This volume in the highly respected Cambridge History of Science series is devoted to the history of science in the Middle Ages from the North Atlantic to the Indus Valley. Medieval science was once universally dismissed as nonexistent – and sometimes it still is. This volume reveals the diversity of goals, contexts, and accomplishments in the study of nature during the Middle Ages. Organized by topic and culture, its essays by distinguished scholars offer the most comprehensive and up-to-date history of medieval science currently available. Intended to provide a balanced and inclusive treatment of the medieval world, contributors consider scientific learning and advancement in the cultures associated with the Arabic, Greek, Latin, and Hebrew languages. Scientists, historians, and other curious readers will all gain a new appreciation for the study of nature during an era that is often misunderstood.

David C. Lindberg is Hilldale Professor Emeritus of the History of Science and past director of the Institute for Research in the Humanities at the University of Wisconsin–Madison. He has written or edited a dozen books on topics in the history of medieval and early-modern science, including *The Beginnings of Western Science* (1992). He and Ronald L. Numbers have previously coedited *God and Nature: Historical Essays on the Encounter between Christianity and Science* (1986) and *When Science and Christianity Meet* (2003). A Fellow of the American Academy of Arts and Sciences, he has been a recipient of the Sarton Medal of the History of Science Society, of which he is also past president (1994–5).

Michael H. Shank is Professor of the History of Science at the University of Wisconsin–Madison. He is the author of “Unless You Believe, You Shall Not Understand”: Logic, University, and Society in Late Medieval Vienna (1988); the editor of *The Scientific Enterprise in Antiquity and the Middle Ages: Readings from Isis* (2000); the coeditor, with Peter Harrison and Ronald L. Numbers, of *Wrestling with Nature: From Omens to Science* (2011); and the author of numerous articles in edited collections and scholarly journals.
THE CAMBRIDGE HISTORY OF SCIENCE

General editors
David C. Lindberg and Ronald L. Numbers

volumes 1. Ancient Science
Edited by Alexander Jones and Liba Chaia Taub

volumes 2. Medieval Science
Edited by David C. Lindberg and Michael H. Shank

volumes 3. Early Modern Science
Edited by Katharine Park and Lorraine Daston

volumes 4. Eighteenth-Century Science
Edited by Roy Porter

volumes 5. The Modern Physical and Mathematical Sciences
Edited by Mary Jo Nye

volumes 6. The Modern Biological and Earth Sciences
Edited by Peter J. Bowler and John V. Pickstone

volumes 7. The Modern Social Sciences
Edited by Theodore M. Porter and Dorothy Ross

volumes 8. Modern Science in National and International Context
Edited by David N. Livingstone and Ronald L. Numbers

David C. Lindberg is Hilldale Professor Emeritus of the History of Science and past director of the Institute for Research in the Humanities at the University of Wisconsin–Madison. He has written or edited a dozen books on topics in the history of medieval and early-modern science, including *The Beginnings of Western Science* (1992). He and Ronald L. Numbers have previously coedited *God and Nature: Historical Essays on the Encounter between Christianity and Science* (1986) and *When Science and Christianity Meet* (2003). A Fellow of the American Academy of Arts and Sciences, he has been a recipient of the Sarton Medal of the History of Science Society, of which he is also past president (1994–5).

Ronald L. Numbers is Hilldale Professor of the History of Science and Medicine at the University of Wisconsin–Madison, where he has taught since 1974. A specialist in the history of science and medicine in the United States, he has written or edited more than two dozen books, including *The Creationists* (1992, 2006), *Science and Christianity in Pulpit and Pew* (2007), *Galileo Goes to Jail and Other Myths about Science and Religion* ed.) (2009), and the forthcoming *Science and the Americans*. A Fellow of the American Academy of Arts and Sciences and a former editor of *Isis*, the flagship journal of the history of science, he has served as the president of the American Society of Church History (1999–2000), the History of Science Society (2000–1), and the International Union of History and Philosophy of Science/Division of History of Science and Technology (2005–9).
CONTENTS

List of Illustrations page xv
Notes on Contributors xvii
General Editors' Preface xxiii

