Index

References which refer to figures in the text are shown in underlined italics.
References which refer to tables are underlined bold.
References which are textual footnotes have an ‘n’ after the page number e.g. 45n.

ABC notation 171
acetylene black 293–4
activation energy
β-aluminas 29
conductance 18
and doping 56
extended free volume model 134–5
glasses 83
ion hopping 18, 20
minimum 61
oxide ion conduction 39
and phase change, Bi₂MoO₆ 64
vitreous electrolytes 74
activity 217–18
adsorption, specific 273
ageing 16, 53
LISICON 34
aliovalent ion doping 11–12
aliovalent substitution
charge compensated 47
LISICON 34
alkali metal intercalation compounds 163–4
alumina
Al₂O₃ 69
β-Al₂O₃, W/G cell 303–4
β-alumina 2, 23, 24, 25, 67
Au interface 273
conductive pathways 9
conduction plane 9, 27, 28
conductivity, ac 21–2
framework structures 67–8
hopping rates 20
ion replacement 29–31
properties 29–31
proton conduction 41
reversible cells 308
sodium role 67–8
spinel 28–7, 67
stacking sequence 27, 27–8, 28–9
stoichiometry 26
structure 26–9

β”-alumina 26
β alumina comparison 28–9
stabilisation 67
amperometric sensor 321
anion conduction, fluorites 25
anion interstitial creation 11–12; see also
doping
anion solvation, polymer–salt 121
anionic conduction, polymer–salt 101
anions
effect on lattice insertion energy 184
in glassy ionic salts 79
Argonne fuel cell 319 320–1
Arrhenius equation 18
Arrhenius law 74
and structural relaxation time 80
and vitreous transition temperature 90,
91
astatine, AsPh₃ 289
atactic poly(propylene oxide) 106
attempt frequency 55, 132
auxiliary electrode 277, 278
band structure 243
doping 245–6
band-filling 186, 187
Ba₂In₄O₉ 59–61
barrier energy, and ionic jumps 50
batteries
capacity 258–9
loss 307
intercalation electrode 311–15
lithium rechargeable see under lithium
cells
polyelectrolyte 114–15
solid electrolyte 43–5, 293–310
Ag₃Ir₂WO₆ rechargeable 296
Ag₂S 293–4
copper 287–8, 299–300, 301
lithium 47, 300–7
Index

batteries (continued) 128
solid electrolyte (continued) 128
lithium glass 303–5 128
Rb2Cu4I5Cl2 297–8 128
RbI–AgI 295 128
sodium-sulphur 307–10 128
WGL 303–4 128
vehicle 306, 307 128
see also cell 128
Beverly–Ross sites 67 128
bipolaron 241, 242, 243–4 128
and doping monitoring 245 128
Bi2MoO6 64–5, 67 128
Bi2O3 68–9, 69 128
blocking, and potential extremes 266 128
blocking electrodes 54; see also 128
impedance
blocking interface 265, 266, 268 128
double layer 269–77 128
single 274 128
blocking metallic contact formation 276–7 128
boron, in glassy electrolytes 78 128
boron coordination, and conductivity 89 128
bottleneck 9, 20 128
activation energy 18 128
defined 50, 51 128
opening 67 128
reduction 23 128
Bragg peaks 183 128
brownmillerite structure 59, 60 128
Butler–Volmer equation 279, 280 128
Ca3Fe2TiO8 64 128
calorimetry 178–9 128
capacitance
blocking interface 274 128
double layer 270, 272, 273 128
limiting 250, 252–3 128
carbon/Au RBi4 interface 265–6 128
cation interstitial creation; see also 128
doping
cation mobility, and polymer electrolytes 128
cation/coordinating group interaction 123
cationic displacement 91–2 128
cell
calibration 43 128
four-electrode 289 128
internal resistance 43 128
multiple electrode 277–8 128
potential 199 128
and free energy 201 128
see also batteries 128
CeO2 47 128
electrolytes 47 128
structure 38 128
chalcogen 23, 164 128
guest polarised 168 128
see also host 128
charge carrier 85–6 128
formation 84 128
charge compensation 47 128
charge saturation model 250–1, 253 128
charge transfer
back transfer 46 128
Randles circuit 251, 252, 253 128
two step 290 128
and X–H bond stabilisation 57 128
charge/discharge 256–8 128
diffusion coefficient 205–6, 225–6 128
and electrode growth rate 207–8 128
electrodes 212–13 128
chemical potential 175, 179, 180, 200 128
electrode impurities 201–2 128
Chevrel compound 172, 173, 185 128
Chevrel phase 173, 298, 299 128
cluster 188, 191 128
cooperative motion 56, 57 128
excitation 62–3 128
ion trapping 16 128
staging 192 128
cointercalation 194–6 128
comb polymers, amorphous 107–8 128
complexing, small molecule 109–10 128
compliance, electrode 95 128
concentration (c), defined 12n 128
concentration gradient 204 128
conduction
β/β′-aluminas compared 28–9 128
anionic 101 128
lithium ion 25 128
sodium ion 23, 25 128
conduction activation energy 18 128
conduction band, cell 45, 46, 47 128
conduction pathways 8–10 128
conduction plane
β-aluminas 9, 27, 28 128
vacancies 28 128
conductivity
ac 21–2 128
β-aluminas 21–2, 29, 30 128
anion, and perovskite structure 39–40 128
cationic 74 128
cryptands 115 128
dc 129 128
defects 69 128
free volume model 134 128
extended 134 128
frequency-dependent 142 128

