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1 Discrete outcomes

1.1 A uniform distribution

Lest men suspect your tale untrue,
Keep probability in view.

J. Gay (1685–1732), English poet

In this section we use the simplest (and historically the earliest) probabilistic model where
there are a finite number m of possibilities (often called outcomes) and each of them has
the same probability 1/m. A collection A of k outcomes with k≤m is called an event
and its probability ��A� is calculated as k/m:

��A�= the number of outcomes inA
the total number of outcomes

� (1.1)

An empty collection has probability zero and the whole collection one. This scheme looks
deceptively simple: in reality, calculating the number of outcomes in a given event (or
indeed, the total number of outcomes) may be tricky.

Problem 1.1 You and I play a coin-tossing game: if the coin falls heads I score one,
if tails you score one. In the beginning, the score is zero. (i) What is the probability that
after 2n throws our scores are equal? (ii) What is the probability that after 2n+ 1 throws
my score is three more than yours?

Solution The outcomes in (i) are all sequences HHH� � � H�THH� � � H� � � � � TTT� � � T

formed by 2n subsequent letters H or T (or, 0 and 1). The total number of outcomes is
m=22n, each carries probability 1/22n. We are looking for outcomes where the number of
Hs equals that of T s. The number k of such outcomes is �2n�!/n!n! (the number of ways
to choose positions for n Hs among 2n places available in the sequence). The probability

in question is
�2n�!
n!n! × 1

22n
.

In (ii), the outcomes are the sequences of length 2n+ 1, 22n+1 in total. The probability
equals

�2n+ 1�!
�n+ 2�!�n− 1�! ×

1
22n+1

� �

3
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4 Discrete outcomes

Problem 1.2 A tennis tournament is organised for 2n players on a knock-out basis,
with n rounds, the last round being the final. Two players are chosen at random. Calculate
the probability that they meet (i) in the first or second round, (ii) in the final or semi-final,
and (iii) the probability they do not meet.

Solution The sentence ‘Two players are chosen at random’ is crucial. For instance,
one may think that the choice has been made after the tournament when all results are
known. Then there are 2n−1 pairs of players meeting in the first round, 2n−2 in the second
round, two in the semi-final, one in the final and 2n−1 + 2n−2 + · · ·+ 2+ 1= 2n − 1 in all
rounds.

The total number of player pairs is
(
2n

2

)
= 2n−1�2n − 1�. Hence the answers:

�i�
2n−1 + 2n−2

2n−1�2n − 1�
= 3

2�2n − 1�
� �ii�

3
2n−1�2n − 1�

�

and

�iii�
2n−1�2n − 1�− �2n − 1�

2n−1�2n − 1�
= 1− 1

2n−1
� �

Problem 1.3 There are n people gathered in a room.

(i) What is the probability that two (at least) have the same birthday? Calculate the
probability for n= 22 and 23.

(ii) What is the probability that at least one has the same birthday as you? What
value of n makes it close to 1/2?

Solution The total number of outcomes is 365n. In (i), the number of outcomes not
in the event is 365× 364× · · · × �365− n+ 1�. So, the probability that all birthdays are
distinct is

(
365× 364× · · ·× �365− n+ 1�

)/
365n and that two or more people have the

same birthday

1− 365× 364× · · ·× �365− n+ 1�
365n

�

For n= 22:

1− 365
365

× 364
365

× · · ·× 344
365

= 0�4927�

and for n= 23:

1− 365
365

× 364
365

× · · ·× 343
365

= 0�5243�

In (ii), the number of outcomes not in the event is 364n and the probability in question
1− �364/365�n. We want it to be near 1/2, so(

364
365

)n

≈ 1
2
� i.e. n≈− 1

log2�364/365�
≈ 252�61� �
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1.1 A uniform distribution 5

Problem 1.4 Mary tosses n+ 1 coins and John tosses n coins. What is the probability
that Mary gets more heads than John?

Solution 1 We must assume that all coins are unbiased (as it was not specified other-
wise). Mary has 2n+1 outcomes (all possible sequences of heads and tails) and John 2n;
jointly 22n+1 outcomes that are equally likely. Let HM and TM be the number of Mary’s
heads and tails and HJ and TJ John’s, then HM + TM = n+ 1 and HJ + TJ = n. The
events �HM >HJ� and �TM >TJ� have the same number of outcomes, thus ��HM>HJ�=
��TM >TJ�.

On the other hand, HM>HJ if and only if n−HM<n−HJ, i.e. TM−1<TJ or TM≤TJ.
So event HM >HJ is the same as TM ≤TJ, and ��TM ≤TJ�=��HM >HJ�.