Introduction 1
MICHAEL H. SHANK AND DAVID C. LINDBERG

1 Islamic Culture and the Natural Sciences 27
F. JAMIL RAGEP
The Historical and Cultural Background 29
The Translation of Greek Natural Philosophy into Arabic:
 Background and Motivations 34
Translators and Their Patrons 38
The Natural Philosophy Tradition in Islam 40
Defenders and Practitioners of Natural Philosophy 45
The Theological (kalām) Approach to the Phenomenal World 53
Transformations and Innovations in Islamic Natural Philosophy 57

2 Islamic Mathematics 62
J. L. BERGGREN
Sources of Islamic Mathematics 62
Mathematics and Islamic Society 64
The Social Setting of Mathematics in Medieval Islam 67
Arithmetic 69
Algebra 71
Indeterminate Equations 74
Number Theory 74
Combinatorics 77
The Tradition of Geometry 77
Foundations of Geometry 80
Contents

3 The Mixed Mathematical Sciences: Optics and Mechanics in the Islamic Middle Ages 84
ELAHEH KHEIRANDISH

3.1 Highlights 86
3.2 Heritage 90
3.3 Transmission 91
3.4 Developments: Context 94
3.5 Developments: Optics 97
3.6 Developments: Mechanics 103
3.7 Conclusion 107

4 Islamic Astronomy 109
ROBERT G. MORRISON

4.1 The Applications of Astronomy: Time, Prayer, and Astrology 111
4.2 The Astrolabe 114
4.3 Transmission and Translations 116
4.4 Observational Astronomy 118
4.5 Ptolemy’s Models and Ensuing Criticisms of the Ptolemaic Equant Hypothesis 121
4.6 Astronomy and Natural Philosophy 124
4.7 Planetary Theory in the Islamic West 127
4.8 The Maragha Observatory: Planetary Theory and Observational Astronomy 129
4.9 Astronomy in Religious Scholarship 135
4.10 Developments in the Fifteenth Century and Thereafter 137

5 Medicine in Medieval Islam 139
EMILIE SAVAGE-SMITH

5.1 Pre-Islamic Medicine 140
5.2 Early Islamic Medicine 141
5.3 The Learned Medical Tradition 145
5.4 Ophthalmology 151
5.5 Pharmacology 152
5.6 Anatomy 153
5.7 The Practice of Medicine 157
5.8 Theory versus Practice 162

6 Science in the Jewish Communities 168
Y. TZVI LANGERMAN

6.1 The Emergence of a Hebrew Scientific Literature 169
6.2 Survey by Community 171
6.3 Survey by Discipline 174
6.4 The Impact of Science on Jewish Thought 184
Contents

7 Science in the Byzantine Empire
 ANNE TIHON
 Mathematics 190
 Astronomy 192
 Astrology 195
 Music Theory 199
 Geography 200
 Optics and Mechanics 201
 Alchemy and Chemistry 202
 Botany 203
 Zoology 204
 Conclusion 205

8 Schools and Universities in Medieval Latin Science
 MICHAEL H. SHANK
 From Benedictine Expansion to the Urban Schools 207
 The Rise of Guilds of Masters and Students 209
 The University as Guild 214
 The Study of Nature and the Faculty Structure 217
 Teaching and Learning: Lectures, Commentaries, and Disputations 219
 Clerical Status and Social Parameters 222
 The Expansion of the University 224
 Curricular Tradition, Innovation, and Specialization 228
 The Circulation of Knowledge about Nature 230
 Beyond the Halls of the University 236
 Conclusion 238

9 The Organization of Knowledge: Disciplines and Practices
 JOAN CADDEN
 The Era of the Liberal Arts: Fifth to Twelfth Centuries 240
 Cultural Confluences and Transformations of the Arts: Twelfth Century 242
 The Era of the Faculties of Arts: Thirteenth to Fourteenth Centuries 250
 Conclusion 254

10 Science and the Medieval Church
 DAVID C. LINDBERG
 Methodological Precepts 268
 Augustine and the Handmaiden Formula 269
 Early-Medieval Science and the Recovery of the Classical Tradition 271
 Accommodation in the Thirteenth Century 274
 The Course of Events 276
 Late-Medieval Developments 278
 Concluding Generalizations 280
11 Natural Knowledge in the Early Middle Ages 286

 STEPHEN C. MCCLUSKEY

 Antique Learning in Ostrogothic Italy 286
 Natural Knowledge in the Visigothic Court 287
 Miracles and the Natural Order 289
 Christian Feasts and the Solar Calendar 292
 Computus and the Date of Easter 294
 Monastic Timekeeping 298

