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Introduction

The reader will quickly discover that the organization of this book was chosen to be
parallel to the organization of Biological Sequence Analysis by Durbin et al. (1998).
The first chapter of BSA contains an introduction to the fundamental notions of
biological sequence analysis: sequence similarity, homology, sequence alignment,
and the basic concepts of probabilistic modeling.

Finding these distinct concepts described back-to-back is surprising at first
glance. However, let us recall several important bioinformatics questions. How
could we construct a pairwise sequence alignment? How could we build an align-
ment of multiple sequences? How could we create a phylogenetic tree for several
biological sequences? How could we predict an RNA secondary structure? None of
these questions can be consistently addressed without use of probabilistic methods.
The mathematical complexity of these methods ranges from basic theorems and
formulas to sophisticated architectures of hidden Markov models and stochastic
grammars able to grasp fine compositional characteristics of empirical biological
sequences.

The explosive growth of biological sequence data created an excellent oppor-
tunity for the meaningful application of discrete probabilistic models. Perhaps,
without much exaggeration, the implications of this new development could
be compared with implications of the revolutionary use of calculus and dif-
ferential equations for solving problems of classic mechanics in the eighteenth
century.

The problems considered in this introductory chapter are concerned with the fun-
damental concepts that play an important role in biological sequence analysis: the
maximum likelihood and the maximum a posteriori (Bayesian) estimation of the
model parameters. These concepts are crucial for understanding statistical infer-
ence from experimental data and are impossible to introduce without notions of
conditional, joint, and marginal probabilities.
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2 Introduction

The frequently arising problem of model parameterization is inherently difficult
if only a small training set is available. One may still attempt to use methods suitable
for large training sets. But this move may result in overfitting and the generation
of biased parameter estimates. Fortunately, this bias can be eliminated to some
degree; the model can be generalized as the training set is augmented by artificially
introduced observations, pseudocounts.

Problems included in this chapter are intended to provide practice with utilizing
the notions of marginal and conditional probabilities, Bayes’ theorem, maximum
likelihood, and Bayesian parameter estimation. Necessary definitions of these
notions and concepts frequently used in BSA can be found in undergraduate text-
books on probability and statistics (for example, Meyer (1970), Larson (1982),
Hogg and Craig (1994), Casella and Berger (2001), and Hogg and Tanis (2005)).

1.1 Original problems

Problem 1.1 Consider an occasionally dishonest casino that uses two kinds of
dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50% of
the time. We pick up a die from a table at random. What are P(six|Dloaded) and
P(six|Dfair)? What are P(six, Dloaded) and P(six, Dfair)? What is the probability
of rolling a six from the die we picked up?

Solution All possible outcomes of a fair die roll are equally likely, i.e.
P(six|Dfair) = 1/6. On the other hand, the probability of rolling a six from the
loaded die, P(six|Dloaded), is equal to 1/2. To compute the probability of the com-
bined event (six, Dloaded), rolling a six and picking up a loaded die, we use the
definition of conditional probability:

P(six, Dloaded) = P(Dloaded)P(six|Dloaded). (1.1)

As the probability of picking up a loaded die is 1/100, Equality (1.1) yields

P(six, Dloaded) = 1

100
× 1

2
= 1

200
.

By a similar argument,

P(six, Dfair) = P(six|Dfair)P(Dfair) = 1

6
× 99

100
= 33

200
.

The probability of rolling a six from the die picked up at random is computed as the
total probability of event “six” occurring in combination either with event Dloaded

or with event Dfair:

P(six) = P(six, Dloaded) + P(six, Dfair) = 34

200
= 17

100
.
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1.1 Original problems 3

Problem 1.2 How many sixes in a row would we need to see in Problem 1.1
before it is more likely that we had picked a loaded die?

Solution Bayes’ theorem is all we need to determine the conditional probability
of picking up a loaded die, P(Dloaded|n sixes), given that n sixes in a row have been
rolled:

P(Dloaded|n sixes) = P(n sixes|Dloaded)P(Dloaded)

P(n sixes)

= P(n sixes|Dloaded)P(Dloaded)

P(n sixes|Dloaded)P(Dloaded) + P(n sixes|Dfair)P(Dfair)
.

