Index

absolute equilibrium distributions 181
active region (or plage) 328
  filament 331
magnetic field 330
adiabatic change of state 10
adiabatic temperature gradient 317, 320
Alfvén continuum 61
Alfvén effect 192, 194, 199
Alfvén velocity 51
Alfvén wave
  shear 51
  compressional 52
nonlinear 193
algebraic growth law
  of tearing mode 110
  of resistive kink mode 163
aligned states 193
  spectra of 306–8
ambipolar diffusion 283
Ampère’s law 9
analogy
  of vorticity and magnetic field 233
  of vorticity and magnetic potential
  236
anomalous electron viscosity 22, 253
anomalous (or turbulent) resistivity 173, 273
  anomalous transport 282, 308
arcade, magnetic 331, 336
ASDEX 285
aspect ratio
  of current sheet 130

of toroidal plasma column 31
axisymmetric equilibrium 30
ballooning criterion 68
ballooning mode 68, 286
Bennet pinch 41
Bessel function model, 39 292
  modified 296
beta (β), plasma 26
  poloidal 27
beta limit
  due to ballooning modes 68
  due to kink mode 70
bifurcation of equilibrium 86
boundary conditions 57–8, 137, 143
boundary layer problem 75, 137
Boussinesq approximation 319
bubble, magnetic (or vacuum) 95–101
buoyancy 317
  magnetic 329
cascade, direct and inverse 183–5
Cauchy–Riemann relations 41
charge density 9
chromosphere 326
closure equations 311
coalescence instability 157
coalescence of magnetic islands (flux tubes) 156–9
coherent structure 185
collapse (or crash), sawtooth 240, 242, 249
compressibility 11, 83, 322
conducting wall 43

372
Index

confinement
  of energy 247
  of impurities 272
confinement time 247
conservation
  of cross-helicity 13, 179
  of energy 12, 179
  of entrophy 180
  of kinetic helicity 180
  of magnetic flux 13
  of magnetic helicity 12, 179
  of mean square potential 180
conserved quantities, ideal 179
constant-μ force-free field 38 40
constant-ψ approximation 73
continuity equation 10
continuous spectrum 61
convection,
  magneto- 324
  thermal 319
convection zone 317
corona 326
Cowling’s theorem 304
critical beta 264
critical Δ 84
critical density 263
critical plasma current 263
cross-helicity 13
current density 9
current-driven modes 58
current filament, see filament
current profile 27
current sheet, dynamic 129
curvature, magnetic field line
  cylindrical 64
effect on tearing mode 83
  favorable and unfavorable 58
toroidal 67
cylindrical equilibrium 26
  cylindrical tokamak approximation 64
density limit 263–4
detailed balance relations 181
diamagnetic effects 87, 257
diamagnetic and paramagnetic poloidal
  current 27
diffusion,
  ambipolar 283
  resistive 127
  turbulent 282
diffusion region 133
diffusivity,
  eddy, see eddy viscosity
  magnetic 22
  thermal 320
direct interaction approximation (DIA) 212
displacement vector 50
disruption,
  current (or major) 265, 270
  sawtooth (or internal) 241
  soft and hard 265
dissipation,
  resistive (or ohmic) 22
  viscous 22
dissipation operator, order of 204
dissipation range 200
dissipation rate
  of cross-helicity 186
  of energy 186
  of entrophy 186
  of magnetic helicity 186
  of mean square potential 186
divertor 282
Doublet(D)III-D 239
double tearing mode 273
downflow (or downdraft) 322
downstream region (or cone) 134
driven reconnection 132
dynamic alignment 193
dynamo
  fast and slow 234
  helical 304
  kinematic 191
  turbulent 189, 309
eddy-damped quasi-normal Markovian
  (EDQNM) approximation 213
eddy turnover time 197
eddy viscosity 212
374