12 Early-Medieval Cosmology, Astronomy, and Mathematics 302

 BRUCE S. EASTWOOD

 Cosmology 302
 Astronomy 309
 Arithmetic and Geometry 318

13 Early-Medieval Medicine and Natural Science 323

 VIVIAN NUTTON

 Christianity and Pagan Medicine 323
 The Decline of Medicine? 326
 The Triumph of Galenism in the East 327
 Late Latin Texts on Medicine and Natural Science 332
 Medicine and Natural Science in and out of the Monastery 336

14 Translation and Transmission of Greek and Islamic Science to Latin Christendom 341

 CHARLES BURNETT

 The Course of the Translations 341
 Goals 345
 Greek or Arabic? 347
 Sources 349
 Patrons 351
 Translators 354
 Techniques 356
 From Translatio studii to Respublica philosophorum 363

15 The Twelfth-Century Renaissance 365

 CHARLES BURNETT

 The Idea of a Renaissance 365
 The Systematization of Administration and Learning 367
 The Recovery of Roman and Greek Culture 368
 The Widening Boundaries of Philosophia 370
 The Rise of Specialization 372
 The Refinement of Language 375
 The Development of Methods of Scientific Argument 377
 The Potential of Man 383
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Medieval Alchemy</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>William R. Newman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Origins of Medieval European Alchemy</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>The Thirteenth Century</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Albertus Magnus</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Roger Bacon</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>The Summa Perfectionis of “Geber”</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Alchemy in the Late Middle Ages</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>402</td>
</tr>
<tr>
<td>17</td>
<td>Change and Motion</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>Walter Roy Laird</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change and Motion</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Place and Time</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Motion in a Void</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>Bradwardine’s Rule</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>Falling Bodies and Projectiles</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Projectile Motion and the Theory of Impetus</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Acceleration of Falling Bodies</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>The Oxford Calculators and the Mean-Speed Theorem</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>Celestial Movers</td>
<td>432</td>
</tr>
<tr>
<td>18</td>
<td>Cosmology</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Edward Grant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the World Created or Eternal?</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>The Two Parts of the World: Celestial and Terrestrial</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Aristotle and Ptolemy</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>The Number of Orbs and the Order of the Planets</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>The Theological Spheres</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Celestial Motions and Their Causes</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Dimensions of the World</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Existence Beyond the Cosmos</td>
<td>452</td>
</tr>
<tr>
<td>19</td>
<td>Astronomy and Astrology</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>John North</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planetary Astronomy</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>Observation and Calculation</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>The Alfonsine Tables</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>Critics of the Old Astronomy</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Astrology</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>Court Astrology and Patronage</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Popular Astrology</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>Appendix: The Ptolemaic Theory of Planetary Longitude as Applied in the Middle Ages</td>
<td>478</td>
</tr>
<tr>
<td>20</td>
<td>The Science of Light and Color, Seeing and Knowing</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>David C. Lindberg and Katherine H. Tachau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greek Beginnings</td>
<td>486</td>
</tr>
</tbody>
</table>
Contents

The Islamic Contribution 491
The Beginnings of Perspectiva in Thirteenth-Century Europe 497
The Baconian Synthesis 501
The Rainbow and Its Colors 505
Colors, Appearances, and the Knowability of the World 507
The Diffusion of Perspectiva After Roger Bacon 509

21 Mathematics 512
A. George Molland
Boethius and the Early Middle Ages 513
Semiotic Considerations 514
From Boethius to the Twelfth-Century Renaissance 516
The Twelfth Century 517
Doing Mathematics: Leonardo of Pisa 520
Considering Mathematics: Jordanus de Nemore and the Universities 523
Ratios and Proportions 527
Conclusion 530

22 Logic 532
E. Jennifer Ashworth
Background: Texts and Institutions 533
The Nature of Logic 536
Demonstration and Scientific Method 537
New Techniques: Sophismata and Obligations 538
Signification 541
Supposition 542
Compounded and Divided Senses 544
Syncategoremata; Proofs of Terms 545
Conclusion 547

23 Geography 548
David Woodward
Scholarly Mathematical Geography and the Worldview 548
Descriptive Geographies of the World and Mappaemundi 553
Local Descriptions and Measurements of Land and Property 560
Wayfinding and Navigation with Itineraries and Charts 562
Conclusions 567

