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Introduction

The analytic method of Hardy and Littlewood (sometimes called the
‘circle method’) was developed for the treatment of additive problems in
the theory of numbers. These are problems which concern the represen-
tation of a large number as a sum of numbers of some specified type.
The number of summands may be either fixed or unrestricted; in the
latter case we speak of partition problems. The most famous additive
problem is Waring’s problem, where the specified numbers are the kth
powers, so that the problem is that of representing a large number N as

N = xk
1 + xk

2 + · · · + xk
s , (1.1)

where s and k are given and x1, . . . , xs are positive integers. Almost
equally famous is Goldbach’s ternary problem, where the specified num-
bers are the primes, and the problem is that of representing a large
number N as

N = p1 + p2 + p3.

The great achievements of Hardy and Littlewood were followed later by
further remarkable progress made by Vinogradov, and it is not without
justice that our Russian colleagues now speak of the ‘Hardy–Littlewood–
Vinogradov method’.

It may be of interest to recall that the genesis of the Hardy–Littlewood
method is to be found in a paper of Hardy and Ramanujan [69] in 1917
on the asymptotic behaviour of p(n), the total number of partitions of
n. The function p(n) increases like eA

√
n, where A is a certain positive

constant; and Hardy and Ramanujan obtained for it an asymptotic se-
ries, which, if one stops at the smallest term, gives p(n) with an error
O(n−1/4). The underlying explanation for this high degree of accuracy,

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521605830 - Analytic Methods for Diophantine Equations and Diophantine Inequalities,
Second Edition
H. Davenport
Excerpt
More information

http://www.cambridge.org/0521605830
http://www.cambridge.org
http://www.cambridge.org


2 Analytic Methods for Diophantine Equations and Inequalities

which Hardy describes as ‘uncanny’, was given by Rademacher [68] in
1937: there is a convergent series which represents p(n) exactly, and this
is initially almost the same as the asymptotic series. There is one other
group of problems in which the Hardy–Littlewood method leads to exact
formulae; these are problems concerning the representation of a number
as the sum of a given number of squares. It seems unlikely that there
are any such formulae for higher powers.

Waring’s problem is concerned with the particular Diophantine equa-
tion (1.1). There is no difficulty of principle in extending the Hardy–
Littlewood method to deal with more general equations of additive
type1, say

N = f(x1) + f(x2) + · · · + f(xs),

where f(x) is a polynomial taking integer values; in particular to the
equation

N = a1x
k
1 + a2x

k
2 + · · · + asx

k
s . (1.2)

It is only in recent years, however, that much progress has been made
in adapting the method to Diophantine equations of a general (that is,
non-additive) character. An account of these developments will be given
later in these lectures, but we shall be concerned at first mainly with
Waring’s problem and with additive equations of the type (1.2). All
work on general Diophantine equations depends heavily on either the
methods or the results of the work on additive equations.

Finally, we shall touch on the subject of Diophantine inequalities.
Here, too, some results of a general character are now known, but they
are less complete and less precise than those for equations.

1 See the monograph [63].
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2

Waring’s problem: history

In his Meditationes algebraicae (1770), Edward Waring made the state-
ment that every number is expressible as a sum of 4 squares, or 9 cubes,
or 19 biquadrates, ‘and so on’. By the last phrase, it is presumed that
he meant to assert that for every k ≥ 2 there is some s such that every
positive integer N is representable as

N = xk
1 + xk

2 + · · · + xk
s , (2.1)

for xi ≥ 0. This assertion was first proved by Hilbert in 1909. Hilbert’s
proof was a very great achievement, though some of the credit should
go also to Hurwitz, whose work provided the starting point. Hurwitz
had already proved that if the assertion is true for any exponent k, then
it is true for 2k. I shall not discuss Hilbert’s method of proof here; for
this one may consult papers by Stridsberg [79], Schmidt [72] or Rieger
[71]. It is usual to denote the least value of s, such that every N is
representable, by g(k). The exact value of g(k) is now known for all
values of k.

