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Modelling techniques
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1

The basics of modelling

1.1 Introduction

This short introductory chapter is about mathematical modelling. With-
out trying to be too prescriptive, we discuss what we mean by the term,
why we might want to do it and what kind of models are commonly
used. Then we look at some very standard models, which you have al-
most certainly met before, and we see how their derivation is a blend
of what are thought of as universal physical laws, such as conservation
of mass, momentum and energy, with experimental observations and,
perhaps, some ad hoc assumptions in lieu of more specific evidence.

One of the themes that run through this book is the applicability of
all kinds of mathematical idea to ‘real-world’ problems. Some of these
arise in attempts to explain natural phenomena, for example in models
for water waves. We will see a number of these models as we go through
the book. Other applications are found in industry, which is a source
of many fascinating and non-standard mathematical problems and a big
‘end-user’ of mathematics. You might be surprised at how little is known
of the detailed mechanics of most industrial processes, although when
you see the operating conditions – ferocious temperatures, inaccessible
or minute machinery, corrosive chemicals – you realise how expensive
and difficult it would be to carry out detailed experimental investigations.
In any case, many processes work just fine, having been designed by en-
gineers who know their job. If it ain’t broke, don’t fix it; so where does
mathematics come in? Some important uses are in the quality control
and cost control of existing processes and in the simulation and de-
sign of new processes. We may want to understand: why does a certain
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4 The basics of modelling

type of defect occur; what is the ‘rate-limiting’ part of a process (the
slowest ship, to be speeded up); how to improve efficiency, however
marginally; whether a novel idea is likely to work at all and if so, how to
control it.

It is in the nature of real-world problems that they are large, messy
and often rather vaguely stated. It is very rarely worth anybody’s while
to produce a ‘complete solution’ to a problem which is complicated and
whose desired outcome is not necessarily well specified (to a mathemati-
cian). Mathematicians are usually most effective in analysing a relatively
small ‘clean’ subproblem for which more broad-brush approaches run
into difficulty. Very often the analysis complements a large numerical
simulation which, although effective elsewhere, has trouble with this
particular aspect of the problem. Its job is to provide understanding
and insight in order to complement simulation, experiment and other
approaches.

We begin with a chat about what models are and what they should
do for us. Then we bring some simple ideas about physical conservation
laws and how to use them together with the experimental evidence about
how materials behave, with the aim of formulating closed systems of
equations; this is illustrated with two canonical models, for heat flow
and for fluid motion. There are many other models embedded elsewhere
in the book, and we will deal with these as we come to them.

1.2 What do we mean by a model?

There is no point in trying to be too precise in defining the term ‘math-
ematical model’: we all understand that it is some kind of mathematical
statement about a problem originally posed in non-mathematical terms.
Some models are explicative, that is, they explain a phenomenon in terms
of simpler, more basic processes. A famous example is Newton’s theory
of planetary motion, whereby the whole complex motion of the solar
system was shown to be a consequence of ‘force equals mass times
acceleration’ and the inverse square law of gravitation. However, not
all models aspire to explain. For example, the standard Black–Scholes
model for the evolution of prices in stock markets, used by investment
banks the world over, says that the percentage difference between tomor-
row’s stock price and today’s is a lognormal random variable. Although
this is a great simplification, in that it says that all we need to know are
the mean and variance of this distribution, it says nothing about what
will cause the price change.

All useful models, whether explicative or not, are predictive: they
allow us to make quantitative predictions (whether deterministic or prob-
abilistic) that can be used either to test and refine the model, should that
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1.2 What do we mean by a model? 5

be necessary, or for use in practice. The outer planets were found using
Newtonian mechanics to analyse small discrepancies between observa-
tion and theory,1 and the Moon missions would have been impossible
without this model. Every day, banks make billions of dollars worth of
trades based on the Black–Scholes model; in this case, since model pre-
dictions do not always match market prices, they may use the latter to
refine the basic model (here there is no simple underlying mechanism
to appeal to, so adding model features in a heuristic way is a reasonable
way to proceed).

Most of the models we discuss in this book are based on differential
equations, ordinary or partial: in the main they are deterministic models
of continuous processes. Many of them should already be familiar to you,
and they are all accessible with the standard tools of real and complex
analysis, partial differential equations, basic linear algebra and so on.
I would like, however, to mention some kinds of models that we don’t
have the space to cover.