24 Medieval Natural History 569
Karen Meier Reeds and Tomomi Kinukawa
Natural History's Place in the Medieval Intellectual World 570
Experience and the World of Particulars 575
The Practice and Use of Natural History 578
The Depiction of Nature 583

25 Anatomy, Physiology, and Medical Theory 590
Danielle Jacquart
Anatomical Knowledge: A Slow Reconstruction 592
Contents

Humors, “Virtues,” and Qualities 596
From Health to Disease 602
From Theory to Practice 606

26 Medical Practice 611
KATHARINE PARK
“Between Doctors and Holy Shrines,” 1050–1200 613
Urbanization and the Transformation of Medical Practice, 1200–1350 617
The Elaboration of Medical Institutions, 1350–1500 624

27 Technology and Science 630
GEORGE OVITT
The Intellectual Context of Medieval European Technology 631
Classical and Asian Influences on Medieval Technology 633
Agricultural Technology 635
Power Technologies 636
Textile Production 637
Military Technology 639
Medieval Ships and Shipbuilding 641
Building Construction and the Gothic Cathedrals 642
Conclusion 643

Index 645
ILLUSTRATIONS

2.1 Map of the medieval Islamic world, centered on Mecca page 66
2.2 The three triangular arrays of points representing the numbers 3, 6, and 10 75
2.3 Four-by-four magic square 76
2.4 Euclid’s famous parallel postulate 80
2.5 Saccheri’s quadrilateral 81
3.1 Combined extramission-intromission optical model 100
3.2 Combined lever-balance mechanical model 104
4.1 The ecliptic, the Sun’s path through the sphere of the heavens 112
4.2 Schematic planispheric astrolabe 115
4.3 Rare spherical astrolabe (c. 1480–1) 115
4.4 Ptolemy’s eccentric model for the Sun 122
4.5 Ptolemy’s epicyclic model for the Sun superimposed upon the eccentric model 123
4.6 Generic epicyclic planetary model illustrating the equant point 124
4.7 Obliquity of the ecliptic 128
4.8 ‘Urdī’s planetary model 130
4.9 The Tūsī couple 131
5.1 Branch diagram in an early Arabic summary of Galen’s treatise on diagnosis by urine 148
5.2 The figure of a pregnant woman 155
5.3 Magic-medicinal bowl made in Syria (1167–8) 161
9.1 Allegorical representations of quadrivial arts with attributes 241
9.2 Combined divisions of philosophy (twelfth century) 257
9.3 Division of the mathematical sciences (fifteenth century) 264
11.1 Cosmic symbolism of the number four 299
12.1 Eccentric orbit of planet 303
12.2 Epicyclic orbit of planet 304
12.3 Three versions of circumsolar orbits for Mercury and Venus 313
12.4 Planetary latitudes, drawn on a rectangular grid 315
17.1 The configuration of a uniform quality or motion 431
Illustrations

17.2 The configuration of a uniformly difform motion and the mean speed 431
18.1 A representation of the Moon’s concentric, eccentric, and epicyclic orbs as described in Roger Bacon’s *Opus Tertium* 445
19.1 Mid-thirteenth-century English brass astrolabe with silvered plates or tympan 462
19.2 An “exploded” view of the astrolabe 463
19.3 Fifteenth-century Eastern brass astrolabe 465
19.4 Ptolemaic eccentric model for the Sun 480
19.5 Ptolemaic model for Venus and the superior planets 481
19.6 Ptolemaic model for Mercury 482
19.7 Ptolemaic model for the Moon 483
20.1 Vision by reflected rays according to Euclid and Ptolemy 488
20.2 Euclid’s visual cone 489
20.3 A representation of al-Kindi’s theory of independent and incoherent radiation 494
20.4 The eye and visual cone according to Alhacen’s intromission theory 495
20.5 Anatomy of the eye as conceived by the editor of Alhacen’s great optical treatise, *Opticae Thesaurus* 496
20.6 Theodoric of Freiberg on the rainbow 507
23.1 The Ebstorf map 558
23.2 Zonal *mappaemundi* by William of Conches from a twelfth-century manuscript of the *De philosophia mundi* 559
23.3 Detail from the plan of Canterbury Cathedral showing the water supply (mid-twelfth century) 563
23.4 One sheet from the Peutinger map of the Eastern Mediterranean showing Cyprus and Antioch 564
23.5 The Cortona chart (early or mid-fourteenth century) 566
24.1 The picture of the male orchid (*satirion*) from an album of materia medica images 585
NOTES ON CONTRIBUTORS