Rolls of both fair or loaded dice are independent, therefore

P(Dloaded|n sixes)= (1/100) × (1/2)n

(99/100) × (1/6)n+(1/100) × (1/2)n
= 1

11 × (1/3)n−2+1
.

This result indicates that P(Dloaded|n sixes) approaches one as n, the length of the
observed run of sixes, increases. The inequality

P(Dloaded|n sixes) > 1/2

tells us that it is more likely that a loaded die was picked up. This inequality holds if(
1

3

)n−2

<
1

11
, n ≥ 5.

Therefore, seeing five or more sixes in a row indicates that it is more likely that the
loaded die was picked up.

Problem 1.3 Use the definition of conditional probability to prove Bayes’
theorem,

P(X|Y) = P(X)P(Y |X)

P(Y)
.

Solution For any two events X and Y such that P(Y) > 0 the conditional probability
of X given Y is defined as

P(X|Y) = P(X ∩ Y)

P(Y)
.

Applying this definition once again to substitute P(X ∩ Y) by P(X)P(Y |X), we
arrive at the equation which is equivalent to Bayes’ theorem:

P(X|Y) = P(X)P(Y |X)

P(Y)
.
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4 Introduction

Problem 1.4 A rare genetic disease is discovered. Although only one in a
million people carry it, you consider getting screened. You are told that the
genetic test is extremely good; it is 100% sensitive (it is always correct if you
have the disease) and 99.99% specific (it gives a false positive result only 0.01%
of the time). Using Bayes’ theorem, explain why you might decide not to take
the test.

Solution Before taking the test, the probability P(D) that you have the genetic
disease is 10−6 and the probability P(H) that you do not is 1−10−6. By how much
will the test change this uncertainty? Let us consider two possible outcomes.

If the test is positive, then the Bayesian posterior probabilities of having and not
having the disease are as follows:

P(D|positive) = P(positive|D)P(D)

P(positive)

= P(positive|D)P(D)

P(positive|D)P(D) + P(positive|H)P(H)

= 10−6

10−6 + 0.999999 × 10−4
= 0.0099,

P(H|positive) = P(positive|H)P(H)

P(positive)
= 0.9901.

If the test is negative, the Bayesian posterior probabilities become

P(D|negative) = P(negative|D)P(D)

P(negative)

= P(negative|D)P(D)

P(negative|D)P(D) + P(negative|H)P(H)

= 0

0 + 0.9999 × (1 − 10−6)
= 0,

P(H|negative) = P(negative|H)P(H)

P(negative)
= 1.

Thus, the changes of prior probabilities P(D), P(H) are very small:

|P(D) − P(D|positive)| = 0.0099, |P(D) − P(D|negative)| = 10−6,

|P(H) − P(H|positive)| = 0.0099, |P(H) − P(H|negative)| = 10−6.

We see that even if the test is positive the probability of having the disease changes
from 10−6 to 10−2. Thus, taking the test is not worthwhile for practical reasons.
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1.2 Additional problems 5

Problem 1.5 We have to examine a die which is expected to be loaded in some
way. We roll a die ten times and observe outcomes of 1, 3, 4, 2, 4, 6, 2, 1, 2, and
2. What is our maximum likelihood estimate for p2, the probability of rolling a
two? What is the Bayesian estimate if we add one pseudocount per category?
What if we add five pseudocounts per category?

Solution The maximum likelihood estimate for p2 is the (relative) frequency of
outcome “two,” thus p̂2 = 4/10 = 2/5. If one pseudocount per category is added,
the Bayesian estimate is p̂2 = 5/16. If we add five pseudocounts per category, then
p̂2 = 9/40. In the last case the Bayesian estimate p̂2 is closer to the probability of
the event “two” upon rolling a fair die, p2 = 1/6.

In any case, it is difficult to assess the validity of these alternative approaches
without additional information. The best way to improve the estimate is to collect
more data.

