
1 Introduction

1.1 The definition of economics

In An Essay on the Nature and Significance of Economic Science (1984) Lionel Robbins
(1898–1984) defines economics as “the science which studies human behavior as a rela-
tionship between given ends and scarce means which have alternative uses.” This famous
“all-encompassing” definition of economics is still used to define the subject today, accord-
ing to The Concise Encyclopedia of Economics (http://www.econlib.org/library/CEE. html).
The underlying idea is that absent scarcity, all needs could be satisfied, no choices would
have to be made, and, therefore, no economic problem would be present. But which resources
are scarce? Is air scarce? If not, maybe clean air is scarce? If we stick to the traditional
definition of economics, these questions must be answered prior to any economic analysis:
in some mysterious way, all the scarce resources are known. In my opinion, however,
the enumeration of scarce resources should be included in the definition of economics.
I therefore modify Robbins’ definition by omitting the adjective “scarce.” In short, I define
economics as the study of the allocation of resources among alternative ends – or, more
precisely, the study of the allocation of resources to production units for commodities and
the distribution of the latter to the population. Some resources may be scarce, others may
not be. Scarcity will be signaled by a price. If resources are not scarce, they will have a
zero price.

It is not necessary to be very specific at this stage as regards the concepts of “produc-
tion units,” “commodities,” “distribution,” and “households.” The essence of economics
is merely that something is maximized. Production units, or firms, maximize profits and
households maximize their levels of income or well-being. The objectives can be fulfilled
only to limited extents because of resource constraints. Maybe air is not scarce, but there is
certainly only a limited stock of it, however large. The limited availability of some resources
will act as a bottleneck in the furthering of the objectives. The economic problem can thus
be summarized as the maximization of some objective subject to constraints. It is crucial
to understand the principles of constrained maximization, and to relate them to the basic
economic concept of a price, but first we must quickly review some elementary principles
of mathematics.
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2 The Economics of Input-Output Analysis

1.2 Mathematical preliminaries

The two main streams of elementary mathematics are calculus and matrix algebra. Calculus
is about functions, particularly of real numbers, and the manipulations that can be done
with them, such as taking derivatives or integrals. Matrix algebra extends operations such
as addition and multiplication to higher dimensions. It is handy for the extension of calculus
to functions of several variables.

By definition, a function, f, maps every element, x, of one set (the domain) to precisely one
element of a second set (the range), f (x). The standard case is where both the domain and
the range are the set of real numbers. Examples are given by (1)–(3) and counterexamples
by (4) and (5):

(1) f (x) = x the identity function
(2) f (x) = cx + d a linear function
(3) f (x) = xn a power function
(4) f (x) = √

x the square root
(5) f (x) = ±√

x the solution to y2 = x

Counterexample (4) is not a function from the real numbers to the real numbers, because
it does not take every element to another one. However, by restricting the domain to the non-
negative numbers, it becomes a function. Counterexample (5) is not a function from the real
numbers to the real numbers, because it does not take elements to precisely one other. By
restricting the value to either the non-negative or the non-positive one, counterexample (5)
becomes a function. The inverse of function f is the function f −1 defined by f −1(y) = x
with f (x) = y. The inverse of function 1 is f −1(y) = y. The inverse of function 2 is
f −1(y) = (y − d)/c. The inverse of function 3 is f −1(y) = x1/n for n odd. For n even,
say 2, case (4) would be the candidate solution, but it is not a function.

Let x be input and f (x) output. Then average product is f (x)/x . The marginal product
is the rate at which output increases:

f (x + �x) − f (x)

�x
, �x → 0 (1.1)

Expression (1.1) is called the derivative of f in x and is denoted f ′(x). The symbol → means
“tends to.” The derivative of xn is nxn−1:

(xn)′ = nxn−1 (1.2)

Let me illustrate the rule for n = 2: By definition (1.1) the derivative of x2 is

(x + �x)2 − x2

�x
= 2x + �x

with �x → 0, hence 2x . If �x does not tend to zero but is small, the quotient

(x + �x)2 − x2

�x
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Introduction 3

is approximately equal to the derivative, as we overlook the residual term, �x. In general:

f (x + �x) − f (x)

�x
≈ f ′(x), �x small (1.3)

The approximate equality (1.3) is called the first-order approximation. Other handy rules
of differentiation are the sum, product and chain rules:

( f + g)′ = f ′ + g′ (1.4)