The work of Hardy and Littlewood appeared in several papers of the
series ‘On Partitio Numerorum’ (P.N.), the other papers of the series
being concerned mainly with Goldbach’s ternary problem. In P.N. I [37]
they obtained an asymptotic formula for r(N), the number of represen-
tations of N in the form (2.1) with xi ≥ 1, valid provided s ≥ s0(k),
a certain explicit function of k. The asymptotic formula was of the
following form:

r(N) = Ck,sN
s/k−1S(N) + O(Ns/k−1−δ), (2.2)

where δ > 0 and

Ck,s =
Γ(1 + 1/k)s

Γ(s/k)
> 0.
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4 Analytic Methods for Diophantine Equations and Inequalities

In the above formula, S(N) is an infinite series of a purely arithmetical
nature, which Hardy and Littlewood called the singular series. They
proved further that

S(N) ≥ γ > 0, (2.3)

for some γ independent of N , provided that s ≥ s1(k). However they
did not at that stage give any explicit value for s1(k). Thus the formula
implies that

r(N) ∼ Ck,sN
s/k−1S(N) (2.4)

as N → ∞, provided s ≥ max(s0(k), s1(k)), and thereby provided an
independent proof of Hilbert’s theorem.

Hardy and Littlewood introduced the notation G(k) for the least value
of s such that every sufficient large N is representable in the form (2.1);
this function is really of more significance than g(k), since the latter is
affected by the difficulty of representing one or two particular numbers
N . In P.N. II [38] and P.N. IV [39], Hardy and Littlewood proved that
the asymptotic formula and the lower bound for S(N) both hold for
s ≥ (k − 2)2k−1 + 5, which implies that

G(k) ≤ (k − 2)2k−1 + 5.

In P.N. VI [40] they found a better upper bound for G(k), though not
for the validity of the asymptotic formula, and in particular they proved
that G(4) ≤ 19. The last paper of the series, P.N. VIII [41], was entirely
concerned with the singular series and with the congruence problem to
which it gives rise.

Hardy and Littlewood took as their starting point the generating func-
tion for r(N), that is, the power series

∞∑
N=0

r(N)zN =

( ∞∑
n=0

znk

)s

.

They expressed r(N) in terms of this function by means of Cauchy’s
formula for the coefficients of a power series, using a contour integral
taken along the circle |z| = ρ, where ρ is slightly less than 1. A help-
ful technical simplification was introduced by Vinogradov in 1928; this
consists of replacing the power series by a finite exponential sum, and
the effect is to eliminate a number of unimportant complications that
occurred in the original presentation of Hardy and Littlewood.
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Waring’s problem: history 5

Write e(t) = e2πit. We define T (α), for a real variable α, by

T (α) =
P∑

x=1

e(αxk), (2.5)

where P is a positive integer. Then

(T (α))s =
∑
m

r′(m)e(mα), (2.6)

where r′(m) denotes the number of representations of m as

xk
1 + · · · + xk

s , (1 ≤ xi ≤ P ).

If P ≥ [N1/k], where [λ] denotes the integer part of any real number λ,
then r′(N) is the total number of representations of N in the form (2.1)
with xi ≥ 1. Consequently r′(N) = r(N). If we multiply both sides of
(2.6) by e(−Nα) and integrate over the unit interval [0, 1] (or over any
interval of length 1), we get

r(N) =
∫ 1

0

(T (α))se(−Nα)dα. (2.7)

This is the starting point of our work on Waring’s problem. It corre-
sponds to the contour integral for r(N) used by Hardy and Littlewood,
with z replaced by e2πiα.

Our first aim will be to establish the validity of the asymptotic formula
(2.2) for r(N) as N → ∞, subject to the condition s ≥ 2k + 1. It
is possible to do this in a comparatively simple manner by using an
inequality found by Hua in 1938 (Lemma 3.2 below). It may be of
interest to observe that no improvement on the condition s ≥ 2k +1 has
yet been made for small values of k, as far as the asymptotic formula
itself is concerned. For large k it has been shown by Vinogradov that a
condition of the type s > Ck2 log k is sufficient.

