Contents

Preface

Introduction: Letters illustrating clinical aspects of cancer • G. Barry Pierce
Colon cancer 2
Breast cancer 4
Acute leukemia 5
Lung cancer 6
Kidney cancer 7
Squamous cell cancer 8
Testicular cancer 9
Stomach cancer 10
Melanoma 11
Neuroblastoma 12
Summary 13

1 The pathology of cancer • G. Barry Pierce and Ivan Damjanov
1.1 Introduction 14
1.2 Benign versus malignant tumors 18
1.3 The diagnosis of benign and malignant tumors 24
1.4 Tumor grading and staging 25
1.5 Classification and nomenclature 27
1.6 Metastasis 28
1.7 Tumor markers 30
1.8 How cancer kills 30
1.8a Organ failure 30
1.8b Obstruction of the gastrointestinal tract, ducts, and hollow organs 31
1.8c Cachexia and infection 33
1.9 Spontaneous regression 34
1.10 Dormancy 35
1.11 Initiation 36
1.12 Latency 36
1.13 Progression to the autonomous state 37
1.14 Selection and cellular heterogeneity 38
1.15 A developmental concept of cancer 40
1.16 Apoptosis 48
1.17 Summary 49

2 Invasion and metastasis • ROBERT G. MCKINNELL 51
2.1 Introduction 51
2.2 The metastatic cascade 54
2.2a Disruption of the basement membrane and lytic activity in the extracellular matrix 56
2.2b Cell detachment 59
2.2c Cell migration and motility 61
2.2d Invasion 64
2.2e Penetration of the vascular system 65
2.2f Cancer cells in the circulation 67
2.2g Arrest of circulating cancer cells (stasis) 67
2.2h Extravasation, growth of metastases, and metastasis of metastases 68
2.3 A multiplicity of genes are associated with metastasis 69
2.4 Soil and seed hypothesis of Paget 70
Box: Stephen Paget: No “ploughman” was he! 71
2.5 Is metastasis limited to malignant cells? 72
2.6 How do we know a metastasis to the liver is not a primary neoplasm of the liver? 76
2.7 Why study metastasis? 77
2.8 Summary 78
3 Carcinogenesis • Alan O. Perantoni

3.1 Introduction 80
3.2 What is a carcinogen? 81
3.3 Carcinogenesis as a multistage process 82
3.4 Chemical carcinogenesis 84
 3.4a Organic compounds 92
 3.4b Inorganic compounds and asbestos 95
 3.4c Naturally occurring chemicals 98
3.5 Radiation 98
 3.5a Ultraviolet radiation 98
 3.5b Ionizing radiation 100
 3.5c Endogenous ionizing radiation 103
3.6 Radon 103
3.7 Viral carcinogenesis 105
3.8 Endogenous carcinogenesis 107
3.9 Metabolism of xenobiotics 109
 3.9a Host defenses 109
 3.9b Inducibility of xenobiotic metabolism 111
 3.9c Metabolic activation of chemical carcinogens 113
 3.9d Inactivation of chemical carcinogens 114
 3.9e Systemic distribution of chemical carcinogens 114
 3.9f Mechanisms for carcinogen suppression/chemoprevention 115
Box: Elizabeth Cavert Miller with husband James 116
3.10 Modulation of carcinogenesis 117
3.11 Tumor promotion 120
3.12 Tumor progression 122
3.13 Alternative pathways for carcinogenesis? 123
3.14 Federal regulations 123
3.15 Summary 125

4 Genetics and heredity • Robert G. McKinnell

4.1 Introduction 126
4.2 Chromosomes and cancer 127
 4.2a Aneuploidy 127
4.2b Euploidy does not preclude genetic change 129
4.2c Cancers with chromosomal aberrations 131
4.3 Chromosome damage, mutation, and vulnerability to cancer 135
4.4 Hereditary cancers 136
4.4a Retinoblastoma 136
4.4b Wilms tumor 137
4.4c Hereditary conditions that increase cancer risk 138
4.5 Familial cancer syndromes 139
4.5a Colon cancer 139
4.5b Breast cancer 141
4.5c Prostate cancer 142
4.5d Microarray technology as a way of examining many genes simultaneously 143
4.6 Summary 144