1.2 Additional problems

The following problems motivated by questions arising in biological sequence
analysis require the ability to apply formulas from combinatorics (Problems 1.6,
1.7, 1.9, and 1.10), elementary calculation of probabilities (Problems 1.8 and 1.16),
as well as a knowledge of properties of random variables (Problems 1.13 and 1.18).
Our goal here is to help the reader recognize the probabilistic nature of these (and
similar) problems about biological sequences.

Basic probability distributions are used in this section to describe the properties
of DNA sequences: a geometric distribution to describe the length distribution of
restriction fragments (Problem 1.12) and open reading frames (Problem 1.14); a
Poisson distribution as a good approximation for the number of occurrences of
oligonucleotides in DNA sequences (Problems 1.11, 1.17, 1.19, and 1.22). We
will use the notion of an “independence model” for a sequence of independent
identically distributed (i.i.d.) random variables with values from a finite alphabet
A (i.e. the alphabet of nucleotides or amino acids) such that the probability of
occurrence of symbol a at any sequence site is equal to qa,

∑
a∈A qa = 1. Thus, a

DNA or protein sequence fragment x1, . . . , xn generated by the independence model
has probability

∏n
i=1 qxi . Note that the same model is called the random sequence

model in the BSA text (Durbin et al., 1998). The independence model is used to
describe DNA sequences in Problems 1.12, 1.14, 1.16, and 1.17.

The introductory level of Chapter 1 still allows us to deal with the notion of
hypotheses testing. In Problem 1.20 such a test helps to identify CpG-islands in
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6 Introduction

a DNA sequence, while in Problem 1.21 we consider the test for discrimination
between DNA sequence regions with higher and lower G + C content.

Finally, issues of the probabilistic model comparison are considered in Problems
1.16, 1.18, and 1.19.

Problem 1.6 In the herpesvirus genome, nucleotides C, G, A, and T occur with
frequencies 35/100, 35/100, 15/100, and 15/100, respectively. Assuming the
independence model for the genome, what is the probability that a randomly
selected 15 nt long DNA fragment contains eight C’s or G’s and seven A’s or
T ’s?

Solution The probability of there being eight C’s or G’s and seven A’s or T ’s in a
15 nt fragment, given the frequencies 0.7 and 0.3 for each group C & G and A & T ,
respectively, is 0.78×0.37 = 0.0000126. This number must be multiplied by

(15
8

) =
15!/8!7!, the number of possible arrangements of representatives of these nucleotide
groups among fifteen nucleotide positions. Thus, we get the probability 0.08.

Problem 1.7 A DNA primer used in the polymerase chain reaction is a one-
strand DNA fragment designed to bind (to hybridize) to one of the strands of a
target DNA molecule. It was observed that primers can hybridize not only to their
perfect complements, but also to DNA fragments of the same length having one
or two mismatching nucleotides. If the genomic DNA is “sufficiently long,” how
many different DNA sequences may bind to an eight nucleotide long primer?
The notion of “sufficient length” implies that all possible oligonucleotides of
length 8 are present in the target genomic DNA.

Solution We consider a more general situation with the length of primer equal
to n. There are three possible cases of hybridization between the primer and the
DNA: with no mismatch, with one mismatch, and with two mismatches. The first
case obviously identifies only one DNA sequence exactly complementary to the
primer. The second case, one mismatch, with the freedom to choose one of three
mismatching types of nucleotides in one position of the complementary sequence,
gives 3n possible sequences. Finally, two positions carrying mismatching nucle-
otides can occur in n(n − 1)/2 ways. Each choice of these two positions generates
nine possibilities to choose two nucleotides different from the matching types. This
gives a total of 9n(n − 1)/2 possible sequences with two mismatches. Hence, for
n = 8, there are

1 + 3 × 8 + 9 × 8 × 7

2
= 277

different sequences able to hybridize to the given primer.
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1.2 Additional problems 7

Problem 1.8 A DNA sequencing reaction is performed with an error rate of
10%, thus a given nucleotide is wrongly identified with probability 0.1. To min-
imize the error rate, DNA is sequenced by n = 3 independent reactions, the
newly sequenced fragments are aligned, and the nucleotides are identified by
the following majority rule. The type of nucleotide at a particular position is
identified as α, α ∈ {T , C, A, G}, if more nucleotides of type α are aligned in
this position than all other types combined. If at an alignment position no nucle-
otide type appears more than n/2 times, the type of nucleotide is not identified
(type N).