© Cambridge University Press www.cambridge.org
Index

glasses
boron coordination 89
conductivity measurements 87–90
oxide/halide doping 38–40, 88
and incomplete dissociation 135
increase see doping
LISICON 34
molar 143–7
and molar free energy 87
NASICON 32
oxide ions 38–40, 315–16
polar molecule addition 109–10
polysiloxane 231–2, 244
polymer–salt 101
and shift factor 131
silver, Ag, 15
solid electrolyte cells 44
temperature dependent 66, 98, 99
PEO 97
WLF form 130, 132–3
thermodynamic models 87–90
see also ionic conductivity
constant current discharge 176
contact ion aggregates 125, 126
convection, and dc polarisation 147
cooperative motion, Li 69
coordinating group/counter ion interaction 123
coordinating polymers 112
coordination, and polymer/salt
dissolution 122–3
coordination sphere, vacancies 126
copper
intermediate species 290
solid electrolytes 24
copper cell 173, 299–300
change/discharge 300, 301
intercalation cell 297–8
copper ion
conductors 23
electrolytes 297
coulombic interactions 129, 143
screening 52–3
coulometric titration 219, 220–1, 222
covalency
network formers 77
solid electrolytes 23
cross-linkage
network formers 77
polymer electrolyte 108–9
crown ethers 123
coordination by 111
cryptand
complexing 110–11
conductivity 115
crystal structure, and Li⁺ conduction 25
crystalline electrolytes
alkali ion conductors 31–8
β-alumina 26–31
conduction activation energy 18
conduction mechanisms 8–10
conductivity spectrum 20–2
criteria for cell use 43–5
defined 43
disordered sublattice 13–15
doping 10–13, 63–9
electronic energies 45–8
fluoride ion 40
hopping rates 18–20
intrinsic energy gap 48–9
ion-trapping effects 15–16
ionic conductivity 53–9
ionic energies 48–53
motional enthalpy 50–2
oxide ion conductors 38–40
potential energy profiles 16–17
proton 40–1
proton conductors 69–72
proton movements 57–9
silver, Ag, 4, 7, 8
stoichiometric compounds 59–63
survey 23, 24, 25
trapping energies 52–3
crystalline PEO see PEO
crystallisation suppression 107
current
steady-state 158–60
and surface roughness 287
current fraction 157–8
current and overpotential 278–9
cyclic voltammetry 249–50
d orbitals 155, 167
dc polarisation 147–53, 157
linearity limit 152
and mobile associated ions 150–2
Debye length 271, 274, 275, 282
Debye–Falkenhagen effect 21
decoupling index 139
defect formation, glasses 82
defect migration, glasses 82–3
defects, and conductivity 69
dielectric constant 272
polymer host 124
relative, of glasses 81
dielectric screening 53
differential capacity 269–70
diffraction, in cation solvation studies 124
diffusion
doping process 247–8, 249
enhancement 254–5
impedance response 251–2

