
Analytic Methods for Diophantine Equations
and Diophantine Inequalities

Harold Davenport was one of the truly great mathematicians of the twen-
tieth century. Based on lectures he gave at the University of Michigan in
the early 1960s, this book is concerned with the use of analytic methods
in the study of integer solutions to Diophantine equations and Diophan-
tine inequalities. It provides an excellent introduction to a timeless area
of number theory that is still as widely researched today as it was when
the book originally appeared. The three main themes of the book are
Waring’s problem and the representation of integers by diagonal forms,
the solubility in integers of systems of forms in many variables, and the
solubility in integers of diagonal inequalities.

For the second edition of the book a comprehensive foreword has been
added in which three leading experts describe the modern context and
recent developments. A complete list of references has also been added.
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Foreword

Waring’s problem: Chapters 1–10

When Davenport produced these lecture notes there had been very little
progress on Waring’s problem since important work by Davenport and
Vinogradov something like a quarter of a century earlier, and the main
interest was to report on the more recent work on forms as described
in the later chapters. Indeed there was a generally held view, with
regard to Waring’s problem at least, that they had extracted everything
that could be obtained reasonably by the Hardy–Littlewood method
and that the method was largely played out. Moreover, the material on
Waring’s problem was not intended, in general, to be state of the art, but
rather simply an introduction to the Hardy–Littlewood method, with a
minimum of fuss by a masterly expositor, which could then be developed
as necessary for use in the study of the representation of zero by general
integral forms, especially cubic forms, in the later chapters. There is
no account of Davenport’s own fundamental work on Waring’s problem,
namely G(4) = 16 (Davenport [18]), G(5) ≤ 23, G(6) ≤ 36 (Davenport
[19]), nor of Vinogradov’s [94] G(k) ≤ 2k log k + o(k log k) for large k

or Davenport’s proof [17] that almost all natural numbers are the sum
of four positive cubes. Nor, on a more technical level, was any attempt
made to obtain more refined versions of Lemmas 4.2 and 9.2, estimates
for the generating function T (α) on the major arcs, such as those due to
Davenport and Heilbronn [25] or Hua [50], although such refinements
can be very helpful in applications.

In the last twenty years there has been a good deal of progress on War-
ing’s problem. Methods of great flexibility, inspired by some of the ideas
stemming from the researches of Hardy and Littlewood, Davenport, and
Vinogradov have been developed which have permitted the retention of

vii
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viii Foreword

many of the wrinkles introduced in the earlier methods. The beginnings
of a glimmer of some of these seminal ideas can be seen in Lemmas 9.4
and 9.5.

The asymptotic formula for the number of representations of a large
natural number n as the sum of at most s kth powers established in
Theorem 4.1 when s ≥ 2k + 1 was state of the art for 3 ≤ k ≤ 10,
but for larger k methods due to Vinogradov were superior (see Theorem
5.4 of Vaughan [86]). The current state of play is that the asymptotic
formula is known to hold when s ≥ 2k (k = 3, 4, 5) (Vaughan [82, 84]),
s ≥ 7.2k−3 (k = 6, 7, 8) (Boklan [8], following Heath-Brown [43]), and
s ≥ s1(k) where s1(k) = k2

(
log k + log log k + O(1)

)
(k ≥ 9) (Ford

[32]). The discussion in the Note in Chapter 3 in the case k = 3 is still
relevant today. Although the asymptotic formula for sums of eight cubes
is now established the classical convexity bound was not improved in the
exponent when 2 < m < 4. The core of the argument of Vaughan [82]
is extremely delicate and leads only to∫

m

|T (α)|8dα � P 5(log P )−γ

for a positive constant γ and a suitable set of minor arcs m. However
Hooley [47] has shown under the (unproven) Riemann Hypothesis for a
certain Hasse–Weil L-function that∫

m

|T (α)|6dα � P 3+ε

and this in turn implies the asymptotic formula for sums of seven cubes.
Unfortunately it is not even known whether the L-function has an ana-
lytic continuation into the critical strip.