Index

edge-localized mode (ELM) 281–7
electron cyclotron emission (ECE) 241
electron cyclotron resonance heating (ECRH) 256
electron gyro-radius 22
electron heat conductivity 250, 327
electron inertia 253
electron viscosity 22
elliptical plasma cylinder 35
eellipticity of equilibrium 33
Elsasser variables 193
emerging flux 330
energy conservation 12, 179
energy integral δW, 54
different forms of 56, 58
energy principle 54
of reduced MHD 59
resistive 81–3
energy spectrum
for MHD turbulence 199, 207
for 2-D Navier-Stokes turbulence 198
for 3-D Navier-Stokes turbulence 198
equilibrium equation, axisymmetric 30
cylindrical 26
helical 29
plane 30
ergodic field lines 45
erupting filament 333, 346
Euler potentials 15
E × B drift 168
external kink mode 66
faculae 328
Fadeev equilibrium 41
Faraday rotation 257
Faraday’s law 10
fast magnetosonic wave 52
fast reconnection 127
field line curvature, unfavorable 58
field line velocity 168
field-reversal parameter 294
filament (or prominence), active-region 331
quiescent 346
fishbone oscillation 240
five-minute oscillation 318
flare, compact (or simple loop) 333
two-ribbon 333
flare classification 333
flash phase of flare 333
flatness factor 232
flux conservation 13
flux coordinates 47, 82
flux function 29
forced reconnection, see driven reconnection
force-free magnetic field 38
Fourier modes 178
free-boundary problem 43
frozen-in condition 138
F–θ diagram 295
fully developed turbulence 175
Galilean invariance, violation of 199
Galilean transformation 9
gauge invariance 12
Gaussian (≈normal) probability distribution 186, 226
generalized differential equation 306, 337
Gibbs distribution 181
Grad-Shafranov equation 30
granulation 318
granule 323
gravitational force 9, 116
growth rate, of ballooning mode 69
of interchange mode, resistive 84
of internal kink mode, nonlinear 163
resistive 78–80
toroidal 70
of tearing mode, nonlinear 110
toroidal 83
gyro-frequency 21
gyro-radius 21
Hain-Lüst equation 60
Hz radiation 285, 328
Index

Hamada coordinates 82
heat flux 320
heating
  of corona 326
  of tokamak plasma 247
helical flux function 29
helical magnetic field 29, 244
helically symmetric equilibrium 28
helicity, kinetics 13
magnetic 12
helmet configuration 346
hierarchy of moments 210
homogeneous turbulence 177
hoop force 33
Hugill diagram 264
hydrodynamic turbulence, see Navier-Stokes turbulence
hyperresistivity 22

ideal external (or outer) region 133
ideal fluid 21
ideal gas law 10
ideal invariants 179-80
impulsive phase of flare 333
impurity radiation 272
incompressibility 10
induction equation, see Faraday’s law
inertial range 196
inertial skin depth 254
instability,
ballooning 68
convective (or thermal) 69, 317
current-driven 58, 174
double tearing 273
flute (or interchange) 63
kink 65
  external 66
  internal 65, 69
resistive 77-80
localized 63, 67
pressure-driven 58
Rayleigh-Taylor 69
resistive 71
rippling 83
tearing 73

interchange mode 63, 67
interior, solar 317
intermittency 218
inverse variable technique 44
inviscid fluid 179
ion cyclotron resonance heating (ICRH) 249
ion gyro-radius 21, 283
Iroshnikov-Kraichnan spectrum 199
island overlap 45
island width 72, 277
islands, magnetic 72
algebraic growth of 110, 116, 163

JET 239
jump conditions 134
$\mathbf{j} \times \mathbf{B}$ force, see Lorentz force

Kadomtsev model of sawtooth collapse 242-6
kinematic dynamo 191
kink mode,
  external,
    linear 65
    nonlinear 90
  internal ideal,
    linear 65
    nonlinear 103
toroidal 69
internal resistive,
  linear 77
  nonlinear 159

Kolmogorov-Arnold-Moser (KAM) theorem 45
Kolmogorov micro-scale 201
Kolmogorov-Obukhov constant 198
Kolmogorov spectrum 198
Kruskal-Shafranov criterion 66
kurtosis, see flatness factor