� Statistical models

Statistical models can be both explicative and predictive, in a probabilis-
tic sense. They deal with questions of extracting information about cause
and effect or making predictions in a random environment and describ-
ing that randomness. Although we touch on probabilistic models, for a
full treatment see a text such as [49].

� Discrete models of various kinds

Many, many vitally important and useful models are intrinsically dis-
crete: think, for example of the optimal scheduling of take-off slots from
LHR, CDG or JFK airports, or the routeing of packets of information
through the mobile phone network. Discrete mathematics is a vast area
with a huge range of techniques, impinging on practically every other
area of mathematics, computer science, economics and so on.

� ‘Black-box’ models such as neural nets or genetic algorithms, and
‘lumped parameter’ models

The term ‘model’ is often used for these techniques, in which a ‘black
box’ is trained, using observed data, to predict the output of a system

1 This is a very early example of an inverse problem: assuming a model, and given ob-
servations of the solution determine certain model parameters, in this case the unknown
positions of Uranus and Neptune. A more topical example is the problem of constructing
an image of your insides from a scan or from electrical measurements taken from elec-
trodes on your skin. Unfortunately, such problems are beyond the scope of this book;
for a discussion, see [14].
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6 The basics of modelling

given the input. The user need never know what goes on inside the black
box (it is usually some form of curve fitting and/or optimisation algo-
rithm), so while these algorithms can have some predictive capacity they
can rarely be explicative. Although often useful, the philosophy behind
black-box models is more or less orthogonal to that behind the models in
this book; if you are interested, see [22]. Lumped-parameter models are
somewhat in the same spirit: a complex system is represented by a much
simpler set of ad hoc descriptions, as for example when a complicated
mechanical system is modelled by a simple spring–dashpot combination.

1.3 Principles of modelling: physical laws and
constitutive relations

Many models, especially those based on mechanics or heat flow (which
includes most models in this book), are underpinned by physical prin-
ciples such as the conservation of mass, momentum, energy or electric
charge. We may have to think about how we interpret these ideas, espe-
cially in the case of energy, which can take so many forms (kinetic, poten-
tial, heat, chemical, . . . ) and be converted from one to another. AlthoughWork is heat and heat is work:

this is loosely the first law of
thermodynamics, in mnemonic
form.

they are in the end subject to experimental confirmation, the experimen-
tal evidence for these conservation principles is so overwhelming that,
with care in interpretation, we can take them as assumptions.2

However, this gets us only so far. We can do very simple problems,
such as the mechanics of point particles, and that’s about it. Suppose,
for example, that we want to derive the heat equation for heat flow in
a homogeneous, isotropic, continuous solid. We can reasonably assume
that at each point x and time t there is an energy density E(x, t) such that
the internal (heat) energy inside any fixed volume V of the material is∫

V
E(x, t) dx.

We can also assume that there is a heat flux vector q(x, t) such that the
rate of heat flow across a plane with unit normal n is

q · n

per unit area. Then we can write down the conservation of energy for
V in the form

d

dt

∫
V

E(x, t) dx +
∫

∂V
q(x, t) · n dS = 0,

2 We are making additional assumptions that we are not dealing with quantum effects, or
matter on the scale of atoms, or relativistic effects. We will deal only with models for
human-scale systems.
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1.3 Principles of modelling 7

where ∂V is the surface bounding V , on the assumption that no heat
is converted into other forms of energy. Next, we use Green’s theorem
on the surface integral and, as V is arbitrary, the usual argument (see
Section 1.4) gives us

∂ E

∂t
+ ∇ · q = 0. (1.1)

At this point, general assumptions fail us, and we have to bring in
some experimental evidence. We need to relate both E and q to the
temperature T (x, t), by what are called constitutive relations. For many,
but not all, materials, the internal energy is directly proportional to the
temperature, which is written as

E = ρcT,

where ρ is the density and c is a constant called the specific heat
capacity. Likewise, Fourier’s law states that the heat flux is proportional
to the temperature gradient,

Ask yourself why there is a
minus sign. The second law of
thermodynamics in loose
mnemonic form: heat cannot
flow from a cooler body to a
hotter one.

q = −k∇T .

