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CHAPTER 1

Fundamental Concepts
in Mathematical Modeling

We will first review some rather specific technical topics that are central to the
application of modeling, especially mathematical modeling. Some of these you
will have heard of before, in more or less detail, but we think this a good time
and place to shore up familiar ideas and to briefly introduce some new ones. They
include the definition of a system, modeling, analysis, linearity, the principle of
superposition, physical dimensions and units, abstraction, and basic scaling ideas
for simple first- and second-order differential equations.

1.1 Systems, Modeling, and Analysis

Generally, we may think of a system as a combination of components included
inside a specified, sometimes arbitrary boundary, that interact in some way. Such
a system may be naturally occurring, such as an ecosystem, or may be a human
creation, such as a building or a car or a computer. This text is primarily concerned
with engineering systems, which are collections of components designed to act
together to perform a specific function or set of functions.

Complex engineering systems can usually be thought of in terms of simpler
subsystems, each of which performs one or more of the functions required of the
overall system. An automobile is a prime example of a system whose component
subsystems include the body of the car, its frame, its suspension, its tires, its
engine, its steering mechanism, and so on, each of which performs a specific
function or functions.

The overall system and each of the subsystems has a system boundary that de-
fines what is part of the system or subsystem and what is not. Inputs to the system
and outputs from the system (or subsystem) cross this boundary (see Fig. 1.1).
The system acts to transform the inputs into the outputs. In the case of an au-
tomobile, the motion of the car over an irregular road surface provides an input
in the form of a time-varying vertical displacement of the wheels. An output of
interest, particularly to the passengers, is the resulting time-varying vertical dis-
placement of the passenger compartment. The suspension subsystem, consisting
of tires, wheels, linkages, springs, and shock absorbers, serves the functions of

1
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outputs
inputs

system
boundary

FIGURE 1.1

Schematic
representation of a
system and its
boundary. System
inputs and outputs
are also illustrated.

maintaining contact between the tires and the road surface, while simultaneously
transforming the sharp, rapid vertical motions of the wheels into gentle vertical
motions of the passenger compartment.

The practice of engineering is centered around design. The process of design
requires a number of skills, including the ability to understand the end users’
needs and wishes, the ability to translate these desires and wishes into the required
functions, and the ability to generate potential means to realize these functions.
It also requires an ability to determine which of the proposed alternatives will
best meet the end users’ specifications. This requires an ability to predict how
the proposed implementations will behave. The material in this text represents
the first step in learning how to make predictions regarding how collections of
components or systems behave.

Engineers represent information in many ways: in natural language descrip-
tions, in pictures and drawings, and in mathematics. The primary language for
making quantitative predictions regarding component and system behavior is
mathematics, because mathematical analysis readily yields quantitative results.
It is very important to realize, however, that there is an extremely important step
in the process of predicting system behavior that must precede a mathematical
analysis. This step is modeling.

In order to apply mathematical tools to predict system behavior, we must
first have a mathematical representation of how system components behave. In
this text, we may regard modeling as the translation of the physical behavior of
components and collections of components into a mathematical representation.
This representation must include descriptions of the individual components as
well as descriptions of how the components interact.

Returning to the example of an automobile suspension system, we need a
mathematical description of the relevant features of the behavior of suspension
components such as springs. One relevant feature is the relationship between the
forces exerted by the spring and the degree to which the spring is stretched or
compressed. We also need a mathematical description of how the forces exerted
by the various components interact. This description is provided by Newton’s
laws.
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A good model will provide an accurate description of behavior, while at the
same time remaining mathematically simple enough to permit easy calculation.
Accuracy and simplicity are often at odds; consequently, modeling often involves
some trade-offs. As we will describe in the section on abstraction, we may use
different models for the same system, depending on precisely what kind of pre-
diction we need to make.

Once a model has been developed, analysis can proceed. While the result of
an analysis is generally a prediction of behavior, this can be broken down into
more specific potential goals:

r For a given set of inputs, what are the outputs?r In order to produce a desired set of outputs for a given set of inputs, what
changes must be made to the parameters of the system?r If some or all of the system parameters cannot be changed, what inputs must
be applied in order to produce a desired set of outputs?