( f g)′ = f ′g + f g′ (1.5)

f [g(x)] has the derivative f ′[g(x)]g′(x) (1.6)

The proof of the sum rule (1.4) is trivial. The proof of the product rule needs a little work.
By definition,

( f g)′(x) = f (x + �x)g(x + �x) − f (x)g(x)

�x

= g(x + �x)
f (x + �x) − f (x)

�x
+ f (x)

g(x + �x) − g(x)

�x
(1.7)

with �x → 0, so that (1.7) proves the rule (1.5). Finally, the proof of the chain rule (1.6) is
straightforward. The derivative of f [g(x)] is

f [g(x + �x)] − f [g(x)]

�x
= f [g(x + �x)] − f [g(x)]

g(x + �x) − g(x)
· g(x + �x) − g(x)

�x
(1.8)

with �x → 0. Substituting y = g(x) and �y = g(x + �x) − g(x), the first factor on the right-
hand side of (1.8) reads

f (y + �y) − f (y)

�y

Since �y tends to zero as �x → 0, the proof of the chain rule is complete.
Taking the derivative of a product function, one obtains the marginal product function.

Now the reverse operation from differentiation is taking the integral – or, briefly, integration.
Hence by integrating the marginal products one retrieves the underlying production function.
The symbol for an integral is

∫
. For example, by (1.2),

∫
nxn−1dx = xn . Since the derivative

of a constant is zero, one may add this to the integral. So, strictly speaking,
∫

nxn−1dx =
xn + c, where c is any constant number.

Integrating the marginal products between a and b, one obtains the total output that
comes with an increase of input from a to b:

∫ b
a f ′(x)dx = f (b) − f (a). For example,∫ 1

0 nxn−1dx = (1n + c) − (0n + c) = 1. Hence
∫ 1

0 xn−1dx = 1/n.
Let us model the production of a single output from two inputs. Then x in f (x) is a

list of two numbers or a vector, with components x1 and x2. The marginal product of the
first input is the partial derivative of f (x1, x2) with respect to x1. By definition, this is the
ordinary derivative of the function of x1 keeping x2 fixed. It is denoted f ′

1. The row vector
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4 The Economics of Input-Output Analysis

of partial derivatives is denoted f ′ = ( f ′
1 f ′

2). For example, if the production function is
f (x1, x2) = xα

1 x1−α
2 , then the marginal products are given by (αxα−1

1 x1−α
2 (1 − α)xα

1 x−α
2 ).

If both inputs are rewarded according to their marginal products, the total cost is

αxα−1
1 x1−α

2 x1 + (1 − α)xα
1 x−α

2 x2.1

It is also possible to model multiple outputs. The two inputs may produce two outputs,
each with its own production function. The vector of outputs is denoted

(
f1(x1, x2)
f2(x1, x2)

)

We may now list for each output the row vector of marginal products:
⎛
⎜⎜⎝

∂ f1(x1, x2)

∂x1

∂ f1(x1, x2)

∂x2

∂ f2(x1, x2)

∂x1

∂ f2(x1, x2)

∂x2

⎞
⎟⎟⎠

This table is a 2×2-dimensional matrix. The first index indicates the row (output, in this
case), the second index the column (input, in this case). The (i, j)th element of the matrix
represents the marginal i-product of input j.

The numbers of inputs and outputs need not match. In fact, we have dealt with the case of
one output and two inputs, where we had a row vector of marginal products f ′ = ( f ′

1 f ′
2).

This is a 1×2 matrix. In general an m×k-dimensional matrix B has m rows and k columns.
The element in row i and column j is denoted bi j . bi• denotes row i and b•j denotes column j.
Notice that the dimension of any row of matrix B is k, which is the number of columns.
Similarly, the dimension of any column is m, the number of rows.

1.3 Constrained maximization

An objective function ascribes values to the various magnitudes of all the variables of an
economy. If the variables are x1, . . . , xn (representing the activity levels of the production
units, for example), then the outcome (national income, for example), will be some real
number f (x1, . . . , xn), or f (x) for short, where f is the objective function. Formally, an
objective function f maps the n-dimensional variable space to the one-dimensional space of
the real numbers, that is f : R

n → R. It is important to distinguish the objective function, f,
and the values it may take, f (x). The latter merely measure the performance of the econ-
omy for given magnitudes of all the underlying variables, while the former denotes the
relationship between performance and the underlying variables. In other words, function f
summarizes the structure of the economy. There may be many constraints. With each level
of the variables of an economy x = (x1, . . . , xn), we may associate labor requirements –
say, g1(x) – and other resource requirements – say, gi(x) – where resource i is any input