But for any (joint) outcome, either TM >TJ or TM ≤TJ, i.e. the number of outcomes in
�TM>TJ� equals 2

2n+1 minus that in �TM ≤TJ�. Therefore, ��TM>TJ�= 1−��TM≤TJ�.
To summarise:

��HM >HJ�=��TM >TJ�= 1−��TM ≤TJ�= 1−��HM >HJ��

whence ��HM >HJ�= 1/2.

Solution 2 (Fallacious, but popular with some students.) Again assume that all coins
are unbiased. Consider pair �HM�HJ�, as an outcome; there are �n+ 2��n+ 1� such
possible pairs, and they all are equally likely (wrong: you have to have biased coins for
this!). Now count the number of pairs with HM>HJ. If HM=n+1, HJ can take any value
0�1� � � � � n. In general, ∀l≤ n+ 1, if HM = l, HJ will take values 0� � � � � l− 1. That is,
the number of outcomes where HM >HJ equals 1+ 2+ · · · + �n+ 1�= 1

2 �n+ 1��n+ 2�.
Hence, ��HM >HJ�= 1/2. �

Problem 1.5 You throw 6n dice at random. Show that the probability that each number
appears exactly n times is

�6n�!
�n!�6

(
1
6

)6n

�

Solution There are 66n outcomes in total (six for each die), each has probability 1/66n.
We want n dice to show one dot, n two, and so forth. The number of such outcomes is
counted by fixing first which dice show one: �6n�!/	n!�5n�!
. Given n dice showing one,
we fix which remaining dice show two: �5n�!/	n!�4n�!], etc. The total number of desired
outcomes is the product that equals �6n�!�n!�6. This gives the answer. �

In many problems, it is crucial to be able to spot recursive equations relating the
cardinality of various events. For example, for the number fn of ways of tossing a coin n

times so that successive tails never appear: fn= fn−1+ fn−2, n≥3 (a Fibonacci equation).
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6 Discrete outcomes

Problem 1.6 (i) Determine the number gn of ways of tossing a coin n times so that
the combination HT never appears. (ii) Show that fn = fn−1 + fn−2 + fn−3, n≥ 3, is the
equation for the number of ways of tossing a coin n times so that three successive heads
never appear.

Solution (i) gn=1+n; 1 for the sequenceHH� � � H , n for the sequences T� � � TH� � � H

(which includes T� � � T ).
(ii) The outcomes are 2n sequences �y1� � � � � yn� of H and T . Let An be the event

{no three successive heads appeared after n tosses}, then fn is the cardinality #An. Split:
An =B�1�

n ∪B�2�
n ∪B�3�

n , where B�1�
n is the event {no three successive heads appeared after

n tosses, and the last toss was a tail}, B�2�
n = {no three successive heads appeared after n

tosses, and the last two tosses were TH} and B�3�
n ={no three successive heads appeared

after n tosses, and the last three tosses were THH}.
Clearly, B�i�

n ∩B�j�
n =∅, 1≤ i �= j≤ 3, and so fn = #B�1�

n + #B�2�
n + #B�3�

n .
Now drop the last digit yn: �y1� � � � yn� ∈ B�1�

n iff yn = T , �y1� � � � yn−1� ∈ An−1, i.e.
#B�1�

n−1= fn−1. Also, �y1� � � � yn�∈B�2�
n iff yn−1=T , yn=H , and �y1� � � � yn−2�∈An−2. This

allows us to drop the two last digits, yielding #B�2�
n = fn−2. Similarly, #B�3�

n = fn−3. The
equation then follows. �

1.2 Conditional Probabilities. The Bayes Theorem. Independent trials

Probability theory is nothing but common sense
reduced to calculation.

P.-S. Laplace (1749–1827), French mathematician

Clockwork Omega
(From the series ‘Movies that never made it to the Big Screen’.)

From now on we adopt a more general setting: our outcomes do not necessarily have
equal probabilities p1� � � � � pm, with pi > 0 and p1 + · · ·+pm = 1.

As before, an event A is a collection of outcomes (possibly empty); the probability
��A� of event A is now given by

��A�= ∑
outcome i∈A

pi =
∑

outcome i

piI�i∈A�� (1.2)

(��A�= 0 for A=∅.) Here and below, I stands for the indicator function, viz.:

I�i∈A�=
{
1� if i∈A�

0� otherwise�

The probability of the total set of outcomes is 1. The total set of outcomes is also
called the whole, or full, event and is often denoted by �, so ����= 1. An outcome is
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1.2 Conditional probabilities 7

often denoted by �, and if p��� is its probability, then

��A�= ∑
�∈A

p���= ∑
�∈�

p���I��∈A�� (1.3)

As follows from this definition, the probability of the union

��A1 ∪A2�=��A1�+��A2� (1.4)

for any pair of disjoint events A1, A2 (with A1 ∩A2 =∅). More generally,

��A1 ∪ · · · ∪An�=��A1�+ · · ·+��An� (1.5)

for any collection of pair-wise disjoint events (with Aj ∩Aj′ = ∅ ∀j �= j′). Consequently,
(i) the probability ��Ac� of the complement Ac =�\A is 1− ��A�, (ii) if B⊆A, then
��B�≤ ��A� and ��A�− ��B�= ��A\B�, and (iii) for a general pair of events A�B:
��A\B�=�

(
A\�A∩B�

)=��A�−��A∩B�.
Furthermore, for a general (not necessarily disjoint) union:

��A1 ∪ · · · ∪An�≤
n∑

i=1

��Ai�


a more detailed analysis of the probability ��∪Ai� is provided by the exclusion–inclusion
formula (1.12); see below.