E. JENNIFER ASHWORTH, Distinguished Professor Emerita at the University of Waterloo, was elected Fellow of the Royal Society of Canada in 1991. She has published extensively on medieval and post-medieval logic and philosophy of language, and her first book, *Language and Logic in the Post-Medieval Period*, was published in 1974. Her most recent book, *Les théories de l’analogie du XIIe au XVIe siècle* (2008), is based on the four Pierre Abélard lectures that she delivered at the Sorbonne in 2004. Since her retirement in 2005, she has returned to the United Kingdom.

J. L. BERGGREN received his PhD from the University of Washington in 1966 and is now Emeritus Professor at Simon Fraser University, Canada. He has held visiting positions in the Mathematics Institute at the University of Warwick and the History of Science Departments at Yale and Harvard Universities. He has published numerous papers and books on the history of mathematical sciences of ancient Greece and medieval Islam, among them *Episodes in the Mathematics of Medieval Islam* (1986); Euclid’s “Phaenomena” (with Robert Thomas, 1966); and the section on “Islamic Mathematics” in *The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Source Book* (2007).

CHARLES BURNETT has been Professor of the History of Islamic Influences in Europe at the Warburg Institute, University of London, since 1999. He received his MA and PhD from Cambridge University and has been a Member of the Institute for Advanced Study (Princeton), a Leverhulme Research Fellow at the University of Sheffield, and a Distinguished Visiting Professor in Medieval Studies at the University of California at Berkeley. His work has centered on the transmission of Arabic science and philosophy to Western Europe, which he has documented by editing and translating several texts.

JOAN CADDEN is Professor Emerita of History at the University of California, Davis. Her current research concerns include medieval natural philosophers’
explanations of male homosexual desire and the dissemination of medieval natural philosophical and medical learning. She is the author of *Meanings of Sex Difference in the Middle Ages: Medicine, Science, and Culture* (Cambridge University Press, 1993), which was awarded the History of Science Society’s Pfizer Prize, as well as articles on the medical and scientific ideas of medieval women, such as Hildegard of Bingen and Christine de Pizan.

Bruce S. Eastwood (PhD, University of Wisconsin) is Professor of History, Emeritus, at the University of Kentucky. His publications include *Astronomy and Cosmology in the Carolingian Renaissance* (2007); *Planetary Diagrams for Roman Astronomy in Medieval Europe, ca. 800–1500* (with Gerd Grasshoff, 2004); *The Revival of Planetary Astronomy in Carolingian and Post-Carolingian Europe* (2002); and an online edition of the ninth-century *Anonymous Commentary on the Astronomy of Martianus Capella*. He has received fellowships from the National Endowment for the Humanities and the Institute for Advanced Study (Princeton), as well as numerous grants from the National Science Foundation and other sources. Among his current projects is a book on Charlemagne and the Christian revival of science.

Edward Grant is Distinguished Professor Emeritus of History and Philosophy of Science at Indiana University, Bloomington. He has published more than ninety articles and twelve books, including one on medieval cosmology titled *Planets, Stars, and Orbs: The Medieval Cosmos 1200–1687* (Cambridge University Press, 1994). During 1985–86, he served as president of the History of Science Society. His honors include the George Sarton Medal of the History of Science Society (1992), Fellow of the American Academy of Arts and Sciences (elected 1984), Fellow of the Medieval Academy of America (1982), and Membre effectif of the Académie Internationale d’Histoire des Sciences, Paris (1969).

Danielle Jacquart is full professor at the École Pratique des Hautes Études (Paris I, Sorbonne, “Section des sciences historiques et philologiques”), where she holds the chair of “History of Science in the Middle Ages.” She has written widely on medical thought and practice in the Latin Middle Ages, and on the influence of Arabic medicine on the medieval West. Her major works include *La médecine médiévale dans le cadre parisien (XIVe–XVe siècle)* (1998) and *Le milieu médical en France du XIIe au XVe siècle* (1981). She is corresponding Fellow of the Medieval Academy of America and a member of the Academia Europea.