If we prove that the asymptotic formula holds for a particular value
of s, say s = s1, it will follow that every large number is representable
as a sum of s1 kth powers, whence G(k) ≤ s1. But to prove this it is
not essential to prove the asymptotic formula for the total number of
representations; it would be enough to prove it for some special type
of representation as a sum of s1 kth powers. This makes it possible to
get better estimates for G(k) than one can get for the validity of the
asymptotic formula. In 1934 Vinogradov proved that G(k) < Ck log k

for large k, and we shall give a proof in Chapter 9. The best known
results for small k were found by Davenport in 1939–41 [19].
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6 Analytic Methods for Diophantine Equations and Inequalities

A new ‘elementary’ proof of Hilbert’s theorem was given by Linnik
in 1943 [58], and was selected by Khintchine as one of his ‘three pearls’
[53]. The underlying ideas of this proof were undoubtedly suggested by
certain features of the Hardy–Littlewood method, and in particular by
Hua’s inequality.
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3

Weyl’s inequality and Hua’s inequality

The most important single tool for the investigation of Waring’s prob-
lem, and indeed many other problems in the analytic theory of numbers,
is Weyl’s inequality. This was given, in a less explicit form, in Weyl’s
great memoir [96] of 1916 on the uniform distribution of sequences of
numbers to the modulus 1. The explicit form for a polynomial, in terms
of a rational approximation to the highest coefficient, was given by Hardy
and Littlewood in P.N. I [37].

Lemma 3.1. (Weyl’s Inequality) Let f(x) be a real polynomial of
degree k with highest coefficient α:

f(x) = αxk + α1x
k−1 + · · · + αk.

Suppose that α has a rational approximation a/q satisfying

(a, q) = 1, q > 0,

∣∣∣∣α − a

q

∣∣∣∣ ≤ 1
q2

.

Then, for any ε > 0,∣∣∣∣∣
P∑

x=1

e(f(x))

∣∣∣∣∣ � P 1+ε

(
P− 1

K + q−
1
K +

(
P k

q

)− 1
K

)
,

where K = 2k−1 and the implied constant1 depends only on k and ε.

Note. The inequality gives some improvement on the trivial upper
bound P provided that P δ ≤ q ≤ P k−δ for some fixed δ > 0. If
P ≤ q ≤ P k−1, we get the estimate P 1−1/K+ε, and it is under these

1 We use the Vinogradov symbol � to indicate an inequality with an unspecified
‘constant’ factor. In the present instance, the factor which arises is in reality
independent of k, but we do not need to know this.
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8 Analytic Methods for Diophantine Equations and Inequalities

conditions that Weyl’s inequality is most commonly applied. It is obvi-
ously impossible to extract any better estimate than this from it. Note
that Weyl’s inequality fails to give any useful information if q is small,
and this is natural because if f(x) = αxk and α is very near to a rational
number with small denominator, the sum is genuinely of a size which
approaches P .

Proof. The basic operation in the proof is that of squaring the absolute
value of an exponential sum, and thereby relating the sum to an average
of similar sums with polynomials of degree one lower. Let

Sk(f) =
P2∑

x=P1+1

e(f(x)),

where 0 ≤ P2 − P1 ≤ P , and where the suffix k serves to indicate the
degree of f(x). Then

|Sk(f)|2 =
∑
x1

∑
x2

e(f(x2) − f(x1))

= P2 − P1 + 2	
∑

x1, x2
x2 > x1

e(f(x2) − f(x1)).

Put x2 = x1 + y. Then 1 ≤ y < P2 − P1, and

f(x2) − f(x1) = f(x1 + y) − f(x1) = ∆yf(x1),

with an obvious notation. Hence

|Sk(f)|2 = P2 − P1 + 2	
P∑

y=1

∑
x

e (∆yf(x)) ,

where the summation in x is over an interval depending on y but con-
tained in P1 < x ≤ P2. This interval may, for some values of y, be
empty.

