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Introduction

Partial differential equations (PDEs) form the basis of very many math-
ematical models of physical, chemical and biological phenomena, and
more recently their use has spread into economics, financial forecast-
ing, image processing and other fields. To investigate the predictions
of PDE models of such phenomena it is often necessary to approximate
their solution numerically, commonly in combination with the analysis of
simple special cases; while in some of the recent instances the numerical
models play an almost independent role.

Let us consider the design of an aircraft wing as shown in Fig. 1.1,
though several other examples would have served our purpose equally
well – such as the prediction of the weather, the effectiveness of pollutant
dispersal, the design of a jet engine or an internal combustion engine,

(a) (b)

Fig. 1.1. (a) A typical (inviscid) computational mesh around
an aerofoil cross-section; (b) a corresponding mesh on a wing
surface.
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2 Introduction

the safety of a nuclear reactor, the exploration for and exploitation of
oil, and so on.

In steady flight, two important design factors for a wing are the lift
generated and the drag that is felt as a result of the flow of air past
the wing. In calculating these quantities for a proposed design we know
from boundary layer theory that, to a good approximation, there is
a thin boundary layer near the wing surface where viscous forces are
important and that outside this an inviscid flow can be assumed. Thus
near the wing, which we will assume is locally flat, we can model the
flow by

u
∂u

∂x
− ν

∂2u

∂y2 = (1/ρ)
∂p

∂x
, (1.1)

where u is the flow velocity in the direction of the tangential co-ordinate
x, y is the normal co-ordinate, ν is the viscosity, ρ is the density and
p the pressure; we have here neglected the normal velocity. This is a
typical parabolic equation for u with (1/ρ)∂p/∂x treated as a forcing
term.

Away from the wing, considered just as a two-dimensional cross-
section, we can suppose the flow velocity to be inviscid and of the form
(u∞ + u, v) where u and v are small compared with the flow speed at
infinity, u∞ in the x-direction. One can often assume that the flow is
irrotational so that we have

∂v

∂x
− ∂u

∂y
= 0; (1.2a)

then combining the conservation laws for mass and the x-component
of momentum, and retaining only first order quantities while assuming
homentropic flow, we can deduce the simple model

(1 − M2
∞)

∂u

∂x
+

∂v

∂y
= 0 (1.2b)

where M∞ is the Mach number at infinity, M∞ = u∞/a∞, and a∞ is
the sound speed.

Clearly when the flow is subsonic so that M∞ < 1, the pair of equa-
tions (1.2a, b) are equivalent to the Cauchy–Riemann equations and the
system is elliptic. On the other hand for supersonic flow where M∞ > 1,
the system is equivalent to the one-dimensional wave equation and the
system is hyperbolic. Alternatively, if we operate on (1.2b) by ∂/∂x

and eliminate v by operating on (1.2a) by ∂/∂y, we either obtain an
equivalent to Laplace’s equation or the second order wave equation.
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Introduction 3

Thus from this one situation we have extracted the three basic types
of partial differential equation: we could equally well have done so from
the other problem examples mentioned at the beginning. We know from
PDE theory that the analysis of these three types, what constitutes a
well-posed problem, what boundary conditions should be imposed and
the nature of possible solutions, all differ very markedly. This is also
true of their numerical solution and analysis.

In this book we shall concentrate on model problems of these three
types because their understanding is fundamental to that of many more
complicated systems. We shall consider methods, mainly finite differ-
ence methods and closely related finite volume methods, which can be
used for more practical, complicated problems, but can only be ana-
lysed as thoroughly as is necessary in simpler situations. In this way we
will be able to develop a rigorous analytical theory of such phenomena
as stability and convergence when finite difference meshes are refined.
Similarly, we can study in detail the speed of convergence of iterative
methods for solving the systems of algebraic equations generated by dif-
ference methods. And the results will be broadly applicable to practical
situations where precise analysis is not possible.

Although our emphasis will be on these separate equation types, we
must emphasise that in many practical situations they occur together,
in a system of equations. An example, which arises in very many appli-
cations, is the Euler–Poisson system: in two space dimensions and time
t, they involve the two components of velocity and the pressure already
introduced; then, using the more compact notation ∂t for ∂/∂t etc., they
take the form

∂tu + u∂xu + v∂yu + ∂xp = 0

∂tv + u∂xv + v∂yv + ∂yp = 0

∂2
xp + ∂2

yp = 0. (1.3)

Solving this system requires the combination of two very different tech-
niques: for the final elliptic equation for p one needs to use the techniques
described in Chapters 6 and 7 to solve a large system of simultaneous
algebraic equations; then its solution provides the driving force for the
first two hyperbolic equations, which can generally be solved by march-
ing forward in time using techniques described in Chapters 2 to 5. Such
a model typically arises when flow speeds are much lower than in aero-
dynamics, such as flow in a porous medium, like groundwater flow. The
two procedures need to be closely integrated to be effective and efficient.
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4 Introduction

(a) (b)

Fig. 1.2. A typical multi-aerofoil: (a) a general view; (b) a
detail of the mesh that might be needed for a Navier–Stokes
calculation. (Courtesy of DRA, Farnborough.)