335
Index

diffusion coefficient 102, 104

diffusion layers, electrolyte 148

diffusivity 202, 204, 226

dipole generation 20, 21

dipoles, and ion clustering 16; see also quadrupoles

discharge, Ag$_2$S cell 294

disorder 189–90

dispersion region 22

dissociation, incomplete 135

dissociation equilibria, glasses 84–5

distortion, conducting channels
LISICON 33, 34
Li$_2$SiO$_4$, 35

domains, free energy 177

doping
activation energy 56
allovalent 11–12
band structure 245–6
composites 69
conducting polymers
kinetics 247–54
monitoring 244–6

counter ion 233

crystalline electrolytes 10–13, 63–9

cyclic voltammetry studies 249–50

diffusion 247–8, 249

heterocyclic polymers 234–6

typical ion size 39

Li$_3$N 36
Li$_2$SiO$_4$, 34

low-temperature conductivity 38–9, 40
NASICON 68

oxide ion conductors 38

percolation pathways 53
polyacetylene 231–2
polyaniline 238–40

redox reaction 232–3

 reversible 240, 249–51

heterocyclic polymers 237–8

see also lithium rechargeable batteries

salts 78–9

spontaneous undoping 257–8

trapping effect 15–16

trapping energy 52, 69

zirconia 317

doping level 233, 237–8

high 243–4, 245–6

doping process

conducting polymers 240–4

electrochemical 234

doping strategies

composites 69

crystalline electrolyte 63–9

framework structures 67–9

point substitution 63–7

drift velocity 55

drift-current density 54

Dumas–Herold model 192

dynamic bond percolation (DBP) theory 140, 141

elastic ion interactions 187

electric vehicle batteries 306, 307

electrical field 204

electrical migration 200

electrical mobility (charge carrier) 85

electrical transport, glasses 81

electrochemical techniques 219

electrochemistry 1–4

electrochromic devices 325–7

electrochromic display (ECD) 230, 259–62

electrochromic windows (EW) 260–1

electrochromicity 3

electrocrystallisation 281

electrodes

composition, and equilibrium voltage 224

conductivity 203

and electrostatic potential 199–200

and energy balance 200–1

growth rate 207–8

impurities 201–2

intercalation 311–15

and ionic mobility see Wagner factor

kinetic parameters 223–8; see also GITT

kinetics 208–16

and non-electroactive mobility 216

parameter measurement 219–28

phase changes 215

and phase detection 222–3

requirements 211

resistance 215

semiconducting 215

and stoichiometric compounds 208–9

surface oxide 273–4

thermodynamics 216–18

see also polarisation; polymer electrodes; intercalation electrodes

electrolysis 148

electrolyte

CeO$_2$ based 47

composition 46–7

crystalline see crystalline electrolytes

metal contact 281–2

polymer see polymer electrolytes

requirements 211

silver ion 293

solid 1

transition metal 47

and transport number 39

electron energy bands 166–8
Index

electroneutrality 21
and ion hopping 21
and ion movement 213–14
electronic energy levels, crystalline
 electrolyte 45–8
electropolymersisation 235–7
electrostatic ion migration barrier 20–1
electrostatic potential 199
emf, and solid sensors 321–2
energy, hybridisation 52
energy balance, and electrodes 200–1
energy content, battery 258–9
energy density 312, 313
energy gap, crystalline electrolytes 48–9
energy levels, and electrolyte
determination 46–7
enthalpy
glass 81
mixing 79
motional 56
 and cluster rotation 57
 crystalline electrolytes 50–2
for proton translation 59
polymer/salt dissolution 120–1
and quenching rate 89–90
entropy
 α/β AgI 15
 of dissolution 120–1
 negative 127
electron 180–1
glass 81
ion 179–80
partial 135; 182
 measurement 178–9
 polymer/salt dissolution 120–1
and quenching rate 89–90
equilibrium, at interface 265
EXAFS (extended X-ray absorption fine
 structure) 123–4
exchange current 279
 low ion concentration 283
 multiple mobile charge 283–4
exhaust sensors 322, 323
expansion
cointercalation 195
intercalation 192