5 Cancer-associated genes • ALAN O. PERANTONI 145

5.1 Introduction 145
5.2 What is an oncogene? 145
5.3 Proto-oncogenes function in signal transduction, cell cycle regulation, differentiation, or programmed cell death (apoptosis) 148
5.4 Genetic approaches to delineate proto-oncogene function 150
5.4a DNA microarray analysis – global gene expression or genomic profiling 154
5.5 Classification of proto-oncogenes/oncogenes 155
5.5a Growth factors and their receptors 156
5.5b Nonreceptor tyrosine kinases 161
5.5c GTP-binding proteins: ras activation 162
5.5d Cytoplasmic serine/threonine kinases 163
5.5e Suppression of ras signaling 165
5.5f Nuclear signaling 165
5.5g Transcriptional activation 166
5.6 Regulation of DNA synthesis and the cell cycle 168
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7 Other mechanisms for the regulation of signaling</td>
<td>171</td>
</tr>
<tr>
<td>5.8 Mechanisms of oncogene activation</td>
<td>173</td>
</tr>
<tr>
<td>5.9 Carcinogens and oncogene activation</td>
<td>178</td>
</tr>
<tr>
<td>5.10 Oncogene cooperation</td>
<td>179</td>
</tr>
<tr>
<td>5.11 Normal cells suppress tumor growth</td>
<td>180</td>
</tr>
<tr>
<td>5.12 Angiogenesis and tumor development</td>
<td>180</td>
</tr>
<tr>
<td>5.13 Tumor Suppressor genes</td>
<td>181</td>
</tr>
<tr>
<td>5.13a The (Rb) locus</td>
<td>183</td>
</tr>
<tr>
<td>5.13b (p53) suppressor gene</td>
<td>184</td>
</tr>
<tr>
<td>5.13c Other tumor suppressors</td>
<td>187</td>
</tr>
<tr>
<td>5.13d Apoptosis and its role in growth regulation</td>
<td>188</td>
</tr>
<tr>
<td>5.13e Senescence</td>
<td>191</td>
</tr>
<tr>
<td>5.14 Where pathology meets molecular biology</td>
<td>192</td>
</tr>
<tr>
<td>5.15 Summary</td>
<td>193</td>
</tr>
<tr>
<td>6 Cancer in nonhuman organisms • Robert G. McKinnell</td>
<td>195</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>196</td>
</tr>
<tr>
<td>6.2 Plant growths</td>
<td>197</td>
</tr>
<tr>
<td>6.3 Invertebrate animals</td>
<td>200</td>
</tr>
<tr>
<td>Box: Yoshio Masui</td>
<td>202</td>
</tr>
<tr>
<td>6.4 Cancer in selected ectothermic (cold-blooded) vertebrates</td>
<td>203</td>
</tr>
<tr>
<td>6.4a Fish</td>
<td>204</td>
</tr>
<tr>
<td>6.4b Amphibia</td>
<td>207</td>
</tr>
<tr>
<td>6.4c Reptiles</td>
<td>212</td>
</tr>
<tr>
<td>Box: John C. Harshbarger</td>
<td>214</td>
</tr>
<tr>
<td>6.5 Cancer in selected warm-blooded vertebrates</td>
<td>215</td>
</tr>
<tr>
<td>6.5a Birds</td>
<td>215</td>
</tr>
<tr>
<td>6.5b Mammals</td>
<td>216</td>
</tr>
<tr>
<td>6.6 Summary – But try anyway!</td>
<td>220</td>
</tr>
<tr>
<td>7 Epidemiology • Robert G. McKinnell</td>
<td>221</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>221</td>
</tr>
</tbody>
</table>
7.2 Cancer in fossil humans: A brief digression concerning paleopathology

7.3 Epidemiology of selected human cancers
 7.3a Lung cancer
 Box: Alton Ochsner
 Box: Richard Doll
 7.3b Breast cancer
 7.3c Skin cancer
 7.3d Prostate cancer
 7.3e Colorectal cancer
 7.3f Cervical cancer: “The Beginning of the End”
 7.3g Hodgkin lymphoma

7.4 Occupational cancers

7.5 AIDS-related Kaposi’s sarcoma

7.6 What is next?

8 Lifestyle: Is there anything more important? • ROBERT G. MCKINNELL

8.1 Introduction

8.2 Lung cancer is a preventable disease

8.3 Ultraviolet radiation and that “healthy tan”
 8.3a How to minimize risk for skin cancer
 8.3b The peculiar status of protection by sunscreens

8.4 Diet, nutrition, and cancer
 8.4a Dietary fiber and colorectal cancer
 Box: Denis Burkitt
 8.4b Correlations between food substances and cancer prevalence: Significance
 8.4c Dietary fat and obesity
 8.4d Vitamins and cancer
 8.4e Selenium and calcium
 8.4f Non-nutrient organic compounds in food that may protect against cancer
 8.4g American Cancer Society (2002) Guidelines on Diet, Nutrition, and Cancer Prevention

8.5 Exercise as it relates to cancer
10.3b Reactive chemicals as cytotoxic anticancer drugs 315
10.3c Selective cytotoxicity as a screening tool to discover more cytotoxic drugs 315
10.3d Indirect tumor cytotoxicity by nutrient deprivation ("antimetabolite therapy") 317
Box: George H. Hitchings, Jr., and Gertrude B. Elion 318
Box: Charles Brenton Huggins 329
10.3e Trophic factor therapy to treat hematologic side effects of chemotherapy 341
10.3f Therapy that exploits differentiation processes in malignancies 342
10.4 Pharmacological issues arising from tumor biology 349
10.5 Unknowns, the future, and the emergence of molecular oncology 353

Appendix: Description of selected tumors • G. BARRY PIERCE AND IVAN DAMJANOV 355
A.1 Adenocarcinoma of the breast 355
A.2 Adenocarcinoma of the prostate 358
A.3 Adenocarcinoma of the colon 359
A.4 Squamous cell carcinoma 361
A.5 Teratocarcinomas 365
A.6 Liver cell carcinoma 370
A.7 Lung cancer 370
A.8 Malignant melanoma 372
A.9 Retinoblastoma 374
A.10 Neuroblastoma 374
A.11 Wilms tumor (nephroblastoma) 375
A.12 Sarcomas 377
A.13 Lymphoma and leukemia 378

Glossary 381
References 401
Index 469