Returning to our wing design example, however, it will be as well to
mention some of the practical complications that may arise. For a civil
aircraft most consideration can be given to its behaviour in steady flight
at its design speed; but, especially for a military aircraft, manoeuvrability
is important, which means that the flow will be unsteady and the equa-
tions time-dependent. Then, even for subsonic flow, the equations corre-
sponding to (1.2a, b) will be hyperbolic (in one time and two space vari-
ables), similar to but more complicated than the Euler–Poisson system
(1.3). Greater geometric complexity must also be taken into account:
the three-dimensional form of the wing must be taken into consideration
particularly for the flow near the tip and the junction with the aircraft
body; and at landing and take-off, the flaps are extended to give greater
lift at the slower speeds, so in cross-section it may appear as in Fig. 1.2.

In addition, rather than the smooth flow regimes which we have so
far implicitly assumed, one needs in practice to study such phenom-
ena as shocks, vortex sheets, turbulent wakes and their interactions.
Developments of the methods we shall study are used to model all
these situations but such topics are well beyond the scope of this book.
Present capabilities within the industry include the solution of approxi-
mations to the Reynolds-averaged Navier–Stokes equations for unsteady
viscous flow around a complete aircraft, such as that shown in Fig. 1.3.
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6 Introduction

Moreover, the ultimate objective is to integrate these flow prediction
capabilities into the complete design cycle – rather than calculating the
flow around a given aircraft shape, one would like to design the shape
to obtain a given flow.

Finally, to end this introductory chapter there are a few points of
notation to draw to the reader’s attention. We use the notation ≈ to
mean ‘approximately equal to’, usually in a numerical sense. On the
other hand, the notation ∼ has the precise meaning ‘is asymptotic to’ in
the sense that f(t) ∼ t2 as t → 0 means that t−2[f(t)− t2] → 0 as t → 0.
The notation f(t) = t2 + o(t2) has the same meaning; and the notation
f(t) = O(t2) means that t−2f(t) is bounded as t → 0. We have often
used the notation := to mean that the quantity on the left is defined by
that on the right. We shall usually use bold face to denote vectors.
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2

Parabolic equations in one space variable

2.1 Introduction

In this chapter we shall be concerned with the numerical solution of
parabolic equations in one space variable and the time variable t. We
begin with the simplest model problem, for heat conduction in a uni-
form medium. For this model problem an explicit difference method is
very straightforward in use, and the analysis of its error is easily accom-
plished by the use of a maximum principle, or by Fourier analysis. As
we shall show, however, the numerical solution becomes unstable unless
the time step is severely restricted, so we shall go on to consider other,
more elaborate, numerical methods which can avoid such a restriction.
The additional complication in the numerical calculation is more than
offset by the smaller number of time steps needed. We then extend the
methods to problems with more general boundary conditions, then to
more general linear parabolic equations. Finally we shall discuss the
more difficult problem of the solution of nonlinear equations.

2.2 A model problem

Many problems in science and engineering are modelled by special cases
of the linear parabolic equation for the unknown u(x, t)

∂u

∂t
=

∂

∂x

(
b(x, t)

∂u

∂x

)
+ c(x, t)u + d(x, t) (2.1)

where b is strictly positive. An initial condition will be needed; if this is
given at t = 0 it will take the form

u(x, 0) = u0(x) (2.2)
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8 Parabolic equations in one space variable

where u0(x) is a given function. The solution of the problem will be
required to satisfy (2.1) for t > 0 and x in an open region R which will
be typically either the whole real line, the half-line x > 0, or an interval
such as (0, 1). In the two latter cases we require the solution to be
defined on the closure of R and to satisfy certain boundary conditions;
we shall assume that these also are linear, and may involve u or its first
space derivative ∂u/∂x, or both. If x = 0 is a left-hand boundary, the
boundary condition will be of the form

α0(t)u + α1(t)
∂u

∂x
= α2(t) (2.3)

where

α0 ≥ 0, α1 ≤ 0 and α0 − α1 > 0. (2.4)

If x = 1 is a right-hand boundary we shall need a condition of the form

β0(t)u + β1(t)
∂u

∂x
= β2(t) (2.5)

where

β0 ≥ 0, β1 ≥ 0 and β0 + β1 > 0. (2.6)

The reason for the conditions on the coefficients α and β will become
apparent later. Note the change of sign between α1 and β1, reflecting
the fact that at the right-hand boundary ∂/∂x is an outward normal
derivative, while in (2.3) it was an inward derivative.