1 This expression happens to be equal to f (x1, x2), a finding that reflects the constant returns to scale property
of f.
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Introduction 5

f ′(x)

g(x) ≤ b

f (x) = constant

Figure 1.1 The feasible region of constraint function g and two isoquants and the derivative of
objective function f

that must be present before production takes place, such as mineral resources, equipment,
etc. Let the number of resources be m. Then the requirements are g1(x), . . . , gm(x) and the
resource constraints can be written by g1(x) ≤ b1, . . . , gm(x) ≤ bm , where the right-hand
sides are the available quantities of the resources. The inequalities may be summarized by:

g(x) =

⎛
⎜⎝

g1(x)
...

gm(x)

⎞
⎟⎠ ≤

⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ = b (1.9)

In constraint (1.9) g is the constraint function and b is the bound. Function g associates with
every n-dimensional list of variables, x, m requirements, that is a point in m-dimensional
space. Formally, we write g : R

n → R
m . Constrained maximization is the problem:

max
x

f (x) : g(x) ≤ b (1.10)

The colon in program (1.10) stands for the phrase “subject to.” The program can be depicted
graphically in the variable space, particularly when there are two variables (n = 2) and only
one constraint (m = 1). The set of points that fulfills the constraint, (1.9), is the feasible
region. The objective function can be represented by so-called isoquants, which connect
points x of equal value, f (x). Perpendicular to these isoquants are the vectors of steepest
ascent which are given by the partial derivatives:

f ′(x) =
(

∂ f

∂x1
(x) · · · ∂ f

∂xn
(x)

)
(1.11)

For example, if the isoquant is given by 3x1 + x2 = 6, which is a steep line with horizontal
intercept x1 = 2 and vertical intercept x2 = 6, then the vector perpendicular to the isoquant
is (3 1). For a non-linear example see figure 1.1.

The objective function f takes a maximum value on the feasible region where the isoquant
is tangent to the boundary. Since the boundary is an isoquant of the constraint function, g,
an equivalent condition is that the vectors of steepest ascent point in the same direction:

f ′(x) = λg′(x), λ ≥ 0 (1.12)
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6 The Economics of Input-Output Analysis

In (1.12) proportionality constant λ cannot be negative, for then a movement in the direc-
tion f ′(x) would go into the feasible region and constitute an improvement, contradicting
the assumed maximization. Note also that the above condition covers the case where the
constraint is not binding. Then maximization merely requires that the objective function is
flat: f ′(x) = 0. This is covered by a zero λ in (1.12).

First-order condition (1.12) of constrained maximization holds in the general case where
g : R

n → R
m . In short, the derivatives of the objective function are proportional to those of

the constraint function and the proportions are non-negative. The following matrix defines
the derivative of g:2

g′ =

⎛
⎜⎜⎜⎜⎜⎝

∂g1

∂x1
. . .

∂g1

∂xn
...

. . .
...

∂gm

∂x1
· · · ∂gm

∂xn

⎞
⎟⎟⎟⎟⎟⎠

(1.13)

The proportionality constants, one for each constraint, are listed in row vector λ= (λ1 . . . λm)
and the product of λ and matrix g′ is defined in the usual way by a row vector (of the same
dimension as f ′):3

λg′ = (λ1 · · · λm)

⎛
⎜⎜⎜⎜⎜⎝

∂g1

∂x1
. . .

∂g1

∂xn
...

. . .
...

∂gm

∂x1
· · · ∂gm

∂xn

⎞
⎟⎟⎟⎟⎟⎠

=
(

λ1
∂g1

∂x1
+ · · · + λm

∂gm

∂x1
· · · λ1

∂g1

∂xn
+ · · · + λm

∂gm

∂xn

)
(1.14)

Mathematicians call the proportionality constants λ in (1.12) Lagrange multipliers. Again,
when a constraint is not binding, the Lagrange multiplier is zero:

gi (x) < bi ⇒ λi = 0 (1.15)

Because of inequality (1.9), implication (1.15) may be written as:

λi [bi − gi (x)] = 0 (1.16)

Using the fact that a sum of non-negative terms is zero if and only if every term is zero, the
system of all equations (1.16) is equivalent to the single equation:

m∑
i=1

λi [bi − gi (x)] = 0 (1.17)

Invoking the notation of the product of row vector λ and a matrix, (1.14), (1.17) simply

2 This notation is consistent with that of the partial derivatives of a real-valued function (such as f ), as the case
m = 1 shows.