Faraday, M. 1
Fermi–Dirac function 328
ferroelectric phase 65
Fick’s diffusion coefficient 204
Fick’s law 54
flexibility, electrode 95
fluoride electrode 324–5
fluoride ion conductors 40
fluorite structure
 and conduction 25
 PbF_2 61
fluorite-related ion conductors 38–40
flux, ionic 200, 201
framework hydrate 70
framework structures, and doping 67–9
free volume models 133–6
 extended 134–5
 limitations 135, 136
free volume theory 130
and ion hopping 141
Frenkel defect 8, 82
Frenkel disorder, intrinsic 39
frequency, and conductivity 21–2; see
 also impedance
frequency response analysis 251
frequency-dependent behaviour 141–2
fuel cells, solid oxide 292
Fuoss expression 85
galvanic cell voltage 199
galvanostatic intermittent titration
technique see also GITT
Gibbs energy of formation 216
and composition 221
Gibbs energy of reaction 216–17
Gibbs free energy
 of activation 279
 and electrodes 200–1
 insertion thermodynamics 175
 polymer–salt complexing 120–1
GITT 219–23
for electrode data 223–8
glass transition temperature 80
and motion 98
glassy electrolytes 4–5
charge carrier thermodynamics 84–5
chemical composition 77–9
conductivity measurements 87–90
defect formation 82
fast ion conducting 84–5
ionic salts 79
ionic transport 74–5
kinetics 79–81
microscopic approach 81–4
thermodynamics 79–81
transport above transition temperature
 90–3
weak electrolyte theory 85–7
Gouy–Chapman model 271, 274–5
back to back 276
Gouy–Chapman/Helmholtz model 275–6
graphite 163–4
Grotthuss mechanism 58, 72
ground state, degenerate 242

337
Index

guest

cointercalation 194–5
density 191
intercalation compounds 163; see also lithium
in lithium batteries 311
polyacetylene 233
quest modified bands 168
guest sites see under sites

halflum, as electrolyte 47
halide oxide, and glass conductivity 88
halide salts, ionic enhancement by 76, 78
Hall effect 10
halogens, effect on polyacetylene 231–2
Haven ratio 83
Helmholtz interface model 271–3
Helmholtz/Gouy–Chapman model 275–6
Hinse/Toysed/measurements 154
155–6
hopping 8, 9–10
activation energy 18, 20
conditions for 21
electron neutrality departures 21
polymer electrolytes 128
rates 18–20, 22
solvent-assisted 140–1
timescale 18–19

host

amorphous polymers 98, 106–11
dimensionality 164–5
electronic structure 165–8
layered 164–5, 166, 170–2
hybridisation energy 52
hydrated oxides, as proton conductors 70
hydrogen bonding 57–8
hydrogenos model 52–3

impedance

interfaces 267
low ion concentration 283
multiple mobile ions 284–5
semicircle 252, 267, 268, 269, 282, 284, 285
spectra 288
and surface roughness 287–8
impedance response
electrode 251–3
hoop 251, 252
insertion electrodes 292–3
insertion thermodynamics see thermodynamics of insertion
insulator energy bands 167
intercalation 311
band-filling 186, 187
Cu cell 287–8

expansion during 192
local environment 185
non-electronic 186
polymer electrode similarities 251
staging 191–3
see also host; lattice-gas models; polyacetylene
intercalation compounds 163
1-D host, 3-D sites 165, 166, 169
2-D systems 170–2
3-D structure, 1-D tunnels 169
3-D systems 172–4
lithium 171–2
intercalation electrodes 1, 5, 311–15
discovery 2–3
see also electrodes
interface 5–6
blocking metallic 276–7
Helmholtz model 271–3
investigation methods 266–8
low ion concentration 282–3
non-blocking
complex metallic 288–9
multiple change 283–6
single charge 277–83
non-metal contact models 276
potential 269
interfacial measurement
surface film 286
surface roughness 287–8
intermediate species 290
internal resistance, cell 43
interstitial pair
formation 82
ionic displacement 91–2
interstitiality 8, 9
conduction 29
alkali ion 34, 35–6
indirect 82–3
migration 17
see also mobile ion sublattice
iodine 293–4
I₂–PVP 302, 303
ion
concentration at electrode 225
dilute, and conductivity 21
electrostatic interaction, polymer/salt
dissolution 121
free 126
mobile, low concentration 282–3
thermal vibration 10
triple, motion of 145–6
ion aggregation 127
and molar conductivity 144, 144–5
ion association 126
and dc polarisation 148–53
Index