Elaheh Kheirandish is a historian of science (PhD, Harvard University, 1991), with a focus on science in Islamic lands. She has taught at Harvard University, received awards from the National Science Foundation, contributed to collaborative projects and major journals, and recently coedited a special issue of *Iranian Studies*. Her publications include the two-volume *The Arabic Version of Euclid’s Optics* (1999) and forthcoming books on the Arabic and
Notes on Contributors

Persian traditions of optics and mechanics. She is currently a Fellow at Harvard’s Center for Middle Eastern Studies and serves on the advisory boards of Interpretatio and the Islamic Scientific Manuscripts Initiative (ISMI).

Tomomi Kinukawa received her PhD at the University of Wisconsin. She is now Assistant Professor of History at the University of the Pacific, Stockton, California. Her research has focused on natural history, colonial science, gender, and race. She is currently working on a project on health and citizenship among Korean diaspora communities in Japan in the mid- to late twentieth century.

Walter Roy Laird teaches medieval history and the history of science at Carleton University, Ottawa, Canada. In addition to articles on medieval and renaissance natural philosophy and the mathematical sciences, he is author of The Unfinished Mechanics of Giuseppe Moletti (2000) and coeditor of Mechanics and Natural Philosophy before the Scientific Revolution (2008).

Y. Tzvi Langermann is a professor in the Department of Arabic, Bar Ilan University, Ramat Gan, Israel. His most recent books are Hebrew Medical Astrology (coauthored with Gerrit Bos and Charles Burnett) and Adaptations and Innovations: Studies on the Interaction between Jewish and Islamic Thought and Literature (coedited with Josef Stern). He is a regular contributor to Aleph: Historical Studies in Science & Judaism and has published widely on the history of science and philosophy.

David C. Lindberg, coeditor of this volume, is Hilldale Professor Emeritus at the University of Wisconsin. He has written or edited more than a dozen books, including editions and translations of medieval Latin texts and a prize-winning survey: The Beginnings of Western Science, 2nd ed. (2007). He has been a Guggenheim Fellow, a visiting member of the Institute for Advanced Study (Princeton), and a Fellow of the Medieval Academy of America and the Académie Internationale d’Histoire des Sciences. He has served as president of the History of Science Society and has been awarded its Sarton Medal for lifetime scholarly achievement.

Stephen C. McCluskey is Professor Emeritus of History at West Virginia University. His recent work focuses on astronomy and cosmology in the early Middle Ages and the astronomical and religious significance of the orientation of English village churches. Among his publications are Astronomies and Cultures in Early Medieval Europe (Cambridge University Press, 1999) and “Boethius’s Astronomy and Cosmology,” in A Companion to Boethius in the Middle Ages (2012), edited by Noel H. Kaylor and Philip E. Phillips.

A. George Molland (1941–2002) pursued the mathematics tripos at Corpus Christi College, Cambridge, receiving the PhD degree in 1967. He then spent his subsequent academic career at the University of Aberdeen, advancing from Lecturer to Senior Lecturer in History and Philosophy of Science.
Molland’s major scholarly contributions were in medieval mathematics and mathematical science (especially the science of motion) and the relationship of medieval mathematical sciences to those of Galileo and the seventeenth century. Toward the end of his career, he returned to studying the Middle Ages, especially Roger Bacon. An edition of a Latin text, with English translation, of Bacon’s *Opus Tertium* remains incomplete, owing to Molland’s untimely death.

ROBERT G. MORRISON is Associate Professor of Religion at Bowdoin College. His recent book *Islam and Science: The Intellectual Career of Nizam al-Din al-Nisaburi* (2007) won Iran’s 2009 World Book Prize for Islamic studies. His research has been funded by NEH and a Graves Award in the Humanities. He is currently studying a Judeo-Arabic text on astronomy and its relation to currents in Islamic science.

WILLIAM R. NEWMAN is Ruth N. Hall Professor and Distinguished Professor in the History and Philosophy of Science at Indiana University. Most of his recent scholarly work has focused on “chymistry” in the early-modern period and on the experimental tradition more broadly. His recent books include *Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution* (2006); *Promethean Ambitions: Alchemy and the Quest to Perfect Nature* (2004); and *Alchemy Tried in the Fire: Starkey, Boyle, and the Fate of Helmontian Chymistry* (with Lawrence M. Principe) (2002).