3 In (1.14), the first component is the product of λ and the first column of matrix g′, etc. A precise treatment of
matrix multipication is postpond to chapter 2.
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Introduction 7

reads:

λ[b − g(x)] = 0 (1.18)

Equation (1.18) is a brief reflection of the condition that a constraint is binding or has a zero
Lagrange multiplier.

The first-order conditions (1.12) and the so-called complementary slackness conditions
(1.18), are a concise mathematical statement of the solution to the constrained maximization
problem, (1.10). The proportionality constants between the objective function derivatives
and the constraint function derivatives (the Lagrange multipliers) have an economic inter-
pretation, which we shall establish below. As a matter of fact, we shall show that the
Lagrange multipliers measure the marginal productivities of the constraining entities. By
definition, a marginal productivity is the amount by which the objective value goes up when
an additional unit is available. So consider the situation in which one unit is added to the
bound of the ith constraint. The new bound is b + ei, where ei is the ith unit vector:

ei =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← place i (1.19)

In (1.19), the ith entry is one and all others are zero. Let x* be the new optimum, reserving
unstarred x for the old optimum (bounded by b). Making first-order approximations (1.3) to
the increase of both the objective and the constraint function values and substituting (1.12)
and the new bound we get:

f (x∗) − f (x) ≈ f ′(x)(x∗ − x) = λg′(x)(x∗ − x)

≈ λ[g(x∗) − g(x)] = λ[g(x∗) − b] ≤ λei = λi (1.20)

Inequality (1.20) indicates that the marginal productivity of the ith constraining entity does
not exceed λ. If λ = 0, this “increase” in the value is attained trivially by x* = x. If λ > 0,
the increase in the value is actually attained by the solution x* to the equation defined by
(1.20) with a binding inequality. In either case, the value of the objective function goes up
by an amount of λ when one unit is added to the ith bound. The derivation will be presented
rigorously in the context of linear objective and constraint functions in chapter 4.

1.4 Linear analysis

This section is a quick introduction to material that will be explained in detail in subsequent
chapters. Readers who do not know matrices should proceed directly to chapter 2.
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8 The Economics of Input-Output Analysis

If an economy features constant returns to scale and the objective is to maximize the
value of the net product, then the constraints and the objective function are linear. Problem
(1.10) turns out as:

max
x

ax : Cx ≤ b (1.21)

The constrained maximization problem (1.21) is called a linear program. The first-order
conditions (1.12) turn out as:

a = λC, λ ≥ 0 (1.22)

Finally, the complementary slackness conditions (1.18) turn out as:

λ(b − Cx) = 0 (1.23)

Multiplying (1.22) by solution x and substituting (1.23), we derive the important result:

ax = λb (1.24)

Equation (1.24) imputes the optimal value to the bounds. Each binding unit gets a value of
λi. The result confirms that the marginal productivities of the bounds (given by vector b)
are the components of row vector λ. There is a neat way to characterize these Lagrange
multipliers. Consider any row vector µ fulfilling condition (1.22):

a = µC, µ ≥ 0 (1.25)

Then we have, using the inequality in (1.21), the equality in (1.25), and (1.24):

µb ≥ µCx = ax = λb (1.26)

According to (1.24) the inequality is binding for λ. In other words, λ minimizes the left-
hand side of (1.26). In other words, the Lagrange multipliers solve:

min
λ≥0

λb : λC = a (1.27)

Minimization problem (1.27) is the dual program associated with the original maximization
problem or primal program (1.21). Notice that the values of the primal and dual programs
are equal according to (1.24). If a so-called shadow price of λi is assigned to the entity of
constraint i, then the value of the ith bound is λibi and the total value of bound b exhausts
the value of the objective function. Since the shadow prices are equal to the marginal
productivities, a competitive mechanism can bring them about. This approach is borne out
in the following example.