Putting these both into (1.1), we have

ρc
∂T

∂t
= k∇2T,

as expected. The appearance of material properties such as c and k
is a sure sign that we have introduced a constitutive relation, and it
should be stressed that these relations between E , q and T are material
dependent and experimentally determined. There is no a priori reason
for them to have the nice linear form given above, and indeed for some
materials one or other may be strongly nonlinear.3

Another set of models where constitutive relations pay a prominent
role is models for solid and fluid mechanics.

1.3.1 Example: inviscid fluid mechanics

Let us first look at the familiar Euler equations for inviscid incompress- ‘Oiler’, not ‘Yewler’.

ible fluid motion,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p, ∇ · u = 0.

3 It is an experimental fact that temperature changes in most materials are proportional
to the energy put in or taken out. However, both c and k may depend on temperature,
especially if the material melts or freezes gradually, as for paraffin or some kinds of
frozen fish. Such materials lead to nonlinear versions of the heat equation; fortunately,
many common substances have nearly constant c and k values and so are well modelled
by the linear heat equation.
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8 The basics of modelling

Here u is the fluid velocity and p the pressure, both being functions
of position x and time t , and ρ is the fluid density. The first equation
is clearly ‘mass × acceleration = force’, bearing in mind that we have
to calculate the acceleration ‘following a fluid particle’ (that is, we use
the convective derivative), and the second expresses mass conservation
(now would be a good moment for you to do the first two exercises at
the end of the chapter unless this is all very familiar material).

The constitutive relation is rather less obvious in this case. When we
work out the momentum balance for a small material volume V , we are

Remember a material volume is
one whose boundary moves with
the fluid velocity, that is, it is
made up of a fixed set of fluid
particles.

encapsulating the physical law

convective rate of change of momentum in V = net force on V .

The convective rate of change of momentum in V is given by
∫

V
ρ

(
∂u
∂t

+ u · ∇u
)

dV .

We then say that the net force on V is provided solely by the pres-
sure and acts normally to ∂V . This is our constitutive assumption: that
the internal forces in an inviscid fluid are completely described by a
pressure field that acts isotropically (equally in all directions) at every
point. Then, ignoring gravity, the force on V is∫

∂V
−pn dS = −

∫
V

∇ p dV,

by a standard vector identity, and since V is arbitrary we do indeed
retrieve the Euler equations.

1.3.2 Example: viscous fluids

Things are a little more complicated for a viscous fluid, namely one
whose ‘stickiness’ generates internal forces which resist the motion.
This model will be unfamiliar to you if you have never looked at viscous
flow. If this is so, you can do one or more of the following.

� Just ignore it; you will then miss out on some nice models for thin
fluid sheets and fibres in Chapter 20, but that’s about all.

� Go with the flow: trust me that the equations are not only believable
(an informal argument is given below, and in any case I am assuming
you know about the inviscid part of the model) but indeed correct. As
is so often necessary in real-world problems, see what the mathematics
has to say and let the intuition grow.

� Go away and learn about viscous flow; try the books [43] or [2].
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1.3 Principles of modelling 9

U

h

Figure 1.1 Drag on two
parallel plates in shear, a
configuration known as
Couette flow. The upper plate
is moving relative to the lower
at speed U; the arrows
indicate the velocity profile.

Viscosity is the property of a liquid that measures its resistance to
shearing, which occurs when layers of fluid slide over one another. In
the configuration of Figure 1.1, the force per unit area on either plate
due to viscous drag is found for many liquids to be proportional to the
shear rate U/h and is written µU/h, where the constant µ is called the
dynamic viscosity. Such fluids are termed Newtonian.

Our strategy is again to consider a small element of fluid and, using
the momentum balance equation, on the left-hand side work out the rate
of change of momentum,

∫
V

ρ
Du
Dt

dV,

while on the right-hand side we have

∫
∂V

F dS,

the net force on the boundary of the element. Then we use the divergence
theorem to turn the surface integral into a volume integral and, as V is
arbitrary, we are done.

Now for any continuous material, whether a Newtonian fluid or
not, it can be shown (you will have to take this on trust; see [43] for
a derivation) that there is a stress tensor, a matrix σ with entries σi j ,
having the property that the force per unit area exerted by the fluid in

We are using the summation
convention, where by terms with
repeated indices are summed over
from 1 to 3; thus for example

σi i = σ11 + σ22 + σ33.