and molar conductivity 144
polymer electrolytes 128–9, 143–53
ion atmosphere 7, 21
ion clustering 125, 182
ion conduction, fast 84–5
ion coupling 206
ion entropy 179–80
ion flux 203–4, 205
ion hopping see hopping
ion interaction
elastic 187
layered compounds 191–2
long-range 145, 149
short-range 187–8
ion–ion relaxation effects 22
ion migration 147, 148
cooperative 8
electrostatic barrier 20–1
see also interstitiality mechanism
ion movement 199
and segmental motion 99–100
see also Wagner factor
ion pair
dc polarisation linearity 152–3
solvent separated 125
ion retardation 206
ion segregation, PbF₂ 62
ion transport
immobile ion triples 146
microscopic model 140
polymer electrolytes 153–8
and segmental motion 97, 145–6
and viscosity 128
ion trapping 15–16
oxide ion conductors 39
ionic bond introduction, network
modifiers 77
ionic conductivity 53–9
compositional sensitivity 75, 76
defined 10, 53–4, 74
enhancement, glassy electrolytes 76, 78–9
glasses 74–5, 76
high 21
maximisation 12–13, 13
partial 226–7
stoichiometric salts 10–11, 15
thermodynamic link 85
see also random walk theory
ionic coordination 120
ionic diffusion coefficient 54
ionic gap 48
ionic mobility 54
ionic potential, positional variation 50
ionic salts
glassy 79
in glassy electrolytes 76, 78–9
ionic strength 271
ionic transport, vitreous transition
temperature 90–3
ionic transport rate 208
Jonscher’s Universal Law of Dielectric
Response 22
jump frequency 55
kinetic effects 135
Kröger–Vink notation 16
lamellar acid salts 70
lamellar structure, TiSi₂ 311
lanthanides, and polymer–salt complexes 116
LaCrO₃ 321
lattice distortion, polyprrole 241
lattice energy, salt 121, 122
lattice–gas models 164, 179–91
disorder 189–90
electron entropy 180–1
example 181–3
hysteresis 190–1
interaction energies 186–9
ion entropy 179–80
LiₓMo₅Se₈ 181–3
site energies 183–6
law of mass action, and site vacancy 49
layered compounds 170–3
and staging 191–2
lead
PbF₂ 61–3
β′-alumina 24
leucoemeraldine 238–9
line phases 221
linearity limit, dc polarisation 152
LiSiCON 33–4, 67
lithium movements 68
γ-tetrahedral structures 33, 34
lithium
cooporative motion 69
halides 57
hydride spinels 37
LiAlSiO₃ 139
LiClO₄ 122
molar conductivity 144–6
neutral pairs 151–2
PEO cell 150–3
LiCoO₂ 313–14, 315
Li–Li interactions 186
LiₓMo₅Se₈ 181–3
Li₃N 36–7
Li/PEO-LiCF₃SO₃ interface 282–6