In traditional input-output analysis, variable x lists the gross outputs of the sectors of an
economy. Assuming constant returns to scale and fixed input proportions, sector 1 requires
a11x1, . . . , an1x1 units of the various sectors as inputs in its production of x1 units of output.
Demand for the product of sector 1 amounts to a11x1 by sector 1 itself, a12x2 by sector 2, . . . ,
a1nxn by sector n, and y1 final demand by the non-producing sectors of the economy, such
as the households. Organize these demand coefficients in a row vector:

a1• = (a11 · · · a1n) (1.28)
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Introduction 9

The condition that total demand for the product of sector 1 is bounded by supply can be
written succinctly as follows:

a1•x + y1 ≤ x1 (1.29)

Organize the different row vectors in a matrix A:

A =

⎛
⎜⎝

a1•
...

an•

⎞
⎟⎠ =

⎛
⎝ a11 . . . a1n

...
. . .

...
an1 · · · ann

⎞
⎠ (1.30)

Then constraint (1.29) is the first component of the following inequality:

Ax + y ≤ x (1.31)

Let the economy maximize the value of the net output, py, on world markets. Here p is a
given row vector of world prices. If the net output y does not agree with household demand,
it is traded for other commodities. The maximization of the value of net output yields the
greatest purchasing power in world markets, which is clearly in the interest of the domestic
households. Since the value of net output is constrained by commodity balance (1.31), the
factor balances, and a non-negativity constraint, we face the program:

max
x,y

py : Ax + y ≤ x, kx ≤ M, lx ≤ N , x ≥ 0 (1.32)

In program (1.32) row vector k lists the amount of capital required per unit of output in
each sector, M is the available stock of capital, and l and N are the corresponding labor
statistics. Introduce matrix notation for the objective function and constraint coefficients,
respectively:

a = (0 p), C =

⎛
⎜⎜⎝

A − I I
k 0
l 0

−I 0

⎞
⎟⎟⎠ (1.33)

Then program (1.32) reads

max a

(
x
y

)
: C

(
x
y

)
≤

⎛
⎜⎜⎝

0
M
N
0

⎞
⎟⎟⎠ (1.34)

In program (1.34) multiplication of the first row of coefficients matrix C of (1.33) with
the stacked vector

( x
y
)

reproduces the first inequality, (1.31). Multiplication of the other
rows of matrix C with the vector of variables reproduces the further inequalities in program
(1.32).

Denote the shadow prices associated with the material constraints, the capital and labor
constraints, and the non-negativity conditions by:

λ = (p r w σ ) (1.35)
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10 The Economics of Input-Output Analysis

The notation (1.35) suggests commodity price, rental rate of capital, wage rate, and slack,
as will be explained shortly. The shadow prices are determined by the first-order condition
(1.22) – or, substituting specifications (1.33) and (1.35),

(p r w σ )

⎛
⎜⎜⎝

A − I
k
l

−I

I
0
0
0

⎞
⎟⎟⎠ = (0 p) (1.36)

The first component of (1.36) is the product of the row vector and the first column of the
matrix – or, after a slight rearrangement of terms:

p = p A + rk + wl − σ (1.37)

The second component of (1.36) reads:

p = p (1.38)

By (1.38) the shadow prices of the materials are simply equal to the world prices. And by
(1.37) the prices are equal to the sum of the material costs of the inputs, the capital costs,
the labor costs, and the slack. If the slack is positive, costs exceed price. However, since the
slack is a Lagrange multiplier, the underlying constraint is binding by the complementary
slackness conditions (1.23). But since this is a non-negativity constraint, it means that the
output of such a sector is zero. Thus, unprofitable sectors are inactive. Conversely, if sectors
are active, the non-negativity constraint is not binding, the associated slack variable is
zero, and, therefore, price equals cost by (1.37). Thus, the shadow prices, particularly of
capital and labor, make the active sectors break even while rendering the inactive sectors
unprofitable. Profit maximizing entrepreneurs would target the right sectors. Moreover,
since the shadow prices are minimal, yielding negative or zero profits, a process of free
entry can bring them about. The competitive market mechanism is a device for the optimal
allocation of resources.

The value of final demand, py, accrues to the resources in proportion to their marginal
productivities, rM for capital and wN for labor. Thus, if resources are rewarded according
their shadow prices, the value of the net output of the economy is exhausted. This equality
of costs and revenues reflects the constant returns to scale. A precise derivation is by the
application of the equality of the primal and dual solution values, (1.24):

(0 p)

(
x
y

)
= (p r w σ )

⎛
⎜⎜⎝

0
M
N
0

⎞
⎟⎟⎠ (1.39)

Equation (1.39) is the well-known macroeconomic identity of the national product and the
national income:

py = r M + wN (1.40)

In (1.40), national income comprises no profit under constant returns to scale and compe-
tition. If resources are paid according to their marginal productivities, income matches the
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