For G(k) the best results that we currently have are G(3) ≤ 7 (Linnik
[57, 59]), G(4) = 16 Davenport [18], G(5) ≤ 17, G(7) ≤ 33, (Vaughan
and Wooley [89]), G(6) ≤ 21 (Vaughan and Wooley [88]), G(8) ≤
42 (Vaughan and Wooley [87]), G(9) ≤ 50, G(10) ≤ 59, G(11) ≤ 67,
G(12) ≤ 76, G(13) ≤ 84, G(14) ≤ 92, G(15) ≤ 100, G(16) ≤ 109,
G(17) ≤ 117, G(18) ≤ 125, G(19) ≤ 134, G(20) ≤ 142 (Vaughan and
Wooley [90]), and G(k) ≤ s2(k) where s2(k) = k

(
log k+log log k+O(1)

)
(Wooley [98]) in general. Let G#(4) denote the smallest positive s such
that whenever 1 ≤ r ≤ s every sufficiently large n in the residue class
r modulo 16 is the sum of at most s fourth powers. Then, in fact,
Davenport showed that G#(4) ≤ 14 and we now can prove (Vaughan
[85]) that G#(4) ≤ 12. Linnik’s work on Waring’s problem for cubes
does not use the Hardy–Littlewood method, but instead is based on the
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Foreword ix

theory of ternary quadratic forms. Watson [95] gave a similar but simpler
proof. However these proofs give relatively poor information about the
number of representations as a sum of seven cubes. As part of the
recent progress we now have proofs via the Hardy–Littlewood method
(e.g. Vaughan [85]) which give lower bounds of the expected correct
order of magnitude for the number of representations. Davenport gives
no indication of what he might have believed the correct value of G(k)
to be. The simplest guess is that

G(k) = max{k + 1,Γ(k)}
where Γ(k) is as defined in the paragraph just prior to Theorem 5.1.
This would imply that for k ≥ 3, G(k) = 4k when k = 2l and k + 1 ≤
G(k) ≤ 3

2k when k �= 2l.
With regard to Lemma 9.2 and the Note after the proof, we now

know that under the less stringent hypothesis (q, a) = 1, q|β| ≤ 1
2kP 1−k,

α = β + a/q we have the stronger estimate

T (α) = q−1Sa,qI(β) + O
(
q

1
2+ε

)
.

Moreover with only the hypothesis (q, a) = 1 we have

T (α) = q−1Sa,qI(β) + O
(
q

1
2+ε(1 + P k|β|) 1

2
)
.

See Theorem 4.1 of Vaughan [86]. The latter result enables a treatment
to be given for cubes in which all the arcs are major arcs.

For a modern introduction to the Hardy–Littlewood method and some
of the more recent developments as applied to Waring’s problem see
Vaughan [86], and for a comprehensive survey of Waring’s problem see
Vaughan and Wooley [91].

Chapter 7 is concerned with the solubility, given a sequence {cj} of
natural numbers, of the equation

c1x
k
1 + · · · + csx

k
s = N (1)

for large natural numbers N , and is really a warm-up for Chapters 8
and 10. For an infinite set of N there may not be solutions, however
large one takes s to be, but the obstruction is purely a local one. Any
of the various forms of the Hardy–Littlewood method which have been
developed for treating Waring’s problem are readily adjusted to this
slightly more general situation and, with the corresponding condition on
s, lead to an approximate formula for the number of solutions counted.
This will lead to a positive lower bound for the number of solutions
for any large N for which the singular series is bounded away from 0.
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x Foreword

Davenport gives a brief outline of the minor changes in the argument
which have to be made in adapting the method, and the remainder of the
chapter is devoted to showing that the above condition on the singular
series is essentially equivalent to the expected local solubility condition.

In Chapters 8 and 10, Davenport adapts the method to treat

c1x
k
1 + · · · + csx

k
s = 0 (2)

where now the cj can be integers, and not all the same sign when k is
even. Of course this has a solution, and so the main point of interest
is to establish the existence of integral solutions in which not all the xj