339
Index

lithium (continued)
 Li$_2$Sb 211, 212
 partial ion conductivity 227
 Li$_3$SiO$_4$ derivatives 34–6
 α-Li$_3$SiO$_4$ 37–8
 Li$_3$PS$_4$ 171
rutilyte structure 169
salts
 PEO salt 102, 103
 polymer–salt 100–1
solid electrolytes 24
superionic conductor see LISICON
 transition intercalations 312–15
lithium cells
 glass 304–5
 intercalation 311–15
 polymer 305–6, 307
 rechargeable 255–9
 charge–discharge rate 256–7
 charging 256
 energy content 258–9
 self-discharge 257–8
 secondary 47, 305
 solid electrolyte 300–7
lithium ion
 conductivity enhancement 69
 mobility 68–9
 see also LISICON
load levelling 308
localised systems 181
lone-pair electrons, and proton movements 57
Madelung energy 45, 46
magnesium
 MgO, energy level diagrams 45–6
 and polyelectrolytes 115
manganese energy levels 46–7
 mean-field theory 180, 182, 186
 short range 187–8
MEEP 107, 109
memory device 327–9
metal/electrolyte contact 281–2
metastability 174, 215
microbalance studies 246
migration 147, 148
mixed alkali effect 88–9
mixed anion effect 89
mixing enthalpy 79
mobile ion sublattice 7
 disorder creation see doping disorder (α-AgI) 13–15
 see also interstitial
mobility
 general 204
 non-electroactive compound 216
 molar conductivity 143–7
 molar free energy, and conductivity 87
 molybdenum 169
 Mo$_x$Se$_4$ 172, 173
 motion
 crank-shaft 98
 segmental 97, 98–9, 100
 Mott transition 168
NAFION 116
NASICON 24, 31–3, 67
 framework structure 68
 Nerst–Einstein relationship 54, 204
network formers 77
network modifiers 77–8
network polymers 109
NGK, oxygen sensor 322–4
niobium cell 299
NMR, pulsed field gradient 157
 non-blocking electrodes 54–5
 and surface roughness 288
 see also impedance
 non-blocking interface 267, 269
 complex metallic 288–9
 ohmic resistance 223
 Onsager’s equations 203
 optical absorption, and doing monitoring 245
 optical display see electrophotographic display
 optical memory 259
order parameters, order–disorder transition 49
order–disorder transition 49, 59–60
 ormosils 112
overpotential 277, 278
 current 278–9
 multiple mobile charge 284
 resistance 280–1
 surface film 286
oxide ion conductors 38–40, 315–16
oxides
 capacitance 273–4
 hydrated 70
 layered 70
 as network modifiers 77
 oxygen
 bridge breaking 77
 bridging 27
 coordination by 122
 defect insertion 47–8
 guests 164
 layered structures 172, 173
 oxygen reduction, SOFC 317, 318
Index

oxygen sensor 322–5
fluoride electrode 324–5
pumped 322–4
oxides, Bi$_2$MoO$_6$, 64
vacancies
Ba$_3$In$_2$O$_9$, 59
creation 63
pacemakers 301–2
partial occupancy 8n
particle hydrates 70–1
passivation 286
PEO (poly(ethylene oxide)) 96–7, 119, 306
diffraction studies 124
frequency-dependent conductivity 142
methoxy-linked 119–20
molar conductivity 146
(PEO)$_x$: NaClO$_4$, 105
(PEO)$_x$: NaI 104
LiClO$_4$ cell 150–3
see also polymer–salt complexes
aPEO 106–7
percolation pathways 53, 63
pergnanilamine 239
perovskite 174
anion conductivity 39–40
BaInO$_3$, 59
Ca$_2$Fe$_2$TiO$_6$, 64
cavities 313
proton conduction 41
peroxide ion 46, 64
pH change 71–2
phase, metastable 215
phase detection, and electrode discharge
322–3
phase diagram
intercalation expansion 192, 193
Na–S 399
polymer–salt 101–3
ternary structure 194, 195
phase transition 188–9
first order, and disorder 189–90
piggyback rotation 59
plastificed polymer electrolytes 120
plasticizer, polyelectrolyte 112, 115
PMEO (methoxy-linked PEO) 119–20
polarisation 50, 52, 202, 215
and doping 234
polarisation correction 46
polaron level 241
polyacetylene 230–4
conductivity 244
doping mechanism 241–3
doping sites 247
electrode kinetics 247–9
intercalation similarities 233
polyamines 100
polyaniline 238–40
doping mechanism 243–4
polydiisothiophene 245
polyelectrolytes 96, 113–16
chelated 115
cryptand addition 115
plasticiser for 113, 115
role of Mg 115
polyesters 100
polyethers 100
 cyclic, complexed 110
cyclic (ethylene oxide) see PEO
polymer defined 95–6
heterocyclic 234–7
kinetics 249–54
reversible doping 237–8
polymer displays see electrochromic displays
polymer electrodes 3
applications 235
diffusion enhancement 254–5
see also electrodes
polymer electrolytes 3–4, 5, 95–6, 119
cation solvation 123–4
dc polarisation 147–53
ion association 124–7, 143–53
ion transport 153–8
ionic conduction mechanism 128–43
configurational entropy model 136–8
dynamic response 139–43
free volume models 133–5
pressure dependence 129–38
temperature dependence 129–38
macroscopic requirements 108, 109
plastificed 120
requirements 100
salt/polymer dissociation 129, 143–7
solvent requirements 122–3
see also polymer–salt complexes
polyelectrolytes
polymer host, dielectric constant 124
polymer/lithium cells 305–6, 307
polymer/salt complexes 96–112
amorphous 98, 119–20
coordinated 112
crosslinking 108–9
formation 100–4
host polymers 106–11
lanthanides 116
motion 97, 98–9
polymer molecule addition 109–10
proton conductors 111–12
salt diffusion 102, 104
solvation mechanism 120–9