Given two events A and B with ��B� > 0, the conditional probability ��A�B� of A
given B is defined as the ratio

��A�B�= ��A∩B�

��B�
� (1.6)

At this stage, the conditional probabilities are important for us because of two formulas.
One is the formula of complete probability: if B1� � � � �Bn are pair-wise disjoint events
partitioning the whole event �, i.e. have Bi ∩Bj =∅ for 1≤ i < j≤n and B1 ∪B2 ∪ · · · ∪
Bn =�, and in addition ��Bi�> 0 for 1≤ i≤ n, then

��A�=��A�B1���B1�+��A�B2���B2�+ · · ·+��A�Bn���Bn�� (1.7)

The proof is straightforward:

��A�= ∑
1≤i≤n

��A∩Bi�=
∑

1≤i≤n

��A∩Bi�

��Bi�
��Bi�=

∑
1≤i≤n

��A�Bi���Bi��

The point is that often it is conditional probabilities that are given, and we are required to
find unconditional ones; also, the formula of complete probability is useful to clarify the
nature of (unconditional) probability ��A�. Despite its simple character, this formula is
an extremely powerful tool in literally all areas dealing with probabilities. In particular, a
large portion of the theory of Markov chains is based on its skilful application.

Representing ��A� in the form of the right-hand side (RHS) of (1.7) is called condi-
tioning (on the collection of events B1� � � � �Bn).
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8 Discrete outcomes

Another formula is the Bayes formula (or the Bayes Theorem) named after T. Bayes
(1702–1761), an English mathematician and cleric. It states that under the same assump-
tions as above, if in addition ��A� > 0, then the conditional probability ��Bi�A� can
be expressed in terms of probabilities ��B1�� � � � ���Bn� and conditional probabilities
��A�B1�� � � � ���A�Bn� as

��Bi�A�=
��A�Bi���Bi�∑

1≤j≤n

��A�Bj���Bj�
� (1.8)

The proof is the direct application of the definition and the formula of complete probability:

��Bi�A�=
��A∩Bi�

��A�
� ��A∩Bi�=��A�Bi���Bi�

and

��A�=∑
j

��A�Bj���Bj��

A standard interpretation of equation (1.8) is that it relates the posterior probability
��Bi�A� (conditional on A) with prior probabilities ���Bj�� (valid before one knew that
event A occurred).

In his lifetime, Bayes finished only two papers: one in theology and one called ‘Essay
towards solving a problem in the doctrine of chances’; the latter contained the Bayes
Theorem and was published two years after his death. Nevertheless he was elected a
Fellow of The Royal Society. Bayes’ theory (of which the above theorem is an important
part) was for a long time subject to controversy. His views were fully accepted (after
considerable theoretical clarifications) only at the end of the nineteenth century.

Problem 1.7 Four mice are chosen (without replacement) from a litter containing two
white mice. The probability that both white mice are chosen is twice the probability that
neither is chosen. How many mice are there in the litter?

Solution Let the number of mice in the litter be n. We use the notation ��2� =
��two white chosen� and ��0�=��no white chosen�. Then

��2�=
(
n− 2
2

)/(
n

4

)
�

Otherwise, ��2� could be computed as:

2
n

1
n− 1

+ 2
n

n− 2
n− 1

1
n− 2

+ 2
n

n− 2
n− 1

n− 3
n− 2

1
n− 3

+ n− 2
n

2
n− 1

1
n− 2

+ n− 2
n

n− 3
n− 1

2
n− 2

1
n− 3

+ n− 2
n

2
n− 1

n− 3
n− 2

1
n− 3

= 12
n�n− 1�

�
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1.2 Conditional probabilities 9

On the other hand,

��0�=
(
n− 2
4

)/(
n

4

)
�

Otherwise, ��0� could be computed as follows:

��0�= n− 2
n

n− 3
n− 1

n− 4
n− 2

n− 5
n− 3

= �n− 4��n− 5�
n�n− 1�

�

Solving the equation

12
n�n− 1�

= 2
�n− 4��n− 5�

n�n− 1�
�

we get n= �9± 5�
/
2; n= 2 is discarded as n≥ 6 (otherwise the second probability is 0).

