immediate consequences 7

is equal to the conditional probability P(Xn+1 = j|Xn = i) and coincides

with pi j. In particular, the conditional distribution of Xn+1 given that X0 =

i0, . . . ,Xn21 = in21,Xn = i does not depend on i0, . . . , in21 and coincides with

(pi j, j * I), i.e. with row i of P;

(ii) the probability P(Xn = i) that the state at time n is i equals (λPn)i;

(iii) the entry p
(n)
i j of matrix Pn corresponds to the conditional probability

P(Xk+n = j|Xk = i), i.e. gives the n-step transition probability from i to j;

(iv) the general probability

P
�
Xk1

= i1,Xk2
= i2, . . . ,Xkn

= in
�

is given by (1.9).

Example 1.1.5 Suppose that all rows of P are the same, i.e. pi j = p j does not

depend on i. In addition, suppose that λ j = p j, i.e. λ coincides with the row of P.

Then, by (1.3)

P(X0 = i0,X1 = i1, . . . ,Xn = in) = pi0 pi1 · · · pin .

Also, in this example Pn = P, as

p
(n)
i j = ∑

i1,...,in21

pi1 · · · pin21
p j = ∑

i1

pi1 ∑
i2

pi2 · · ·∑
in21

pin21
p j = p j,

owing to the fact that ∑l*I pl = 1. Hence,

P(Xn = j) = (λPn) j = ∑
i*I

pi p
(n)
i j = ∑

i*I

pi p j = p j.

We see that

P(X0 = i0,X1 = i1, . . . ,Xn = in) = P(X0 = i0)P(X1 = i1) · · ·P(Xn = in).

That is (Xn) is a sequence of independent, identically distributed (IID) random

variables.

Example 1.1.6 If P is diagonal then it must coincide with the identity matrix I

where row i is given by the stochastic vector δi:

»
¼¼½

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 1

¾
¿¿À .
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8 Discrete-time Markov chains

In this case, every power Pn again equals the identity matrix (this property is called

idempotency; correspondingly, such a matrix P is called idempotent). Hence,

by (1.5), P(Xn = i) = λi. That is, the distribution of Xn is the same as X0. In other

words, the initial distribution is preserved in time.

Example 1.1.7 For a two-state DTMC, P =

�
12α α

β 12β

�
, the entries of Pn

can be found by a straightforward calculation. In fact, Pn = Pn21P, which for entry

p
(n)
00 yields

p
(n)
00 = p

(n21)
00 (12α)+ p

(n21)
01 β

= p
(n21)
00 (12α)+

�
12 p

(n21)
00

�
β = β +(12α 2β )p

(n21)
00 .

This is a recursion in n, with p
(0)
00 = 1 and p

(1)
00 = 12α . Hence,

p
(n)
00 = A+B(12α 2β )n,

with

A+B = 1, A+B(12α 2β ) = 12α ,

and, clearly,

p
(n)
00 =

§
¨
©

β

α +β
+

α

α +β
(12α 2β )n, if α +β > 0,

1, if α = β = 0.

Entry p
(n)
11 is obtained by swapping α and β , and entries p

(n)
01 and p

(n)
10 as

complements to 1.

Example 1.1.8 In the general case, we can use the eigenvalues and eigenvectors

of P to find elements of Pn. Consider a 3×3 example

P =

»
½

0 1 0

0 2/3 1/3

1/3 0 2/3

¾
À .

The eigenvalues are solutions to the characteristic equation:

det

»
½

2µ 1 0

0 2/32µ 1/3

1/3 0 2/32µ

¾
À = 2µ3 +

4

3
µ2 2 4

9
µ +

1

9

= 2(µ 21)

�
µ2 2 1

3
µ +

1

9

�
= 0,

www.cambridge.org/9780521612340
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-61234-0 — Probability and Statistics by Example Volume 2
Yuri Suhov, Mark Kelbert
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 The Markov property and its immediate consequences 9

whence

µ0 = 1, µ± =
1± i

:
3

6
.

As the eigenvalues are distinct, matrix P is diagonalisable: there exists an invertible

matrix D such that

D21PD =

»
½

1 0 0

0 (1+ i
:

3)/6 0

0 0 (12 i
:

3)/6

¾
À ,

i.e.

P = D

»
½

1 0 0

0 (1+ i
:

3)/6 0

0 0 (12 i
:

3)/6

¾
ÀD21.

Then

Pn = D

»
½

1 0 0

0
"
(1+ i

:
3)/6

"n
0

0 0
"
(12 i

:
3)/6

"n

¾
ÀD21,

and each entry of Pn is a sum of the form

A+B

"
1+ i

:
3

6

"n

+C

"
12 i

:
3

6

"n

.

The coefficients A, B and C may be complex; they vary from entry to entry and are

found from the initial values n = 0,1,2. For n = 0, P0 is the identity matrix (just as

in the scalar case p0 = 1 for any p (p = 0 included!)); for n = 1, we use the matrix

P and for n = 2 we have to square it, to obtain P2. For instance, suppose that the

states are 1, 2 and 3; then the entries are p
(n)
i j , i, j = 1,2,3. Then, for p

(n)
12 :

p
(0)
12 = A+B+C = 0, p

(1)
12 = A+B

1+ i
:

3

6
+C

12 i
:

3

6
= 1,

and

p
(2)
12 = A+B

"
1+ i

:
3

6

"2

+C

"
12 i

:
3

6

"2

=
2

3
.

The calculations may be simplified if we get rid of imaginary parts (as all

entries p
(n)
i j of Pn are real non-negative). To this end, observe that µ± are complex

conjugate roots and write

1± i
:

3

6
=

1

3

�1± i
:

3

2

�
=

1

3
e±iπ/3 =

1

3

�
cos

π

3
± isin

π

3

�
.
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10 Discrete-time Markov chains

Then "
1± i

:
3

6

"n

=

�
1

3

�n

e±inπ/3 =

�
1

3

�n �
cos

πn

3
± isin

πn

3

�
,

and

p
(n)
i j = α +

�
1

3

�n �
β cos

πn

3
+ γ sin

πn

3

�
,

where α = A, β = (B +C) and γ = i(B2C) must be real. Again, we have the

equations for n = 0,1,2; for p
(n)
12 they are

α +β = 0, α +
1

3

"
1

2
β +

:
3

2
γ

"
= 1, α +

1

9

"
2 1

2
β +

:
3

2
γ

"
=

2

3
,

whence

α =
3

7
, β = 23

7
, γ =

9

7

:
3.

In particular, lim
n³∞

p
(n)
12 = 3/7.

Example 1.1.9 Consider another 3×3 matrix

P =

»
½

1/3 0 2/3

1/3 2/3 0

1/3 1/3 1/3

¾
À .

Here the characteristic equation is:

2µ3 +
4

3
µ2 2 1

3
µ = 2(µ 21)

�
µ 2 1

3

�
µ = 0,

with the eigenvalues

µ0 = 1, µ1 =
1

3
, µ2 = 0.

Hence, the entries p
(n)
i j have a simple form

p
(n)
i j = A+B

�
1

3

�n

+C ·0n.

Again we use three initial conditions, with P0, P and P2. For instance, for p
(n)
11 :

A+B+C = 1, A+
1

3
B =

1

3
, A+

�
1

3

�2

B =
1

3
,
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