Lagrangian history direct interaction
  approximation 198, 212
Langevin equation 213
large-aspect-ratio approximation 64
limiter 43
linearized MHD equations 50
linear pinch 26
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>lithium deficiency 318</td>
</tr>
<tr>
<td>localized modes 63, 67</td>
</tr>
<tr>
<td>log-normal theory 219</td>
</tr>
<tr>
<td>loop,</td>
</tr>
<tr>
<td>coronal 331</td>
</tr>
<tr>
<td>post-flare 333</td>
</tr>
<tr>
<td>twisted 336</td>
</tr>
<tr>
<td>loop voltage 263, 269</td>
</tr>
<tr>
<td>Lorentz force 9</td>
</tr>
<tr>
<td>Lundquist number 23</td>
</tr>
<tr>
<td>Mach number 130</td>
</tr>
<tr>
<td>magnetic axis 30</td>
</tr>
<tr>
<td>magnetic bubble, see bubble</td>
</tr>
<tr>
<td>magnetic diffusivity 22</td>
</tr>
<tr>
<td>magnetic field line 14</td>
</tr>
<tr>
<td>magnetic flux conservation 13</td>
</tr>
<tr>
<td>magnetic flux expulsion 324</td>
</tr>
<tr>
<td>magnetic flux tube 14</td>
</tr>
<tr>
<td>magnetic helicity, 12</td>
</tr>
<tr>
<td>generalized 167, 291</td>
</tr>
<tr>
<td>magnetic neutral point 72</td>
</tr>
<tr>
<td>magnetic pitch 300</td>
</tr>
<tr>
<td>magnetic pressure 26</td>
</tr>
<tr>
<td>magnetic reconnection, see reconnection</td>
</tr>
<tr>
<td>magnetic Reynolds number 23</td>
</tr>
<tr>
<td>magnetic shear 27</td>
</tr>
<tr>
<td>magnetic surface 28</td>
</tr>
<tr>
<td>magnetoconvection 233, 324</td>
</tr>
<tr>
<td>magnetohydrodynamic (MHD) equations,</td>
</tr>
<tr>
<td>dissipative 22</td>
</tr>
<tr>
<td>ideal 11</td>
</tr>
<tr>
<td>waves 51</td>
</tr>
<tr>
<td>magnetosonic mode, fast and slow 52</td>
</tr>
<tr>
<td>magnetostatic equilibrium 24</td>
</tr>
<tr>
<td>magnetotail of the earth 164–6</td>
</tr>
<tr>
<td>main phase of flare 333</td>
</tr>
<tr>
<td>markovization 213</td>
</tr>
<tr>
<td>mean field electrodynamics 189</td>
</tr>
<tr>
<td>mean square magnetic potential 180</td>
</tr>
<tr>
<td>memory time 211</td>
</tr>
<tr>
<td>Mercier's stability criterion 68</td>
</tr>
<tr>
<td>micro-current sheets 215–18</td>
</tr>
<tr>
<td>micro-scale,</td>
</tr>
<tr>
<td>Kolmogorov 201</td>
</tr>
<tr>
<td>modified Kolmogorov 201</td>
</tr>
<tr>
<td>Taylor 202</td>
</tr>
<tr>
<td>minimum energy theorem 187, 188, 193</td>
</tr>
<tr>
<td>mixing length 320</td>
</tr>
<tr>
<td>multi-helicity dynamics 275</td>
</tr>
<tr>
<td>multi-variate normal distribution 182</td>
</tr>
<tr>
<td>Navier-Stokes equation 233</td>
</tr>
<tr>
<td>Navier-Stokes turbulence 185, 198</td>
</tr>
<tr>
<td>negative resistivity 278</td>
</tr>
<tr>
<td>negative voltage spike 26</td>
</tr>
<tr>
<td>network field in the photosphere 329</td>
</tr>
<tr>
<td>neutral point, see magnetic neutral point</td>
</tr>
<tr>
<td>neutral sheet 71</td>
</tr>
<tr>
<td>normal mode analysis 50</td>
</tr>
<tr>
<td>normal (= Gaussian) probability distribution 182</td>
</tr>
<tr>
<td>Novikov's condition 222</td>
</tr>
<tr>
<td>null, of magnetic field 170</td>
</tr>
<tr>
<td>null-null line 171</td>
</tr>
<tr>
<td>ohmic dissipation 22</td>
</tr>
<tr>
<td>ohmic heating 250</td>
</tr>
<tr>
<td>Ohm's law 10, 22</td>
</tr>
<tr>
<td>O-point 72</td>
</tr>
<tr>
<td>parallel current 58</td>
</tr>
<tr>
<td>parallel flow 130</td>
</tr>
<tr>
<td>parallel heat conductivity 250, 327</td>
</tr>
<tr>
<td>paramagnetic pinch velocity 307</td>
</tr>
<tr>
<td>paramagnetic poloidal current 27</td>
</tr>
<tr>
<td>permeability of the vacuum $\mu_0$ 7</td>
</tr>
<tr>
<td>Petschek's reconnection model 133</td>
</tr>
<tr>
<td>photosphere 326</td>
</tr>
<tr>
<td>pinch,</td>
</tr>
<tr>
<td>cylindrical 26</td>
</tr>
<tr>
<td>reversed-field (RFP) 289</td>
</tr>
<tr>
<td>sheet 25</td>
</tr>
<tr>
<td>theta ((\theta)) 26</td>
</tr>
<tr>
<td>Z - 26</td>
</tr>
<tr>
<td>pinch parameter 295</td>
</tr>
<tr>
<td>plage, see active region</td>
</tr>
<tr>
<td>plasma frequency 22</td>
</tr>
<tr>
<td>plasma temperature 10, 250, 327</td>
</tr>
<tr>
<td>poloidal beta 27</td>
</tr>
</tbody>
</table>
poloidal field 30
poloidal mode number 60
post-flare loops 333
potential energy $\delta W$ 54
Prandtl number, 321
magnetic 233
precursor oscillation 242, 265, 285
predisruption phase 265, 270
preflare phase 333
prominence, see filament
quadratic invariant 179
quasi-linear approximation 87–90
quasi-neutrality 9
quasi-normal approximation 211
radiation loss 264, 272
radiative interior of the sun 317
rational surface 16
Rayleigh number 321
Rayleigh-Taylor instability 69, 319
reconnection,
complete 242
driven 132
due to electron inertia 254
fast and slow 127
due to hyperresistivity 253
partial 257
reconnection models, quasi-ideal 132
reconnection rate 130
reduced energy spectrum 208
reduced MHD equations 17
renormalization group theory
for turbulence 209
resistive instability, see instability
resistive layer 74
resistivity,
anomalous 173, 279
collisional (or classical) 250
resonant perturbation 45
resonant surface 71
reversed-field pinch (RFP) 289
Reynolds number, 23, 176
kinetic 23, 176
magnetic 23, 176
Taylor micro-scale 202
rippling mode 83
rotational transform 16, 27
rugged invariants 181
runaway electrons 270
safety factor 27
sawtooth,
compound 249
giant 247
monster 247
normal 240
sawtooth collapse (or crash), 240
partial 249
selective decay 185
self-organization 185
semi-implicit method 20
separator 171
separatrix 72
Shafranov shift 33
shear Alfvén wave 51
shear, magnetic 27
sheet pinch, 25
corrugated 42
single-helicity approximation 87, 271,
301
singular surface, see resonant surface
skewness factor 232
slow magnetosonic wave 53
slow mode shock 134
soft X-radiation (SX) 240
Solow equilibrium 32
sound wave 53
spectrum,
dissipation range 202
energy 196–209
inertial range 197
magnetic helicity 200
mean square potential 200
vorticity 233
spectrum, of eigenvalues 50
spicule 328
stellarator 46
stellarator expansion 46
stochastic field lines 45
stratification 319
stream function 18
structure functions 221
Index

