DEMOGRAPHY IN ARCHAEOLOGY

Demography in Archaeology is a review of current theory and method in the reconstruction of populations from archaeological data. Starting with a summary of demographic concepts and methods, the book examines historical and ethnographic sources of demographic evidence before addressing the methods by which reliable demographic estimates can be made from skeletal remains, settlement evidence and modern and ancient biomolecules. Recent debates in palaeodemography are evaluated, new statistical methods for palaeodemographic reconstruction are explained, and the notion that past demographic structures and processes were substantially different from those pertaining today is critiqued. The book covers a wide span of evidence, from the evolutionary background of human demography to the influence of natural and human-induced catastrophes on population growth and survival. This is essential reading for any archaeologist or anthropologist with an interest in relating the results of field and laboratory studies to broader questions of population structure and dynamics.

ANDREW T. CHAMBERLAIN is Reader in Biological Anthropology at the University of Sheffield.
CAMBRIDGE MANUALS IN ARCHAEOLOGY

General Editor
Graeme Barker, University of Cambridge

Advisory Editors
Elizabeth Slater, University of Liverpool
Peter Bogucki, Princeton University

Books in the series
Pottery in Archaeology, Clive Orton, Paul Tyers and Alan Vince
Vertebrate Taphonomy, R. Lee Lyman
Photography in Archaeology and Conservation, 2nd edition, Peter G. Dorrell
Alluvial Geoarchaeology, A. G. Brown
Shells, Cheryl Claasen
Zooarchaeology, Elizabeth J. Reitz and Elizabeth S. Wing
Sampling in Archaeology, Clive Orton
Excavation, Steve Roskams
Teeth, 2nd edition, Simon Hillson
Geographical Information Systems in Archaeology, James Conolly and Mark Lake
Demography in Archaeology, Andrew T. Chamberlain

Cambridge Manuals in Archaeology is a series of reference handbooks designed for an international audience of upper-level undergraduate and graduate students, and professional archaeologists and archaeological scientists in universities, museums, research laboratories and field units. Each book includes a survey of current archaeological practice alongside essential reference material on contemporary techniques and methodology.
DEMOGRAPHY IN ARCHAEOLOGY

Andrew T. Chamberlain
To Clive and Stephen, who pointed the way.
CONTENTS

List of figures page xiii
List of tables xvi
Preface xviii

1 INTRODUCTION 1
1.1 The principal concerns of demography 1
 1.1.1 What is a population? 1
 1.1.2 Population characteristics 2
 1.1.3 Demographic data: from individual life histories to population parameters 3
1.2 Demography in archaeology 4
 1.2.1 Archaeology and people 4
 1.2.2 Population pressure: cause or effect? 4
 1.2.3 Population structure 6
 1.2.4 Health and disease 7
 1.2.5 Migration 8
1.3 Sources of evidence 10
 1.3.1 Theoretical models 10
 1.3.2 Ethnographic and historical evidence 11
 1.3.3 Archaeological evidence: skeletal remains, settlements and site catchments 11
 1.3.4 Genetic and evolutionary evidence 12
 1.3.5 Evidence from disease 13
2 DEMOGRAPHIC CONCEPTS, THEORY

2.1 Population structure

- Age categories and age distributions
- Sex distributions
- Other structuring categories

2.2 Population growth and demographic transition

- Geometric and exponential growth
- Logistic growth
- Demographic transition

2.3 Mortality, survivorship and life tables

- Mortality
- Survivorship
- Stable populations
- The life table
- Hazard functions for modelling mortality and survivorship

2.4 Fertility and population projection

- Fertility
- Population projection

2.5 Migration and colonisation

- Migration
- Colonisation

2.6 Population standardisation and comparison

- Population standardisation
- Population comparison

3 HISTORICAL AND ETHNOGRAPHIC DEMOGRAPHY

3.1 Documentary sources of demographic data

- Vital registration
- Censuses
Contents

3.1.3 Commemorative inscriptions 47
3.1.4 Other written sources 48
3.2 Families and households 50
 3.2.1 Family units 50
 3.2.2 Family reconstitution 50
 3.2.3 Household size 52
3.3 Longevity, menarche and menopause 52
 3.3.1 Perceptions and misperceptions of longevity 52
 3.3.2 Menarche and menopause 54
3.4 Historical evidence of migration and colonisation 55
 3.4.1 Migration in pre-industrial Europe 55
 3.4.2 Mass migration and colonisation in the modern era 57
3.5 Hunter-gatherer demography 58
 3.5.1 Population structure in hunter-gatherers 58
 3.5.2 Mortality and fertility in hunter-gatherers 62
3.6 Demography of agricultural populations 64
 3.6.1 Population structure in agricultural populations 64
 3.6.2 Mortality and fertility in agricultural populations 67
3.7 Conditions of high mortality 69
 3.7.1 Crisis mortality and natural disasters 69
 3.7.2 Famine 70
 3.7.3 Epidemic disease 74
 3.7.4 Conflict mortality 77