What is the expected percentage of (a) correctly and (b) incorrectly identified
nucleotides? (c) What is the probability that at a particular site identification is
impossible? (d) How does the result of (a) change if n = 5; what about for n = 7?
Assume that there are only substitution type errors (no insertions or deletions)
with no bias to a particular nucleotide type.

Solution (a) In a given position, we consider the three sequencing reaction calls as
outcomes of the three Bernoulli trials with “success” taking place if the nucleotide
is identified correctly (with probability p = 0.9) and “failure” otherwise (with
probability q = 0.1). Then the probabilities of the following events are described
by the binomial distribution and can be determined immediately:

P3 = P(“success” is observed three times) = p3 = 0.93 = 0.729,

P2 = P(“success” is observed twice) =
(

3

2

)
p2q

= 3 × 0.92 × 0.1 = 0.243.

Under the majority rule, the expected percentage E of correctly identified
nucleotides is given by

Ec
n=3 = P(“success” is observed at least twice) × 100%

= (P3 + P2) × 100% = 97.2%.

(b) To determine the probability of identifying a nucleotide at a given site incor-
rectly, we have to be able to classify the “failure” outcomes; thus, we need to
generalize the binomial distribution to a multinomial one. Specifically, in each
independent trial (carried out at a given sequence site) we can have “success” (with
probability p = 0.9) and three other outcomes: “failure 1,” “failure 2,” and “fail-
ure 3” (with equal probabilities q1 = q2 = q3 = 1/30). To identify a nucleotide
incorrectly would mean to observe at least two “failure i’ outcomes, i = 1, 2, 3,
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8 Introduction

among n = 3 trials. Therefore,

P′
3 = (“failure i’ is observed three times) = q3

i = (1/30)3 = 0.000037,

P′
2 = P(“failure i’ is observed twice) = 2

(
3

2

)
q2

i qj +
(

3

2

)
q2

i p

= 6 × (1/30)3 + 3 × (1/30)2 × 0.9 = 0.00356.

Finally, for the expected percentage of wrongly identified nucleotides we have

Ew
n=3 =

⎛
⎝ ∑

i=1,2,3

(P′
3 + P′

2)

⎞
⎠ × 100%

= 3(P′
3 + P′

2) × 100% = 1.1%.

(c) At a particular site, the base calling results in three mutually exclusive events:
“correct identification,” “incorrect identification,” or “identification impossible.”
Then, the probability of the last outcome is given by

P(nucleotide cannot be identified) = 1 − (P3 + P2) − 3(P′
3 + P′

2) = 0.0172.

(d) To calculate the expected percentage Ec
n of correctly identified nucleotides

for n = 5 and n = 7, we apply the same arguments as in section (a), only instead
of three Bernoulli trials we consider five and seven, respectively. We find:

Ec
n=5 = P(at least three “successes” among five trials) × 100%

= p5 + 5 × 0.94 × 0.1 + 10 × 0.930.12 = 99.14%.

Similarly,

Ec
n=7 = P(at least four “successes” among seven trials) × 100% = 99.73%.

As expected, the increase in the number of independent reactions improves the
quality of sequencing.

Problem 1.9 Due to redundancy of genetic code, a sequence of amino acids
could be encoded by several DNA sequences. For a given ten amino acid long
protein fragment, what are the lower and upper bounds for the number of possible
DNA sequences that could carry code for this protein fragment?