are 0. This can be considered to be the first special case of what was
the main concern of these notes, namely to investigate the non-trivial
representation of 0 by general forms and systems of forms. In Chapter 8
the simplest version of the Hardy–Littlewood method developed in the
previous chapters is suitably adapted. This requires quite a large value
of s to ensure a solution. In Chapter 10 this requirement is relaxed
somewhat by adapting the variant of Vinogradov’s argument used to
treat Waring’s problem in Chapter 9. Although the argument of Chapter
10 is relatively simple it is flawed from a philosophical point of view in
that as well as the local solubility of (2) there needs to be a discussion
of the local solubility of (1) with N non-zero, which, of course, really
should not be necessary. This could have been avoided, albeit with
some complications of detail. The question of the size of s to ensure a
non-trivial solution to (2) had some independent interest as Davenport
and Lewis [27] had shown that k2 + 1 variables suffice for the singular
series to be bounded away from 0, and when k + 1 is prime there are
equations in k2 variables with no non-trivial solution. Moreover they
had also shown, via the Hardy–Littlewood method, that (2) is soluble
when s ≥ k2 + 1 and either k ≤ 6 or k ≥ 18. Later in Vaughan [81]
(11 ≤ k ≤ 17), [83] (7 ≤ k ≤ 9) and [85] (k = 10) this gap was removed.
The methods of Vaughan and Wooley mentioned in connection with
Waring’s problem when adapted show that far fewer variables suffice for
a non-trivial solution to (2) provided that the corresponding singular
series is bounded away from 0, and this is essentially equivalent to a
local solubility condition.

In the later chapters the Hardy–Littlewood method is adapted in vari-
ous, sometimes quite sophisticated, ways. However, the only place where
any of the main results of the first 10 chapters is applied directly is the
use of Theorem 8.1 (or Theorem 10.1) in the proof of Birch’s theorem in
Chapter 11. Later Birch [7] gave a completely elementary proof, based
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Foreword xi

partly on methods of Linnik [58], of a result similar to Theorem 8.1
which can be used in its place.

R. C. Vaughan
Pennsylvania State University

Forms in many variables: Chapters 11–19

Let F (x1, . . . , xn) be a form of degree d with integer coefficients. When
d ≥ 3, the question of whether the equation F (x1, . . . , xn) = 0 has
a non-trivial integer solution is extremely natural, extremely general,
and extremely hard. However for quadratic forms a complete answer
is given by the Hasse–Minkowski Theorem, which states that there is a
non-trivial solution if and only if there is such a solution in R and in
each p-adic field Qp. Such a result is known to be false for higher degree
forms, as Selmer’s example

3x3
1 + 4x3

2 + 5x3
3 = 0

shows. None the less the hope remains that if the number of variables
is not too small we should still have a ‘local-to-global’ principle, of the
type given by the Hasse–Minkowski Theorem.

It transpires that the p-adic condition holds automatically if the num-
ber of variables n is sufficiently large in terms of the degree. This
was shown by Brauer [9], whose argument constitutes the first general
method for such problems. The line of attack uses multiply nested in-
ductions, and in consequence the necessary number of variables is very
large. It was conjectured by Artin that d2 + 1 variables always suffice,
there being easy examples of forms in d2 variables with only trivial p-adic
solutions. However many counter-examples have subsequently been dis-
covered. The first of these, due to Terjanian [80], involves a quartic form
in 18 variables, with no non-trivial 2-adic solution. There are no known
counter-examples involving forms of prime degree, and in this case it
remains an open question whether or not Artin’s conjecture holds.

There are various alternatives to Brauer’s induction approach for the
p-adic problem. Davenport presents one of these for the case d = 3
in Chapter 18, establishing the best possible result, namely that p-adic
solutions always exist when n ≥ 10. For d ≥ 4 such approaches work
well only when p is large enough. Thus Leep and Yeomans [55] have
shown that p ≥ 47 suffices for d = 5. In the general case Ax and Kochen
[1] showed that d2 + 1 variables always suffice for the p-adic problem,
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xii Foreword

when p is sufficiently large compared with d. The Ax–Kochen proof is
remarkable for its use of methods from mathematical logic. For small
primes other lines of argument seem to be needed, and Wooley [100]
has re-visited the Brauer induction approach to establish that d2d

+ 1
variables suffice for every field Qp. It remains a significant open problem
to get bounds of a reasonable size, below 1000 say, for the cases d = 4
and d = 5.

The problem for forms over Q, rather than Qp, is distinctly different.
For forms of even degree there is no value of n which will ensure the
existence of a non-trivial integer solution, as the example

xd
1 + · · · + xd

n = 0

shows. Thus the original Brauer induction argument cannot be applied
to Q, since it involves an induction over the degree. However Birch [5]
was able to adapt the induction approach so as to use forms of odd
degree only, and hence to show that for any odd integer d ≥ 1 there is a
corresponding n(d) such that F (x1, . . . , xn) = 0 always has a non-trivial
solution for n ≥ n(d). This work is described by Davenport in Chapter
11. A rather slicker account is now available in the book by Vaughan [86,
Chapter 9]. Although the values of n(d) produced by Birch’s work were
too large to write down, more reasonable estimates have been provided
by Wooley [99], by a careful adaptation of Birch’s approach.