JOHN NORTH (1934–2008) was Professor Emeritus of History of Philosophy and the Exact Sciences at the University of Groningen. A universal scholar, he received his higher education at Merton College, Oxford, where he read mathematics, philosophy, politics, and economics, followed by an external degree in astronomy from the University of London. After earning his doctorate at Oxford, he served as a curator in the Oxford Museum of the History of Science before taking the chair at Groningen. North’s many interests included, preeminently, medieval astronomy and astronomical instruments. He was a prolific author, whose major publications included *Chaucer’s Universe* (1988); *Richard of Wallingford*, 3 vols. (1976); *Horoscopes and History* (1986); *The Ambassadors’ Secret: Holbein and the World of the Renaissance* (2002); and, most recently, *Cosmos* (2008).

VIVIAN NUTTON is Professor of the History of Medicine at the Wellcome Trust Centre for the History of Medicine, University College, London. He has written extensively on the history of medicine from Classical Antiquity to the Renaissance. His books include *Galen, On My Own Opinions* (1999); *Ancient Medicine* (2004); and *Girolamo Mercuriale, De arte gymnastica* (2008). His edition of a forgotten work by Galen, *On Problematical Movements*, will be published by Cambridge University Press. He is a Fellow of the British Academy and of the Deutsche Akademie der Wissenschaften.
Notes on Contributors

GEORGE OVITT received his PhD from the University of Massachusetts. He has taught history at Dean College, Drexel University, and Sidwell Friends School, and is currently at Albuquerque Academy. His scholarly interests include the history of technology and labor and, in particular, the ways in which the material aspects of human life are affected by cultural concerns. He is author of *The Restoration of Perfection: Labor and Technology in Medieval Culture*.

F. JAMIL RAGEP is Canada Research Chair in the History of Science in Islamic Societies and Director of the Institute of Islamic Studies at McGill University in Montreal, Canada. Educated at the University of Michigan and Harvard University, he has written extensively on the history of astronomy and on science in Islam. He is currently leading an international effort to catalogue all Islamic manuscripts in the exact sciences and is codirecting a project to study the fifteenth-century background to the Copernican revolution.

KAREN MEIER REEDS, of the Princeton Research Forum and Visiting Scholar at Columbia University and the University of Pennsylvania, is an independent historian of science and medicine whose research focuses on the history of botany from antiquity through Linnaeus. She is the author of *Botany in Medieval and Renaissance Universities* (1991) and *A State of Health: New Jersey’s Medical Heritage* (2001); coeditor, with Jean Givens and Alain Touwaide, of *Visualizing Medieval Medicine and Natural History, 1200–1550* (2006); and guest curator of “Come into a New World: Linnaeus & America” (2007). She is also a Fellow of the Linnaean Society of London.

EMILIE SAVAGE-SMITH is Professor of the History of Islamic Science at the Oriental Institute, University of Oxford. She has published studies on a variety of medical and divinatory practices in the Islamic world, as well as on celestial globes and mapping. Her most recent book (with Peter E. Pormann) is *Medieval Islamic Medicine* (2007).

MICHAEL H. SHANK (coeditor of this volume) teaches at the University of Wisconsin–Madison, where he is Professor of the History of Science (and Herbert and Evelyn Howe Bascom Professor of Integrated Liberal Studies, 2008–10). A former associate editor of *Isis*, he is the author of “Unless You Believe, You Shall Not Understand”: Logic, University, Society in Late Medieval Vienna (1988); the editor of *The Scientific Enterprise in Antiquity and the*
Notes on Contributors

Middle Ages (2000); and a coeditor, with Peter Harrison and Ronald L. Numbers, of Wrestling with Nature: From Omens to Science (2011) and of Johannes Regiomontanus’s Defensio Theonis contra Georgium Trapezuntium (Web publication in progress, in association with Richard Kremer).

ANNE TIHON is Doctor in Classical Philology (Université Catholique de Louvain) and also Professor at the Université Catholique de Louvain (Louvain-la-Neuve). Her teaching concerns the history of science in Antiquity and the Middle Ages, Byzantine history and civilization, Greek paleography, Byzantine texts, and methodology of textual editions. She has provided critical editions of the commentaries of Theon of Alexandria on Ptolemy's Handy Tables (Small Commentary and Great Commentary) (Studi e Testi 282, 315, 340, 390) and several editions of Byzantine astronomical texts. She is the director of the Corpus des Astronomes Byzantins (ten volumes published).