It should be clear that

∇ · u = ∂ui /∂xi

and that

(∇ · σ)i = ∂σi j

∂x j
.

direction i on a small surface element with normal n = (n j ) is given by
σ · n = (σi j n j ); see Figure 1.2. It can also be shown thatσ is symmetric:
σi j = σ j i . In an isotropic material (one with no built-in directionality),
there are also some invariance requirements with respect to translations
and rotations.

Thus far, our analysis could apply to any fluid. The force term in the
equation of motion takes the form

∫
∂V

σ · n dS, with components
∫

∂V
σi j n j dS
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10 The basics of modelling

n = (n j )

F = (Fi )

Figure 1.2 Force on a small
surface element.

which by the divergence theorem is equal to

∫
∂V

∇ · σ dS, with components
∫

∂V

∂σi j

∂x j
dS,

and so we have the equation of motion

D(ρu)

Dt
= ∇ · σ. (1.2)

We now have to say what kind of fluid we are dealing with. That is,
we have to give a constitutive relation to specify σ in terms of the fluid
velocity, pressure etc. For an inviscid fluid, the only internal forces are
those due to pressure, which acts isotropically. The pressure force on our
volume element is

∫
∂V

−pn dS

with corresponding stress tensor

σi j = −p δi j ,

where δi j is the Kronecker delta. This clearly leads to the EulerWhich matrix has entries δi j ?
Interpret δi j v j = vi in matrix
terms.

momentum-conservation equation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p.

When the fluid is viscous, we need to add on the contribution due to
viscous-shear forces. From consideration of the experiment of Figure 1.1
it is very reasonable that the new term should be linear in the velocity gra-
dients, and it can be shown, bearing in mind the invariance requirements
mentioned above, that the appropriate form for σi j is

σi j = −p δi j + µ

(
∂ui

∂x j
+ ∂u j

∂xi

)
.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521603692 - Practical Applied Mathematics: Modelling, Analysis, Approximation
Sam Howison
Excerpt
More information

http://www.cambridge.org/0521603692
http://www.cambridge.org
http://www.cambridge.org


1.4 Conservation laws 11

For future reference we write out the components ofσ in two dimensions:

(σi j ) =

⎛
⎜⎜⎜⎝

−p + 2µ
∂u

∂x
µ

(
∂u

∂y
+ ∂v

∂x

)

µ

(
∂u

∂y
+ ∂v

∂x

)
−p + 2µ

∂v

∂y

⎞
⎟⎟⎟⎠ . (1.3)

Substituting this into the general equation of motion (1.2), and using the
incompressibility condition ∇ · u = ∂ui/∂xi = 0, it is a straightforward
exercise to show that the equation of motion of a viscous fluid is

The emphasis means that it is a
good idea to do it.

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + µ∇2u, ∇ · u = 0. (1.4)

These equations are known as the Navier–Stokes equations. The first
contains the corresponding inviscid terms, i.e. the Euler equations, but
with the new term µ∇2u, which represents the influence of viscosity. As
we shall see later, this term has profound effects.

1.4 Conservation laws

Perhaps we should elaborate on the ‘usual argument’ that, allegedly,
leads to equation (1.1). Whenever we work in a continuous framework,
and we have a quantity that is conserved, we offset changes in its density
P(x, t) with equal and opposite changes in its flux q(x, t). Taking a small
volume V and arguing as above, we have

d

dt

∫
V

P(x, t) dx +
∫

∂V
q · n dS = 0,

the first term being the time rate of change in the quantity inside V , and
the second the net flux of it into V . Applying Green’s theorem to this
latter integral,4 we have∫

V

∂ P

∂t
+ ∇ · q dx = 0.

As V is arbitrary, we conclude that

∂ P

∂t
+ ∇ · q = 0,

a statement that is often referred to as a conservation law.5

4 Needless to say, this argument requires q to be sufficiently smooth, which can usually be
verified a posteriori; in Chapter 7 we shall explore some cases where this smoothness
is not present.

5 Sometimes this term is reserved for cases in which q is a function of P alone.
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