Davenport’s own major contribution to the area was his attack on
cubic forms, via the circle method. The natural application of Weyl’s
method, as described in Chapter 13, leads to a system of Diophantine
inequalities involving bilinear forms. The key result in this context is
Lemma 13.2. By using techniques from the geometry of numbers, Dav-
enport was able to convert these inequalities into equations. In his first
two papers on the subject [20, 21] these equations were used to deduce
that F must represent a form of the type a1x

3
1 +F ′(x2, . . . , xm) for some

m < n. This process is somewhat wasteful, since n − m variables are
effectively discarded. By repeated applications of the above principle
Davenport was able to reduce consideration to diagonal forms. Daven-
port’s third paper [22] treats the bilinear equations in a more geometrical
way, which is presented in Chapter 14. This approach is much more ef-
ficient, since no variables are wasted. A straightforward application of
this third method shows that F = 0 has a non-trivial solution for any cu-
bic form in 17 or more variables, and this is the result given as Theorem
18.1. However in [22] a slight refinement is used to show that 16 vari-
ables suffice. It is perhaps worth emphasizing the slightly unusual logical
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Foreword xiii

structure of the proof. The main goal is to prove an asymptotic formula
for the number of solutions in a box of side P . Davenport achieves this,
providing that the number of solutions to the aforementioned bilinear
equations does not grow too rapidly. The arguments used to handle this
latter issue lead to two alternatives: either the number of solutions to
the bilinear equations is indeed suitably bounded, or the original cubic
form has a non-trivial integer zero for geometric reasons. In either case
the cubic form has a non-trivial integer zero. One consequence of all this
is that one does not obtain an asymptotic formula in every case. The
form

x3
1 + x2(x2

3 + · · · + x2
n)

vanishes whenever x1 = x2 = 0, so that there are � Pn−2 solutions in a
box of side P . This example shows that one cannot in general expect an
asymptotic formula of the type mentioned in connection with Theorem
17.1.

The 16 variable result is arguably one of Davenport’s finest achieve-
ments, and it remains an important challenge to show that 15 variables,
say, are in fact enough. Davenport’s approach has been vastly gener-
alized by Schmidt [77] so as to apply to general systems of forms of
arbitrary degree. For a single form F (x1, . . . , xn) the result may be ex-
pressed in terms of the invariant h(F ) defined as the smallest integer h

for which one can write

F (x) = G1(x)H1(x) + · · · + Gh(x)Hh(x)

with non-constant forms Gi,Hi having rational coefficients. An inspec-
tion of Davenport’s argument for cubic forms in 16 variables then estab-
lishes the standard Hardy–Littlewood asymptotic formula for any cubic
form with h(F ) ≥ 16. When h(F ) ≤ 15 and n ≥ 16 the form F still has
a non-trivial integer zero, since one can take the forms Hi(x) to be linear
and use a common zero of H1, . . . , Hh. In his generalization Schmidt was
able to obtain an explicit function n(d) such that the Hardy–Littlewood
formula holds for any form of degree d having h(F ) ≥ n(d). In order
to deal with forms for which h(F ) < n(d) one is led to an induction
argument involving systems of forms. Thus if one starts with a single
form of degree d = 5 one wants to know about zeros of systems of cubic
forms. In this connection Schmidt proved in a separate investigation [76]
that a system of r cubic forms with integer coefficients has a non-trivial
integer zero if there are at least (10r)5 variables.

Davenport’s result was generalized in another direction by Pleasants
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xiv Foreword

[67], who showed that the result remains true if the coefficients of the
form F , and the solutions (x1, . . . , xn), are allowed to lie in an algebraic
number field. In this wider setting 16 variables still suffice.