The first type of analysis involves a straightforward (although not necessarily
easy) process. Given the system model and the resulting governing equation(s),
all we need to do is to compute the response of the system for a given set of
inputs. The latter two items, on the other hand, require us to solve an inverse
problem. Specifically, in order to produce a set of desired system responses, we
need to determine what system parameters are required or what type of inputs we
need to impose. This type of problem is very common in engineering design, and
generally it is a bit more challenging than a straightforward calculation of outputs
for a given set of inputs and specific system parameters.

In this text, we have separated the modeling and analysis steps in this process.
Our intent here is to emphasize that these are two separate procedures, both of
which are required for making predictions of system behavior. The fundamentals
of lumped element modeling -- that is, the processes of describing system compo-
nents and their interaction in mathematical language -- are covered in Chapters 2
and 3. Chapters 4 through 10 emphasize analysis tools, and Chapter 10 also in-
cludes some material on design of feedback control systems.

1.2 Abstraction

The process of deciding the level of detail that is appropriate to describe the
problem of interest is called abstraction. Abstraction typically requires a very
organized and thoughtful approach to describing the phenomena upon which we
wish to focus.

Consider, for example, Hooke’s law, F = kx, for describing the behavior of a
spring. This relation can be used to model more than just the relation between
force and extension of a simple coiled spring. We could also use Hooke’s law
to describe the static response of a diving board, but the corresponding spring
constant k would then need to reflect the stiffness of the diving board taken as a
whole, which in turn reflects more detailed properties of the board, including the
material of which it is made and its physical dimensions. The appropriate spring
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constant k for the diving board can be approximated experimentally by measuring
the board’s tip deflection for divers of different weight. By plotting the weight of
the various divers as a function of the tip deflection, we can easily calculate
the slope of the force--deflection curve, which corresponds approximately to the
stiffness or spring constant of the diving board.

Hooke’s law can also be used to model the static behavior of a tall building,
perhaps to model wind loading, perhaps as part of analyzing how the building
would respond to an earthquake. We see in these examples that we can use a
very simple abstract model by subsuming various details of the behavior of the
building within the parameters of that model. On the other hand, this also limits
the applicability of the information that we derive from applying the model. For
both the diving board and the tall building we would need some very detailed
expressions of how their respective stiffnesses depended on the properties of
each. Without such relations, we could not do a detailed design of either the
board or of the building.

Another facet of this abstraction process is that in each case we are taking
some “real,” three-dimensional object and saying that, for certain well-defined
purposes, it behaves like a simple spring element. We are thus introducing the
concept of a lumped element wherein the actual physical properties of some real
object or device are aggregated or lumped into a more abstract and less detailed
expression.

Consider another example: An airplane can be modeled in very different ways,
depending on our modeling goals. For example, to lay out a trajectory or a flight
plan, the airplane can simply be considered as a point mass moving with respect
to a spherical coordinate system. Here the mass of the point can simply be taken
as the total mass of the plane, and the effect of any retarding drag force can be
modeled as acting on the mass point itself with a magnitude related to the speed at
which the mass is moving. If we wanted to model and analyze the more immediate,
more local effects of the air movement over the plane’s wings, then we obviously
need a model that accounts for the wing’s surface area and that is complex enough
to incorporate the aerodynamics that occur in different flight regimes. If we wanted
to model and design the flaps that are used to control the plane’s ascent and
descent, we then need a model complex enough to incorporate the system required
to control the flaps and the dynamics of the wing’s strength and vibration response,
as well as include some of the modeling issues already accounted for. In each case,
it is desirable to use the simplest model that yields a sufficient degree of accuracy
in relating the inputs of interest to the outputs of interest.