341
Index

polymer/salt complexes (continued) 113–14
structure 104–6
polymerisation, electrochemical 234–7
polyphosphazenes 107–8, 113
polypropylene 235, 237
doping 240–1, 249–51
impedance response 253
lithium batteries 255–9
microbaceous studies 246, 247
polysiloxanes 113–14
polystyrene 255, 237
potassium, β-alumina 24
potential
double-well 57
interfacial 269
polymer electrolyte 158–60
see also chemical potential
potential barriers (wells) 6
α-Agl 15, 16–17
NaCl 16–17
potential extremes, and blocking 266
potential sweep 267
potentiometric measurement 292
potentiometric sensor 321
potentiostat 267
proton conductors 40–1
proton displacements 58
proton movements 57–9
pseudobinary compounds 174
pseudophase diagram see phase diagram
pumping cell 322–4
PVP 302, 303
quadrupoles, in glasses 88
quenching 79
enthalpy/entropy 89–90
glass transition temperature 80
radio tracer measurements 156–7
Randles circuit 251–2
random walk theory 10
deficiencies 56
and doping 12, 13
and ionic conductivity 54–6
reaction rate, parabolic 227, 228
derox reaction 234
reference electrode 277, 278
relaxation, electrochemical see GITT
relaxation effect
ion–ion 22
polymer–salt complexes 139, 140
Randles circuit 251, 252
in WLF equation 129–30
relaxation energy, and ionic jumps 50
relaxation rate, free volume model 133–4
relaxation techniques, and hopping rates 19
relaxation time
configurational entropy model 136–7
structural 79–80, 90, 91
residence time 19, 20
resistance
and overpotential 280–1
and surface film 286
resistivity, lattice-gas models 185–6
rocking chair cells 196
roughness, and interfacial measurement 287–8
rubidium
RbAgI4 325–6
Rb2Cu4I5Cl13 297–8
Rbl–AgI cell 295
solid electrolytes 24
rutile 169, 170
salt precipitation 127
salting-out 127
Sanyo memory device 327–9
Schottky defect 8
screening 52–3, 168, 186
segmental motion 95
timescale 139
triple ion transport 145–6
selenium 169
semiconductor energy bands 167
guest modified 168
semiconductors 210
sensors
internal resistance 43
solid electrolyte 321–5
separators, solid electrolytes 43
shielding 214
shift factor (WLF) 130
Shirikawa method 230–1
siloxane 108
silver
Ag/Ag-Rbl impedance 282
AgI 61
order–disorder transformation 49
α-Agl 13–15
β-Agl entropy 15
Ag2IWO4
memory device 328, 329
cell 296
AgS 212
Ag3S1 solid electrolyte 293–4
AgI conductors, early work 2
β-alumina 24
battery electrolytes 293
interface equilibrium 265
in solid electrolytes 23