If one assumes the form F to be non-singular, which is the generic
case, one can show (Heath-Brown [42]) that 10 variables suffice. Here
the number 10 is best possible, since there exist forms in 9 variables
with no non-trivial p-adic zeros. However Hooley [45] has sharpened the
above result to establish the local-to-global principle for non-singular
cubic forms in n ≥ 9 variables. These works use the Hardy–Littlewood
method, but instead of employing Weyl’s inequality they depend on the
Poisson summation formula and estimates for ‘complete’ exponential
sums. Complete exponential sums involving a non-singular form can
be estimated very efficiently via Deligne’s Riemann Hypothesis for va-
rieties over finite fields, but the methods become less effective as the
dimension of the singular locus grows. Deligne’s bounds handle sums to
prime, or square-free, moduli, but sums to prime power moduli remain
a considerable problem. The treatment of these in [42] uses exactly the
same bilinear forms as were encountered by Davenport [22], but since F

is now non-singular the techniques of Birch [6] can be used to advantage.
Heath-Brown [42] establishes an asymptotic formula for the number of
solutions in a suitable region. However the argument in Hooley [45] has
a structure somewhat analogous to Davenport’s, in that one only gets
an asymptotic formula under a certain geometric condition. When the
condition fails there are integer points for other reasons. (This defect
was later circumvented by Hooley [46].) In its simplest guise the above
methods would handle non-singular cubic forms in 13 or more variables.
However this may be reduced to 10 through the use of Kloosterman’s
refinement of the circle method. In order to handle forms in nine vari-
ables Hooley adopts a distinctly more subtle analysis, designed to save
just a power of log P , when considering points in a box of side P .

The work of Birch [6], summarized in Chapter 19, is most easily de-
scribed by seeing how it applies to a single form F . When F is non-
singular Birch is able to establish an asymptotic formula as soon as
n > (d − 1)2d, providing that the singular series and integral are pos-
itive. For d = 3 this is weaker than the result of Hooley [45], but the
method works for arbitrary values of d. In fact subsequent investiga-
tions have failed to improve on Birch’s result for any value of d > 3.
Birch’s argument is based on Weyl’s inequality, and leads to a system
of multilinear equations analogous to the bilinear ones in Davenport’s
work. These are handled by a different technique from that used by
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Foreword xv

Davenport, which is simpler and more obviously geometric, but which
requires information about the singularities of F .

D. R. Heath-Brown
Oxford University

Diophantine inequalities: Chapter 20

In the final chapter, Davenport provides an exposition of his ground-
breaking 1946 joint work with Heilbronn [26]. They demonstrated how
to adapt the Hardy–Littlewood method to yield results on Diophantine
inequalities. Since their publication, numerous results have been proved
with their technique, now commonly referred to as the Davenport–
Heilbronn method.

Suppose that s is an integer with s ≥ 5 and that λ1, . . . , λs are real
numbers, not all of the same sign, and not all in rational ratio. The
chapter consists of a proof that given any positive real number C, there
exists a non-trivial integer solution x = (x1, . . . , xs) of the Diophantine
inequality ∣∣λ1x

2
1 + · · · + λsx

2
s

∣∣ < C. (3)

As Davenport notes, the result has a straightforward extension to the
case in which the squares are replaced by kth powers and the number
of variables is at least 2k + 1. If k is odd, the sign condition is of course
unnecessary.

The proof is a clever adaptation of the Hardy–Littlewood method.
One estimates, for some large positive P , the number of solutions of
(3) where the integers xi satisfy |xi| ≤ P . Rather than integrating
over a unit interval as in the Hardy–Littlewood method, one integrates
over the real line against a suitable decaying kernel. Instead of multiple
major arcs, here the major contribution comes from an interval centred
around zero, while the most difficult region to bound consists of a subset
of numbers of intermediate size. The contribution to this latter region
is treated using the hypothesis that one of the ratios is irrational.

In the lecture notes, Davenport conjectures that (3) is non-trivially
soluble even for s ≥ 3, and in a separate comment notes that a natural
question is whether the result can be generalized to the case of indefinite
quadratic forms that are not necessarily diagonal and discusses some
work by Birch, Davenport and Ridout (see [29]). In fact, Margulis [60]
answered both questions positively, establishing the non-trivial solubility
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xvi Foreword

of

|Q(x1, . . . , xs)| < ε

for general indefinite quadratic forms Q(x), for any ε > 0, assuming
s ≥ 3 and that the coefficients of Q are not all in rational ratio. This
established the Oppenheim conjecture, as it implies that the values of
such a form at integral points are dense on the real line. We note that
Margulis’ proof uses techniques different from the Hardy–Littlewood
method.