superadiabatic temperature gradient 317
supergranulation 324
surface current 58, 96
Suydam's criterion 64
symmetry,
  continuous 28
  helical 28
  rotational (or axisymmetric) 30
  translational (or plane) 30
Szyrkowski's current sheet solution 138
Taylor micro-scale 202
Taylor micro-scale Reynolds number 202
Taylor's theory of magnetic relaxation 290
tearing mode (or instability),
  cylindrical 76
  nonlinear
  finite beta 114–17
  low beta 107–14
  plane 74–5
toroidal 83
tearing mode of Sweet-Parker sheet 152–6
TFTR 260
thermal convection 319–21
thermal instability 246
theta(θ)-pinch 26
tokamak equilibrium 42
tokamak ordering 64
toroidal curvature 67
toroidal mode number 65
trial (or test) function 56
turbulence,
  homogeneous isotropic 177
  ideal truncated 179–83
  comparison Navier-Stokes and MHD 185
turbulent dissipation
  in 2-D MHD 214–18
turbulent dynamo 189–92, 309–12
turbulent resistivity 279
turbulent viscosity 279
two-point closure theory 211
two-ribbon flare 333
universal energy spectrum 203
upstream region 129
vacuum magnetic energy 56, 94
viscosity,
  eddy 212
  kinematic 22
  turbulent 279
voltage, see loop voltage
vortex tube 233
vorticity magnetic field analogy 233
wall stabilization 59, 297
waves, MHD 51
Woltjer invariant 14
X-point 72
Z-pinch 26