In particular,

|Sk(f)|2 ≤ P + 2
P∑

y=1

|Sk−1(∆yf)|,

where the interval for Sk−1 is of the nature just described. By repeating
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Weyl’s inequality and Hua’s inequality 9

the argument we get

|Sk−1(∆yf)|2 ≤ P + 2
P∑

z=1

|Sk−2 (∆y,zf) |,

where the interval of summation in Sk−2 depends on both y and z but
is contained in P1 < x ≤ P2. The use of Cauchy’s inequality enables us
to substitute for Sk−1 from the second inequality into the first:

|Sk(f)|4 � P 2 + P
P∑

y=1

|Sk−1(∆yf)|2

� P 3 + P

P∑
y=1

P∑
z=1

|Sk−2(∆y,zf)|.

The process can be continued, and the general inequality established
in this way is

|Sk(f)|2ν � P 2ν−1 + P 2ν−ν−1
P∑

y1=1

· · ·
P∑

yν=1

|Sk−ν(∆y1,...,yν
f)| . (3.1)

This is readily proved by induction on ν, using again Cauchy’s inequal-
ity together with the basic operation described above which expresses
|Sk−ν |2 in terms of Sk−ν−1. It is to be understood that the range of
summation for x in Sk−ν in (3.1) is an interval depending on y1, . . . , yν ,
but contained in P1 < x ≤ P2.

At this point we interpolate a remark which will be useful in the proof
of Lemma 3.2. This is that if, at the last stage of the proof of (3.1), we
apply the basic operation in its original form, we get

|Sk(f)|2ν � P 2ν−1 + P 2ν−ν−1
P∑

y1=1

· · ·
P∑

yν=1

	Sk−ν(∆y1,...,yν
f). (3.2)

Here again, the range for x in Sk−ν depends on y1, . . . , yν and may
sometimes be empty.

Returning to (3.1), we take ν = k − 1 and in the original Sk we take
P1 = 0, P2 = P . We observe that

∆y1,...,yk−1f(x) = k!αy1 · · · yk−1x + β,

say, where β is a collection of terms independent of x. Hence

∣∣S1(∆y1,...,yk−1f)
∣∣ =

∣∣∣∣∣
∑

x

e(k!αy1 · · · yk−1x)

∣∣∣∣∣ .
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10 Analytic Methods for Diophantine Equations and Inequalities

The sum on the right, taken over any interval of x of length at most P ,
is of the form∣∣∣∣∣

x2−1∑
x=x1

e(λx)

∣∣∣∣∣ ≤ 2
|1 − e(λ)| =

1
| sin πλ| �

1
‖λ‖ ,

where ‖λ‖ denotes the distance of λ from the nearest integer. This fails
if λ is an integer, and indeed gives a poor result if λ is very near to an
integer, but we can supplement it by the obvious upper bound P . Hence
(3.1) gives

|Sk(f)|K � PK−1 + PK−k
P∑

y1=1

· · ·
P∑

yk−1=1

min(P, ‖k!αy1 · · · yk−1‖−1).

We now appeal to a result in elementary number theory, which enables
us to collect together all the terms in the sum for which k!y1 · · · yk−1 has
a given value, say m. The number of such terms is � mε. To prove this,
it suffices to show that

d(m) � mε, (3.3)

for any integer m, where d(m) =
∑

d|m 1 is the usual divisor function.
Indeed there are at most d(m) possibilities for each of y1, . . . , yk−1. To
establish (3.3) we suppose that m = pλ1

1 pλ2
2 · · · , and note that

d(m)
mε

=
∏

i

λi + 1
pελi

i

≤
∏

pi≤21/ε

λi + 1
2ελi

≤ C(ε),

since 2−ελ(λ + 1) is bounded above for λ > 0.
Collecting terms as mentioned above, we get

|Sk(f)|K � PK−1 + PK−k+ε
k!P k−1∑
m=1

min(P, ‖αm‖−1).

It remains to estimate the last sum in terms of the rational approxi-
mation a/q to α which was mentioned in the enunciation. We divide
the sum over m into blocks of q consecutive terms (with perhaps one
incomplete block), the number of such blocks being

� P k−1

q
+ 1.

Consider the sum over any one block, which will be of the form
q−1∑
m=0

min(P, ‖α(m1 + m)‖−1),
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