Concerning forms of higher degree, Davenport mentions a result that
Pitman [66] gave on cubic forms, but remarks that proving similar results
for forms of higher odd degree seems to involve a ‘difficulty of principle’.
Schmidt, in a sequence of papers [73, 74, 75], provided the key result
needed to resolve this difficulty. His work builds on a combination of
the Davenport–Heilbronn method and a diagonalization procedure that
yields a proof that any system of general Diophantine inequalities of odd
degree and sufficiently many variables has a solution. More precisely,
he showed that given odd positive integers d1, . . . , dR, there exists a
constant C(d1, . . . , dR) depending only on d1, . . . , dR such that given
any real forms F1, . . . , FR in s variables, of respective degrees d1, . . . , dR,
where s ≥ C(d1, . . . , dR), and given ε > 0, there exists a non-trivial
integer vector x such that

|F1(x)| < ε, |F2(x)| < ε, . . . , |FR(x)| < ε.

There are numerous results which give lower bounds such as C(d1, . . . ,

dR) for particular types of forms, of which we mention only two. Brüdern
and Cook [11] produced such a result for systems of diagonal forms, un-
der certain conditions on the coefficients, and Nadesalingam and Pitman
[62] have given an explicit lower bound for systems of R diagonal cubic
forms.

One can also ask about inequalities involving general positive definite
forms with coefficients not all in rational ratio. We certainly do not
expect the values at integral points to be dense on the real line; thus
the relevant question, asked by Estermann, is whether the gaps between
these values tend to zero as the values tend to infinity, provided that the
number of variables is sufficiently large. For diagonal quadratic forms,
Davenport and Lewis [28] noted that this follows readily from a result
of Jarńık and Walfisz [51], if the number of variables s is at least 5.
In their paper, Davenport and Lewis gave a step toward answering the
gaps question for general positive definite quadratic forms Q(x) in s
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Foreword xvii

variables. Their methods essentially show, as Cook and Raghavan [15]
demonstrate, that for such forms, given s sufficiently large and given
ε > 0, then for any sufficiently large integral point x0, there are many
integral points x for which one has |Q(x)−Q(x0)| < ε, where the notion
of many can be defined precisely. In 1999, Bentkus and Götze [3] re-
solved the gaps question with powerful new techniques, which Götze [36]
consequently improved upon. These results together establish that for
s ≥ 5 and for any positive definite quadratic form Q in s variables, with
coefficients not all in rational ratio, the differences between successive
values of Q at integral points tend to zero as the values approach infin-
ity. Their methods have given rise to much new work on Diophantine
inequalities. Additionally, we note that some workers have considered
special types of inhomogeneous polynomials of higher degree, including
Brüdern [10], Bentkus and Götze [4] and Freeman [34].

Since Davenport and Heilbronn’s work, there have been many im-
provements of the lower bound on s required to guarantee non-trivial
solubility of diagonal Diophantine inequalities of degree k. For each pos-
itive integer k, let Gineq(k) denote the smallest positive integer s0 such
that for all s ≥ s0, and for all indefinite diagonal forms λ1x

k
1 + · · ·+λsx

k
s

with coefficients not all in rational ratio, and for all ε > 0, there is a
non-trivial integral solution of∣∣λ1x

k
1 + · · · + λsx

k
s

∣∣ < ε. (4)

As Davenport remarks, Davenport and Roth [30] provided an improve-
ment; they showed that there exists a constant C1 > 0 such that

Gineq(k) ≤ C1k log k.

In fact, the Davenport–Heilbronn method is sufficiently flexible so that
bounds for inequalities roughly parallel bounds given by work on
Waring’s problem. In particular, for large k, one has

Gineq(k) ≤ k(log k + log log k + 2 + o(1)). (5)

(See [101] for a statement of this result.) We note that in many cases,
for example the work of Baker, Brüdern and Wooley [2] for k = 3,
achieving the same bound as that for G(k) required extra effort. Recent
work of Wooley [101] shows that bounds for G(k) generally, with some
exceptions, apply as bounds for Gineq(k).