Hence, n= 7. �

Problem 1.8 Lord Vile drinks his whisky randomly, and the probability that, on a
given day, he has n glasses equals e−1

/
n!, n= 0�1� � � � Yesterday his wife Lady Vile,

his son Liddell and his butler decided to murder him. If he had no whisky that day, Lady
Vile was to kill him; if he had exactly one glass, the task would fall to Liddell, otherwise
the butler would do it. Lady Vile is twice as likely to poison as to strangle, the butler
twice as likely to strangle as to poison, and Liddell just as likely to use either method.
Despite their efforts, Lord Vile is not guaranteed to die from any of their attempts, though
he is three times as likely to succumb to strangulation as to poisoning.

Today Lord Vile is dead. What is the probability that the butler did it?

Solution Write ��dead�strangle�= 3r� ��dead�poison�= r, and

��drinks no whisky�=��drinks one glass�= 1
e
�

��drinks two glasses or more�= 1− 2
e
�

Next:

��strangle�Lady V�= 1
3
� ��poison�Lady V�= 2

3
�

��strangle�butler�= 2
3
� ��poison�butler�= 1

3
�

and

��strangle�Liddell�=��poison�Liddell�= 1
2
�
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10 Discrete outcomes

Then the conditional probability ��butler�dead� is
��d�b���b�

��d�b���b�+��d�LV���LV�+��d�Lddl���Lddl�

=

(
1− 2

e

)(
3r × 2

3
+ r

3

)
(
1− 2

e

)(
3r × 2

3
+ r

3

)
+ 1

e

(
3r
3

+ r × 2
3

)
+ 1

e

(
3r
2

+ r

2

)

= e− 2
e− 3/7

≈ 0�3137� �

Problem 1.9 At the station there are three payphones which accept 20p pieces. One
never works, another always works, while the third works with probability 1

/
2. On my

way to the metropolis for the day, I wish to identify the reliable phone, so that I can use
it on my return. The station is empty and I have just three 20p pieces. I try one phone
and it does not work. I try another twice in succession and it works both times. What is
the probability that this second phone is the reliable one?

Solution Let A be the event in the question: the first phone tried did not work and
second worked twice. Clearly:

��A�1st reliable�= 0�

��A�2nd reliable�= ��1st never works�2nd reliable�

+1
2
×��1st works half-time�2nd reliable�

= 1
2
+ 1

2
× 1

2
= 3

4
�

and the probability ��A�3rd reliable� equals

1
2
× 1

2
×��2nd works half-time�3rd reliable�= 1

8
�

The required probability ��2nd reliable� is then

1/3× 3/4
1/3× �0+ 3/4+ 1/8�

= 6
7
� �

Problem 1.10 Parliament contains a proportion p of Labour Party members, incapable
of changing their opinions about anything, and 1− p of Tory Party members changing
their minds at random, with probability r, between subsequent votes on the same issue.
A randomly chosen parliamentarian is noticed to have voted twice in succession in the
same way. Find the probability that he or she will vote in the same way next time.
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1.2 Conditional probabilities 11

Solution Set

A1 = �Labour chosen�� A2 = �Tory chosen��

B= �the member chosen voted twice in the same way��

We have ��A1�=p, ��A2�= 1−p, ��B�A1�= 1, ��B�A2�= 1− r. We want to calculate

��A1�B�=
��A1 ∩B�

��B�
= ��A1���B�A1�

��B�

and ��A2�B�= 1−��A1�B�. Write

��B�=��A1���B�A1�+��A2���B�A2�=p · 1+ �1−p��1− r��

Then

��A1�B�=
p

p+ �1− r��1−p�
� ��A2�B�=

�1− r��1−p�

p+ �1− r��1−p�
�

and the answer is given by

�
(
the member will vote in the same way

∣∣B)= p+ �1− r�2�1−p�

p+ �1− r��1−p�
� �

Problem 1.11 The Polya urn model is as follows. We start with an urn which contains
one white ball and one black ball. At each second we choose a ball at random from the urn
and replace it together with one more ball of the same colour. Calculate the probability
that when n balls are in the urn, i of them are white.

Solution Denote by �n the conditional probability given that there are n balls in the
urn. For n= 2 and 3

�n�one white ball�=
{
1� n= 2
1
2 � n= 3�

and

�n�two white balls�= 1
2 � n= 3�

Make the induction hypothesis

�k�i white balls�= 1
k− 1

�

∀ k= 2� � � � � n− 1 and i= 1� � � � � k− 1. Then, after n− 1 trials (when the number of
balls is n),

�n�i white balls�

=�n−1�i− 1 white balls�× i− 1
n− 1

+�n−1�i white balls�× n− 1− i

n− 1
= 1

n− 1
� i= 1� � � � � n− 1�
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