1.3 Physical Dimensions and Units

A central issue in modeling is related to dimensions and units. All equations rep-
resenting physical phenomena must be dimensionally compatible or consistent.
We cannot, for example, equate a quantity with dimensions of volume to one hav-
ing dimensions of area. This proves to be very useful, especially when we want to
check the validity of a newly developed mathematical model or before we begin
calculations based on formulas and equations.
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Physical quantities that are used to describe or model a problem come in
two types. They consist of either fundamental or primary quantities, or they are
derived quantities. In mechanical problems, for example, mass, length, and time
are generally taken as the primary mechanical variables, while force is derived
from Newton’s second law of motion. It is equally correct to take force, length, and
time as the fundamental quantities and to derive mass from Newton’s second law.
However, taking a quantity as fundamental generally means that it can be assigned
a standard of measurement independent of that chosen for the other fundamental
quantities. For any given problem, of course, there must be a sufficient number
of primary quantities so that each derived quantity can be expressed in terms
of these primary quantities. Finally, we note that primary quantities are chosen
arbitrarily, while the derived quantities are selected to satisfy physical laws or
relevant definitions.

A dimension is the measure by which a physical quantity is expressed. A unit
is a way of assigning a number to the dimension. Thus, length is a dimension
chosen as the primary quantity describing such variables as distance, width and
displacement, and the corresponding units can be described by meters, centime-
ters, or inches. The magnitude or size of the attached number to a given dimen-
sion obviously depends on the unit chosen, and this dependence often suggests
a choice of units to facilitate calculation for a given problem. In our work we will
typically use SI (or Système International) units.

1.4 Linearity and Superposition

A very important distinction in modeling is whether or not a system model is
linear. We say that system or device models are linear when their basic equa-
tions -- whether algebraic, differential, or integral -- are such that the magnitude
of the behavior or response produced is directly proportional to the excitation
or input that drives the system. Consider a system whose governing equation is
described by

y = f (x) (1.1)

where y represents the response or output of the system and x denotes the exci-
tation or input that drives the system, such that

x =
N∑

i=1

ai xi (1.2)

where the ai represent a set of constants, and the xi represent a set of arbitrary
inputs, each of which produces its own system output:

yi = f (xi) (1.3)

The system is said to be linear if for the input x of Eq. (1.2), the output of Eq. (1.1) is

y = f (x) = f

(
N∑

i=1

ai xi

)
=

N∑
i=1

ai f (xi) =
N∑

i=1

ai yi (1.4)
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Thus, for a linear system, we can obtain the response of that system to the sum of
N inputs by adding or superposing the responses of the system to each individual
input considered separately. This result is called the principle of superposition. It
is also quite evident that if we multiply the input to a linear system by a constant
α, the output of the system will be proportional by the same constant. Any system
not satisfying the relationship of Eq. (1.4) is said to be nonlinear.

As a guide to recognizing whether a system is linear or not, we can look at
the exponent or power to which the response or output is raised in the system
equation. For a system to be linear, the exponent or power of the output must
be equal to unity. Let us consider some input--output relations and see if they are
linear or nonlinear. For definiteness, let us consider the constitutive equation for a
classical elastic spring, of stiffness k, whose force--deflection relation is governed
by the familiar Hooke’s law:

F = kx (1.5)

where F represents the force exerted on the spring and x denotes the extension or
relative deflection between the two ends of the spring from its static equilibrium.
Clearly if we double the extension x of the spring, then the force F in the spring
also doubles. Furthermore, if we impose an extension on the spring by a distance
x1 and then by an additional distance x2, the total force required to extend the
spring by the distance x1 + x2 can be calculated by adding or superposing the
results for each; that is,

F = k(x1 + x2) = kx1 + kx2 = F1 + F2 (1.6)

Thus, Eq. (1.5) is linear. Any relation involving a transcendental function or a
power greater than unity is nonlinear. Consider now the force--deflection relation
of a spring of the form

F = k1x+ k2x3 (1.7)

where k1 and k2 are constants. For this spring, it is not difficult to show that

F (x1 + x2) = k1(x1 + x2)+ k2(x1 + x2)3 6= F (x1)+ F (x2) (1.8)