As Davenport notes, the proof in Chapter 20 only applies to a sequence
of large P , where the sequence depends on the rational approximation
properties of the ratios of the coefficients. In many applications of the
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xviii Foreword

Hardy–Littlewood method, one obtains an asymptotic formula for the
number of integral solutions for all positive P with not much more effort
than is required to establish solubility. For example, for indefinite di-
agonal forms with coefficients nonzero and not all in rational ratio, and
for positive P , and s sufficiently large in terms of k, we would expect
that the number N(P ) of integral solutions x of (4) with |xi| ≤ P for
1 ≤ i ≤ s satisfies

N(P ) = C(s, k, λ1, . . . , λs)εP s−k + o
(
P s−k

)
, (6)

where C(s, k, λ1, . . . , λs) is a positive constant depending only on s, k

and the coefficients λi. However, the proof of Davenport and Heilbronn
(with some minor technical modifications) allows one to give asymp-
totic formulae for diagonal Diophantine inequalities for essentially only
an infinite sequence of large P . In their paper, Bentkus and Götze [3]
establish the appropriate analogue of (6) for general positive definite
quadratic forms with coefficients not all in rational ratio, for all pos-
itive P ; although their proofs are not phrased in the language of the
Davenport–Heilbronn method, the ideas are similar. By adapting their
work, Freeman [33, 35] was able to prove the existence of an asymp-
totic formula such as (6) for indefinite diagonal forms of degree k for
all positive P . Wooley [101] has considerably simplified and improved
this work, using clever ideas to reduce the number of variables needed
to guarantee the existence of asymptotic formulae.

In particular, for the existence of asymptotic formulae for large k, one
can establish results similar to (5); if we define Gasymp(k) analogously
to Gineq(k), one has

Gasymp(k) ≤ k2 (log k + log log k + O(1)) .

Finally, we note that Eskin, Margulis and Mozes [31], using techniques
different from the Davenport–Heilbronn method, in fact earlier proved
the existence of asymptotic formulae of the expected kind for the case
of general indefinite quadratic forms in at least four variables with coef-
ficients not all in rational ratio, and signature not equal to (2, 2).

D. E. Freeman
Carleton University
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Editorial preface

Like many mathematicians I first came into contact with number theory
through Davenport’s book The Higher Arithmetic [23]. It was difficult
not to be struck by his command of the subject and wonderful expos-
itory style. This basic textbook is now into its seventh edition, whilst
at a more advanced level, a third edition of Davenport’s Multiplicative
Number Theory [24] has recently appeared. It is fair to say therefore
that Davenport still holds considerable appeal to mathematicians world-
wide. On discovering that Davenport had also produced a rather less
well-known set of lecture notes treating an area of substantial current
interest, I was immediately compelled to try and get it back into print.
In doing so, I have tried to preserve in its original format as much of the
material as possible, and have merely removed errors that I encountered
along the way.

As the title indicates, this book is concerned with the use of analytic
methods in the study of integer solutions to certain polynomial equa-
tions and inequalities. It is based on lectures that Davenport gave at the
University of Michigan in the early 1960s. This analytic method is usu-
ally referred to as the ‘Hardy–Littlewood circle method’, and its power is
readily demonstrated by the diverse range of number theoretic problems
that can be tackled by it. The first half of the book is taken up with a
discussion of the method in its most classical setting: Waring’s problem
and the representation of integers by diagonal forms. In Chapters 11–19,
Davenport builds upon these foundations by showing how the method
can sometimes be adapted to handle integer solutions of general systems
of homogeneous polynomial equations. Finally, in Chapter 20 Daven-
port presents an account of work carried out by himself and Heilbronn
in the setting of Diophantine inequalities. Even more so than with his

xix
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xx Editorial preface

other books, these lecture notes reflect Davenport’s extensive influence
in the subject area and his deep knowledge pertaining to it.

This edition of Davenport’s lecture notes has been considerably en-
riched by the provision of a foreword, the main purpose of which is to
place a modern perspective on the state of knowledge described in the
lecture notes. I am extremely grateful to Professor Freeman, Professor
Heath-Brown and Professor Vaughan for lending their authority to this
project. I also wish to thank Lillian Pierce and Luke Woodward for all
of their hard work in helping me transcribe Davenport’s original lec-
ture notes into LATEX. Finally it is a pleasure to express my gratitude
both to James Davenport at Bath University and to David Tranah at
Cambridge University Press for sharing my enthusiasm in bringing these
lecture notes to the attention of a wider mathematical audience.

T. D. Browning
Mathematical Institute

Oxford University
24–29 St. Giles’

Oxford
OX1 3LB

browning@maths.ox.ac.uk
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