342
Index

temperature 66

doping 38–9, 40

ionic 7

oxide 316

PEO 97

polyacrylene 244

polymer–salt complexes 99

WLF form 130, 132–3

derivatives 178

hopping rate 19–20

phase change, Bi₂MoO₆ 64

salt precipitation 127

SOFC current 321

structural relaxation time 79–80

see also thermal energy; WLF equation

tetrahydrofuran 125

thermal energy

and hydrogen bonding 58

and ionic jumps 50, 52

see also temperature

thermal vibration

charge distribution 271

dissociation 81–2

thermodynamic factor 204

thermodynamic models of conductivity

87–90

thermodynamic property measurement

292

thermodynamics

electrode 216–18

and ionic conductivity 85

thermodynamics of insertion 174–9

temperature measurement 178–9

voltage and chemical potential

175–8

ThO₂ structure 38

Thuringer glass 74

tie lines 194

titanium disulphide 311, 315

transference number 153, 154, 155, 206, 208

transistors 229

transition

continuous 178

first order 177

staged structures 193

transition metal hosts see host

transition metals, as electrolytes 47

transition state theory 279

transition temperature 90, 91

translational piggyback motion 58–9

transport, electrolyte 153–8

transport number 153, 154

and electrolytes 39

for solid electrolyte cells 44

sintering temperature 48–9

site occupancy 49

site residence time 19, 20

sites, 3-D 165, 166, 169

dimensionality 164

guest 154–5

normal/interstitial 48

smart windows 260–1, 326–7

Snoek effect 19

sodium

Na–S phase diagram 809

Na₂Zr₂PS₅O₁₁ 24

solid electrolytes 24

see also alumina; NASICON

sodium ion conduction 23, 24

sodium–sulphur batteries 2, 307–10

solid electrolyte see crystalline electrolyte;

electrolyte

solid oxide fuel cells (SOFC) 315–21

Argonne fuel cell 315, 320–1

Westinghouse tubular cell 317–20

solid state electrochemistry, history 1–4

solitons, native 242, 243, 243–4

solubility, polymer–salt 101

space charge 203

spectra

EXAFS 106

vibrational, PEO-complex 105

spectroscopy, polymer electrolytes 126

spinels 174

β-aluminas 26–7, 67

lithium hydride 37

stabiliser ions, β-aluminas 26

stability (chemical), for cells 44

stability window 220

stacking sequence, β-aluminas 27, 27–8,

28–9

staging 312

steric hindrance 106

stoichiometric compounds, and

electrodes 208–9

Stokes–Einstein equation 130, 133

structural transformation: see doping;

order–disorder transition

sublattice, mobile ion 7

sublattice melting 49

sulphides, as network modifiers 77

surface charge 270

surface film, and interfacial measurement

287

Tafel equation 279, 284

Tafel slope 290

Tamman's tarnishing constant 207

tarnishing, and electrode reactions 207

teeter-totter cells 196

343
Index

trapping effect, dopant 15–16
trapping energy 52–3, 53
and doping 63
WO₃, electrochromic 325–6
tunnels 169, 170

undoping 257–8

vacancies
and conduction 28, 29
conduction planes 28
creation 11–12; see also doping
migration 8, 9
vacuum energies 45
V₂O₅ 312, 313
vanadium bronze cell 296
vehicular motion 58–9
viscosity 130, 131
electrolyte 128
free volume models 133
vitreous transition temperature 80
ionic transport 90–3
Vogel–Tamman–Fulcher equation see VTF equation

voltage
cell equilibrium 218, 220–1
and electrode composition 224
time dependence 225–6
see also potential under cell
voltage equilibrium measurement 175, 176
voltammogram 247, 248, 249, 250
VTF (Vogel–Tamman–Fulcher) equation 98
VTF law 80

VTF behaviour 90–1, 91–2
VTF form
configurational entropy model 137, 137–8
free volume 133

Wagner factor 204, 206, 208, 209–12, 209, 226
and coulometric titration 222
Warburg, E. 2
Warburg impedance 268
absence 282
water
defect insertion 47–8
inserted 64
ion transport 100
proton conductors 70–2
weak electrolyte theory 85–7
Westinghouse tubular cell 317–20
WGL cell 303–4
WLF (Williams–Landel–Ferry) equation 129–30, 131, 132
configurational entropy model 137, 138
working electrode 277, 279

x-ray 105, 183
EXAFS 123–4

zirconia 317
oxygen sensor 322, 323
pumped 322–4
stabilised 63
zirconium, as electrolyte 47

344