We shall begin by considering a simple model problem, the equation
for which models the flow of heat in a homogeneous unchanging medium,
of finite extent, with no heat source. We suppose that we are given
homogeneous Dirichlet boundary conditions, i.e., the solution is given to
be zero at each end of the range, for all values of t. After changing to
dimensionless variables this problem becomes: find u(x, t) defined for
x ∈ [0, 1] and t ≥ 0 such that

ut = uxx for t > 0, 0 < x < 1, (2.7)

u(0, t) = u(1, t) = 0 for t > 0, (2.8)

u(x, 0) = u0(x), for 0 ≤ x ≤ 1. (2.9)

Here we have introduced the common subscript notation to denote par-
tial derivatives.
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2.3 Series approximation 9

2.3 Series approximation

This differential equation has special solutions which can be found by the
method of separation of variables. The method is rather restricted in its
application, unlike the finite difference methods which will be our main
concern. However, it gives useful solutions for comparison purposes, and
leads to a natural analysis of the stability of finite difference methods
by the use of Fourier analysis.

We look for a solution of the special form u(x, t) = f(x)g(t); substi-
tuting into the differential equation we obtain

fg′ = f ′′g,
i.e.,

g′/g = f ′′/f. (2.10)

In this last equation the left-hand side is independent of x, and the
right-hand side is independent of t, so that both sides must be constant.
Writing this constant as −k2, we immediately solve two simple equations
for the functions f and g, leading to the solution

u(x, t) = e−k2t sin kx.

This shows the reason for the choice of −k2 for the constant; if we
had chosen a positive value here, the solution would have involved an
exponentially increasing function of t, whereas the solution of our model
problem is known to be bounded for all positive values of t. For all values
of the number k this is a solution of the differential equation; if we now
restrict k to take the values k = mπ, where m is a positive integer,
the solution vanishes at x = 1 as well as at x = 0. Hence any linear
combination of such solutions will satisfy the differential equation and
the two boundary conditions. This linear combination can be written

u(x, t) =
∞∑

m=1

ame−(mπ)2t sin mπx. (2.11)

We must now choose the coefficients am in this linear combination in
order to satisfy the given initial condition. Writing t = 0 we obtain

∞∑
m=1

am sin mπx = u0(x). (2.12)

This shows at once that the am are just the coefficients in the Fourier sine
series expansion of the given function u0(x), and are therefore given by

am = 2
∫ 1

0
u0(x) sin mπx dx. (2.13)
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10 Parabolic equations in one space variable

This final result may be regarded as an exact analytic solution of the
problem, but it is much more like a numerical approximation, for two
reasons. If we require the value of u(x, t) for specific values of x and t,
we must first determine the Fourier coefficients am; these can be found
exactly only for specially simple functions u0(x), and more generally
would require some form of numerical integration. And secondly we
can only sum a finite number of terms of the infinite series. For the
model problem, however, it is a very efficient method; for even quite
small values of t a few terms of the series will be quite sufficient, as the
series converges extremely rapidly. The real limitation of the method
in this form is that it does not easily generalise to even slightly more
complicated differential equations.

2.4 An explicit scheme for the model problem

To approximate the model equation (2.7) by finite differences we divide
the closed domain R̄×[0, tF ] by a set of lines parallel to the x- and t-axes
to form a grid or mesh. We shall assume, for simplicity only, that the
sets of lines are equally spaced, and from now on we shall assume that
R̄ is the interval [0, 1]. Note that in practice we have to work in a finite
time interval [0, tF ], but tF can be as large as we like.

We shall write ∆x and ∆t for the line spacings. The crossing points

(xj = j∆x, tn = n∆t), j = 0, 1, . . . , J, n = 0, 1, . . . , (2.14)

where

∆x = 1/J, (2.15)

are called the grid points or mesh points. We seek approximations of
the solution at these mesh points; these approximate values will be
denoted by

Un
j ≈ u(xj , tn). (2.16)

We shall approximate the derivatives in (2.7) by finite differences and
then solve the resulting difference equations in an evolutionary manner
starting from n = 0.

We shall often use notation like Un
j ; there should be no confusion with

other expressions which may look similar, such as λn which, of course,
denotes the nth power of λ. If there is likely to be any ambiguity we
shall sometimes write such a power in the form (λj)n.
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