DAVID WOODWARD (1942–2004) was Arthur H. Robinson Professor Emeritus of Geography at the University of Wisconsin–Madison. A wide-ranging scholar of the history and the art of cartography, he was founding coeditor (with J. B. Harley) of the award-winning multivolume History of Cartography. His essay on “Medieval Mappaemundi” for volume one (1987) revitalized the study of cosmographical representations.
The idea for The Cambridge History of Science originated with Alex Holzman, former editor for the history of science at Cambridge University Press. In 1993, he invited us to submit a proposal for a multivolume history of science that would join the distinguished series of Cambridge histories, launched nearly a century ago with the publication of Lord Acton’s fourteen-volume Cambridge Modern History (1902–12). Convinced of the need for a comprehensive history of science and believing that the time was auspicious, we accepted the invitation.

Although reflections on the development of what we call “science” date back to antiquity, the history of science did not emerge as a distinctive field of scholarship until well into the twentieth century. In 1912, the Belgian scientist-historian George Sarton (1884–1956), who contributed more than any other single person to the institutionalization of the history of science, began publishing Isis, an international review devoted to the history of science and its cultural influences. Twelve years later, he helped to create the History of Science Society, which by the end of the century had attracted some 4,000 individual and institutional members. In 1941, the University of Wisconsin established a department of the history of science, the first of dozens of such programs to appear worldwide.

Since the days of Sarton, historians of science have produced a small library of monographs and essays, but they have generally shied away from writing and editing broad surveys. Sarton himself, inspired in part by the Cambridge histories, planned to produce an eight-volume History of Science, but he completed only the first two installments (1952, 1959), which ended with the birth of Christianity. His mammoth three-volume Introduction to the History of Science (1927–48), more a reference work than a narrative history, never got beyond the Middle Ages. The closest predecessor to The Cambridge History of Science is the three-volume (four-book) Histoire Générale des Sciences (1957–64), edited by René Taton, which appeared in an English translation under the title General History of the Sciences (1963–4). Edited just before the late-century boom in the history of science, the Taton set quickly became dated.

xxiii
During the 1990s, Roy Porter began editing the very useful Fontana History of Science (published in the United States as the Norton History of Science), with volumes devoted to a single discipline and written by a single author.

The Cambridge History of Science comprises eight volumes, the first four arranged chronologically from antiquity through the eighteenth century and the latter four organized thematically and covering the nineteenth and twentieth centuries. Eminent scholars from Europe and North America, who together form the editorial board for the series, edit the respective volumes:

Volume 1: Ancient Science, edited by Alexander Jones, University of Toronto, and Liba Chaia Taub, University of Cambridge
Volume 2: Medieval Science, edited by David C. Lindberg and Michael H. Shank, University of Wisconsin–Madison
Volume 3: Early Modern Science, edited by Katharine Park, Harvard University, and Lorraine Daston, Max Planck Institute for the History of Science, Berlin
Volume 4: Eighteenth-Century Science, edited by Roy Porter, late of Wellcome Trust Centre for the History of Medicine at University College London
Volume 5: The Modern Physical and Mathematical Sciences, edited by Mary Jo Nye, Oregon State University
Volume 6: The Modern Biological and Earth Sciences, edited by Peter J. Bowler, Queen’s University of Belfast, and John V. Pickstone, University of Manchester
Volume 7: The Modern Social Sciences, edited by Theodore M. Porter, University of California, Los Angeles, and Dorothy Ross, Johns Hopkins University
Volume 8: Modern Science in National and International Context, edited by David N. Livingstone, Queen’s University of Belfast, and Ronald L. Numbers, University of Wisconsin–Madison

Our collective goal is to provide an authoritative, up-to-date account of science – from the earliest literate societies in Mesopotamia and Egypt to the end of the twentieth century – that even nonspecialist readers will find engaging. Written by leading experts from every inhabited continent, the essays in The Cambridge History of Science explore the systematic investigation of nature and society, whatever it was called. (The term “science” did not acquire its present meaning until early in the nineteenth century.) Reflecting the ever-expanding range of approaches and topics in the history of science, the contributing authors explore non-Western as well as Western science, applied as well as pure science, popular as well as elite science, scientific practice as well as scientific theory, cultural context as well as intellectual content, and the dissemination and reception as well as the production of scientific knowledge. George Sarton would scarcely recognize this collaborative effort as the history of science, but we hope we have realized his vision.

David C. Lindberg
Ronald L. Numbers