Solution The lower bound of one would be reached if all ten amino acids are
methionine or tryptophan, the amino acids encoded by a single codon. In this case
the amino acid sequence uniquely defines the underlying nucleotide sequence. The
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1.2 Additional problems 9

Table 1.1. The maximum number Iα of
nucleotides C and G that appear in one of the
synonomous codons for given amino acid α

Iα Amino acid α

1 Asn, Ile, Lys, Met, Phe, Tyr
2 Asp, Cys, Gln, Glu, His, Leu, Ser, Thr, Trp, Val
3 Ala, Arg, Gly, Pro

upper bound would be reached if the amino acid sequence consists of leucine,
arginine, or serine, the amino acids encoded by six codons each. A ten amino acid
long sequence consisting of any arrangement of Leu, Ser, or Arg can be encoded
by as many as 610 = 60 466 176 different nucleotide sequences.

Problem 1.10 Life forms from planet XYZ were discovered to have a DNA and
protein basis with proteins consisting of twenty amino acids. By analysis of the
protein composition, it was determined that the average frequencies of all amino
acids excluding Met and Trp were equal to 1/19, while the frequencies of Met
and Trp were equal to 1/38. Given the high temperature on the XYZ surface,
it was speculated that the DNA has an extremely high G + C content. What
could be the highest average G + C content of protein-coding regions (given the
average amino acid composition as stated above) if the standard (the same as on
planet Earth) genetic code is used to encode XYZ proteins?

Solution To make the highest possible G + C content of protein-coding region
that would satisfy the restrictions on amino acid composition, synonymous codons
with highest G + C content should be used on all occasions. The distribution of
the high G + C content codons according to the standard genetic code is as shown
in Table 1.1 (where Iα designates the highest number of C and G nucleotides in a
codon encoding amino acid α).
Therefore, the average value of the G + C content of a protein-coding region is
given by

〈G + C〉 =
∑
α

Iα
3

fα

= 1

3

(
1

19
(5 × 1 + 9 × 2 + 4 × 3) + 1

38
(1 + 2)

)
= 0.64.

Here fα is the frequency of amino acid α.
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10 Introduction

Remark Similar considerations can provide estimates of upper and lower bounds
of G + C content for prokaryotic genomes (planet Earth), where protein-coding
regions typically occupy about 90% of total DNA length.

Problem 1.11 A restriction enzyme is cutting DNA at a palindromic site 6 nt
long. Determine the probability that a circular chromosome, a double-stranded
DNA molecule of length L = 84 000 nt, will be cut by the restriction enzyme
into exactly twenty fragments. It is assumed that the DNA sequence is described
by the independence model with equal probabilities of nucleotides T , C, A, and
G. Hint: use the Poisson distribution.

Solution The probability that a restriction site starts in any given position of the
DNA sequence is p = (1/4)6 = 0.0002441. If we do not take into account the
mutual dependence of occurrences of restriction sites in positions i and j, |i−j| ≤ 6,
the number X of the restriction sites in the DNA sequence can be considered as
the number of successes (with probability p) in a sequence of L Bernoulli trials;
therefore, X has a binomial distribution with parameters p and L. Since L is large
and p is small, we can use the Poisson distribution with parameter λ = pL = 20.5
as an approximation of the binomial distribution. Then

P(X = 20) = e−λ λ20

20! = 0.088.

Notably, the probability of cutting this DNA sequence into any other particular num-
ber of fragments will be lower than P(X = 20). Indeed, the ratio Rk of probabilities
of two consecutive values of X,

Rk = P(X = k + 1)

P(X = k)
= λ

k + 1
,

shows that P(X = k) increases as k grows from 0 to λ, and decreases as k grows
from λ to L, thus attaining its maximum value at point k = λ. In other words, if λ is
not an integer, the most probable value of the Poisson distributed random variable
is equal to [λ], where [λ] stands for the largest integer not greater than λ. Otherwise,
the most probable values are both λ − 1 and λ.

Problem 1.12 Determine the average length of the restriction fragments
produced by the six-cutter restriction enzyme SmaI with the restriction site
CCCGGG. Consider (a) a genome with a G + C content of 70% and (b) a
genome with a G + C content of 30%. It is assumed that the genomic sequence
can be represented by the independence model with probabilities of nucleotides
such that qG = qC , qA = qT . Note that enzyme SmaI cuts the double strand of
DNA in the middle of site CCCGGG.
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