A spring whose constitutive relation is defined by Eq. (1.7) is said to be nonlinear.
The principle of superposition, which applies to linear systems, is one of the

most powerful tools in system analysis. It allows us to say that the response of
a system to a sum of inputs is equal to the sum of the responses of the system
to the inputs taken individually. This has very deep implications for analysis. If
a complicated input to a linear system can be represented as a sum of simpler
inputs, then the response of the system to the simpler inputs can be calculated
separately and then added to get the response of the system to the complicated
input. If a linear system has a number of separate inputs, we can find the response
of the system to the inputs taken one at a time, and then we can add them to get the
overall response. This can be extremely useful in analyzing complicated systems
having multiple inputs.
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1.5 A Gentle Introduction to Differential Equations

Differential equations are of great importance in engineering and science, because
many physical laws and relations appear in the form of differential equations. In
addition, the most useful mathematical models used to predict the behavior of
systems are commonly described in terms of differential equations. Consider a
physical system whose dynamical behavior is governed by the following linear,
constant coefficient differential equation of order n as follows:

an
dny (t)

dtn + an−1
dn−1y (t)

dtn−1 + · · · + a1
dy (t)

dt
+ a0y (t) = f (t) (1.9)

where y (t) and f (t) represent the output and input of the system, respectively.
By definition, the order of a system corresponds to the highest derivative in the
system’s governing equation; a system is said to be linear if the output variable,
y (t), and its derivatives are raised to the first power; and a governing equation is
said to have constant coefficients if ai = constant, for i = 0, . . . , n.

For a physical system, we are generally interested in its output y (t) to a given
input f (t). The relationship between the output and input, or the response and ex-
citation, can be described by introducing the following linear differential operator:

D = an
dn

dtn + an−1
dn−1

dtn−1 + · · · + a1
d
dt
+ a0 (1.10)

Equation (1.10) allows us to rewrite Eq. (1.9) compactly as

D[y (t)] = f (t) (1.11)

which implies that the operation D on y (t) leads to Eq. (1.9). A differential op-
erator is said to be linear if D[y (t)] contains only the function y (t) and its time
derivatives raised to the first power. If f (t) = 0, the differential equation is said
to be homogeneous; if f (t) 6= 0, it is said to be nonhomogeneous.

We can use the linear differential operator previously defined to introduce
the principle of superposition for differential equations. Let yi(t) represent the
response to an excitation fi(t). Mathematically, we can write

D[yi(t)] = fi(t) (1.12)

Let y (t) be the output or response to the sum of N inputs
∑N

i=1 fi(t). Because the
system is linear, by summing all the equations given by Eq. (1.12), it is not difficult
to show that

y (t) =
N∑

i=1

yi(t) (1.13)

As mentioned in Section 1.4, the principle of superposition is of great importance
in the analysis of linear systems. We shall make use of it often, particularly when
we want to predict the response of a system to a complicated input which can
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be broken down or decomposed into a set of simpler inputs. This simplifies our
calculations substantially.

The principle of superposition can also be used to decompose a complicated
solution into the sum of simpler parts that have specific physical meaning. In this
way the principle of superposition can also aid in the interpretation of solutions.
We shall now use the superposition principle to show that the complete response
to Eq. (1.9) can be expressed as

y (t) = yh(t)+ yp(t) (1.14)

where yh(t) represents the homogeneous solution and yp(t) represents the partic-
ular solution.

The homogeneous solution is obtained by solving the following homogeneous
equation:

D[yh(t)] = 0 (1.15)

The homogeneous equation, in and of itself, does not have a single, unique so-
lution. The homogeneous solution is a general solution that contains as many
arbitrary constants as the order of the differential equation. Thus, a first-order dif-
ferential equation has one arbitrary constant, a second-order differential equation
has two arbitrary constants, and so on. We obtain a unique solution only when we
also take into account the initial conditions -- that is, the value of y (t) and its first
n−1 derivatives (where n is the order of the differential equation) at some specific
value of t, which is typically taken at t = 0. Taking these initial conditions into
account allows us to evaluate the arbitrary constants in the homogeneous solu-
tion. This then provides a solution that is not only characteristic of the behavior
of the system in a general sense, but also takes into account the specifics of the
situation in which the system operates.

The particular solution is found by solving the nonhomogeneous equation

D[yp(t)] = f (t) (1.16)

The particular solution depends on the input, f (t), to the system but is inde-
pendent of any prescribed initial conditions. The particular solution is chosen to
satisfy the differential equation (1.16) only. We defer further discussion of how to
obtain yp(t) until we reach specific problems with specific inputs or excitations.
Because the system is linear, it is easy to verify that Eq. (1.14) is the solution to
Eq. (1.11). Summing Eqs. (1.15) and (1.16) and recalling Eq. (1.14), we recover
Eq. (1.11).

Given that yp(t) is the solution of the nonhomogeneous equation [see Eq. (1.16),
which has the same form as the governing equation (1.11)], we might wonder why
we need to include yh(t) in our expression for the complete solution, y (t). Recall
that yp(t) solves the nonhomogeneous equation, but does not necessarily yield a
function that meets the initial conditions. Mathematically, the addition of the ho-
mogeneous solution, yh(t), allows us to uniquely satisfy the imposed initial condi-
tions, while still maintaining y (t) as a solution to the nonhomogeneous equation.
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In many problems in which time, t, is the independent variable, we are inter-
ested in the steady-state response, or the response as t→∞. Generally, as t→∞,
the effect of the initial conditions disappears, so that the steady-state solution is
typically dependent only on the particular solution:

lim
t→∞ y (t) = yp(∞) (1.17)

When f (t) remains a constant for all values of time t ≥ 0, the particular solution
remains a constant for t ≥ 0 as well. We shall denote this steady-state or limiting
value to a constant input as yss.

There are also cases where the input function is a pure sinusoid that continues
indefinitely. In these cases the response of a linear system will be a pure sinusoid of
the same frequency that oscillates forever. This solution also represents a steady-
state solution because it is always bounded by the peak amplitudes of the sinusoid.
To distinguish from the previous steady-state value to a constant input, yss, we
will denote this sinusoidal steady-state response as yss(t), which appears as an
explicit function of time.

Thus, we see that the particular solution represents the long-term response
of the system to a continuing input, while the homogeneous solution represents
a passing or transient response of the system to conditions at the outset of the
observation period. There are situations in engineering design and analysis when
each of these types of responses -- the initial response to a sudden change in input
and the long-term response to an ongoing input -- are of interest. The principle of
superposition allows us to decompose the overall solution into homogeneous and
particular solutions, providing a means for solving the initial value problem and
for interpreting the results.

1.6 Scaling in Elementary Differential Equations

In this text we deal primarily with models of physical systems that are expressed as
first-order or second-order differential equations. In these models the independent
variable will usually be time, which we denote as t. For example, we will show
in Chapter 4 that a charged capacitor draining through a resistor loses voltage v(t)
at a rate proportional to the actual value of the voltage at any given instant. The
mathematical model would be written as

dv(t)
dt
= −1

τ
v(t) (1.18)

where τ = RC denotes the time constant of the system, and R and C represent the
resistance and capacitance of the resistor and capacitor, respectively (these will
be detailed in Chapter 4). We can rewrite this equation in an equivalent form:

dv(t)
v(t)

= −1
τ

dt (1.19)

Because both dv(t) and v(t) have units of volts, in order for Eq. (1.19) to be dimen-
sionally compatible, the quantity τ must have physical dimensions of time -- that
is, units of sec. We shall confirm this in another way after we solve Eq. (1.18).
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Integrating Eq. (1.19) with respect to time, t, leads to

ln |v(t)| = − t
τ
+ A1 (1.20)

where A1 is the arbitrary constant of integration. If we assume that our capacitor
was initially charged at a voltage v0 -- that is, v(t = 0) = v0 -- then it follows that
ln v0 = A1, which implies that

v(t) = v0e−t/τ (1.21)

Equation (1.21) is said to be the solution to Eq. (1.18).
We see in Eq. (1.21) further confirmation of the dimensional nature of the

quantity τ . Recall that functions such as sinusoids, logarithms, and exponentials
are called transcendental functions. Using Taylor’s theorem, these transcenden-
tal functions can be represented by power series, which means that their argu-
ments must be dimensionless -- without which property the power series cannot
be added. The presence of the quantity τ in Eq. (1.21) serves to render the ar-
gument of the exponential function dimensionless. Additionally, the quantity τ
represents a characteristic aspect of the problem being modeled, so that a ra-
tio such as t/τ becomes a useful measure of whether a time duration is truly
long or short with respect to the particular system being modeled. For the dis-
charging capacitor, the parameter τ provides a measure of time, called the time
constant, that characterizes the system being modeled. For example, we could
define a decay time as the time it takes for the voltage to decrease to a specified
fraction of its initial value. Suppose we choose that specified value to be one-
tenth. The characteristic or decay time of the charged capacitor would be defined
by

v(tdecay) ≡ v0

10
(1.22)

which, in terms of our solution (1.12), means that

tdecay ≡ −τ ln
1

10
= 2.303τ (1.23)

Another interesting illustration of scaling and dimensionality that we see quite
often is the following second-order differential equation that describes the behav-
ior of a simple spring--mass system (see Chapter 5 for its derivation):

m
d2y (t)

dt2 + ky (t) = 0 (1.24)

Here y (t) represents the displacement of a mass m attached to the free end (the
other end of the spring is fixed) of a linear spring of stiffness k. If we divide through
by the mass, we find

d2y (t)
dt2 + k

m
y (t) = 0 (1.25)
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or

d2y (t)
dt2 + ω2

ny (t) = 0 (1.26)

where ωn is the natural frequency of the spring--mass system represented by
Eq. (1.24); that is,

ωn ≡
√

k
m

(1.27)

It is clear from either Eq. (1.25) or Eq. (1.26) and from a dimensional analysis of
the definition (1.27) that ωn has the physical dimensions of 1/time. Furthermore,
the product ωnt must be dimensionless because, as we will show in Chapter 5, the
solution to Eq. (1.25) is expressed in terms of transcendental functions that have
ωnt as their argument.

The time constant, τ , and the natural frequency, ωn, are parameters that de-
scribe the behaviors of first- and second-order systems, respectively (to be dis-
cussed later in Chapters 4 and 5). They also offer another useful application in
that they allow us to introduce the notion of nondimensionalized coordinates. For
instance, in plotting the solution given by Eq. (1.21), we can use the normalized
voltage v(t)/v0 for the ordinate and t/τ for the abscissa. With proper application
of the resultant plot, we can avoid having to make separate calculations for each
charged capacitor draining through a resistor. Similarly, in plotting the response
of a simple spring--mass system given by Eq. (1.24), we can use ωnt for the ab-
scissa, thereby extending the usefulness of the curves. This will be demonstrated
later in Chapters 4 and 5.

1.7 Balance and Conservation Laws and the System
Boundary Approach

In this section we will describe the system boundary approach to modeling phys-
ical systems. In this approach, a control volume is defined that contains a system
or a part of a system. System boundary modeling is based on the simple premise
that we can describe the rate of accumulation of some particular property within
the control volume by accounting for all possible means by which the amount of
this property can increase or decrease within the control volume.

Much of the modeling we do will be based on conservation laws, such as
conservation of mass, conservation of electrical charge, and conservation of mo-
mentum. Some quantities we will discuss in this course are, to the best of our
ability to determine, absolutely conserved. Examples include linear momentum,
electrical charge, and (neglecting nuclear reactions) mass; these appear never to
be created nor destroyed. Other quantities are not conserved, such as the num-
ber of animals in a population or the amount of a chemical species that may be
produced or consumed by a chemical reaction. System boundary modeling can
be applied to situations in which the property of interest is conserved as well as
when it is not.