4 Archaeological Demography 81
 4.1 Past population structure 81
 4.1.1 Background to the palaeodemography debate 81
 4.1.2 The challenge by Bocquet-Appel and Masset 84
4.1.3 Uniformitarian assumptions in palaeodemography 87
4.1.4 Bias in samples and in estimation 89

4.2 Estimation of sex 92
 4.2.1 Human sex differences 92
 4.2.2 Morphological sex differences in pre-adolescent skeletons 93
 4.2.3 Morphological sex differences in adult skeletons 95
 4.2.4 Accuracy of sex estimation 97
 4.2.5 Biomolecular methods of sex estimation 97

4.3 Estimation of age at death 98
 4.3.1 Human skeletal development and ageing 98
 4.3.2 Age estimation in fetuses and children 101
 4.3.3 Age estimation in adults: macroscopic methods 105
 4.3.4 Age estimation in adults: microscopic methods 110

4.4 Bayesian and maximum likelihood approaches to age estimation 112
 4.4.1 General principles in estimating age from morphological indicators 112
 4.4.2 Bayes’ theorem and its application to age estimation 113
 4.4.3 Evaluative studies of Bayesian methods in age estimation 116
 4.4.4 Alternative ways of modelling likelihoods: transition analysis and latent traits 119
 4.4.5 Perinatal age estimation from long bone length 120
 4.4.6 Age estimation and catastrophic mortality profiles 123
 4.4.7 Prospects for the future 125

4.5 Estimation of population numbers from archaeological data 126
 4.5.1 House sizes and floor areas 126
 4.5.2 Settlement sizes 127
 4.5.3 Site catchments and resource utilisation 128
4.5.4 Monitoring population size from radiocarbon
dating distributions 131

5 EVOLUTIONARY AND GENETIC
PALAEODEMOGRAPHY 133
5.1 Age and sex structure in animal populations 133
 5.1.1 Natural animal populations 133
 5.1.2 Demography of non-human primates 134
5.2 Demography of fossil hominids 137
 5.2.1 Maturation times and longevity in fossil
 hominids 137
 5.2.2 Demography of Australopithecus and early Homo 140
 5.2.3 Demography of Homo heidelbergensis and Homo
 neanderthalensis 143
5.3 Human genetic palaeodemography 146
 5.3.1 Genetic studies of present-day populations 146
 5.3.2 Genetic studies of ancient populations 148

6 DEMOGRAPHY AND DISEASE 151
6.1 Disease in archaeological populations 151
 6.1.1 Concepts and evidence of disease 151
 6.1.2 Infectious and epidemic diseases 154
 6.1.3 Metabolic, nutritional and deficiency diseases 160
 6.1.4 Neoplastic and congenital diseases 165
 6.1.5 Trauma and homicide 168
6.2 Social and demographic impacts of disease 172
 6.2.1 Demographic responses to disease 172
 6.2.2 Social responses to disease 173

7 CONCLUDING REMARKS 177
7.1 The relevance of demography for archaeology 177
7.2 How meaningful are the results of palaeodemographic
analysis? 179
FIGURES

2.1 Age distribution in the Ache, a hunter-gatherer group in eastern Paraguay.

2.2 Triangular graph of mortality depicting the relative proportions of juvenile, prime-adult and old-adult individuals.

2.3 Exponential and logistic growth.

2.4 Estimated population growth in England and Wales between AD 1100 and 1800.

2.5 Population transition in France, eighteenth and nineteenth centuries.

2.6 Age-specific mortality in female Ache hunter-gatherers.

2.7 Examples of the general pattern of age-specific variation in human female fertility.

2.8 Age-specific migration rates in Australia.

2.9 Survivorship at the Tlajinga 33 apartment compound at Teotihuacan, Mexico.

3.1 Age heaping and year avoidance in the burial registers from a nineteenth-century hospital.

3.2 Age-specific probability of death calculated from Roman tombstone inscriptions.

3.3 Age structures of four hunter-gatherer populations.
Figures

3.4 Age-specific probability of death in three hunter-gatherer populations. 64
3.5 Age-specific fertility in hunter-gatherer women. 65
3.6 Age structure in agricultural populations. 66
3.7 Survivorship in agricultural populations. 67
3.8 Age-specific fertility in women from agricultural populations. 68
3.9 Age-specific mortality in catastrophic floods. 71
3.10 Age-specific mortality during famines in Berar province, India. 72
3.11 Crude birth and death rates in Berar province, India. 73
3.12 Age-specific death rates from influenza. 75
3.13 Distribution of deaths from plague in Penrith. 76
3.14 Age distribution of civilian deaths in Srebrenica. 79
3.15 Age distribution of combatant deaths. 80
4.1 Age-specific mortality (percentage of deaths) in the Libben cemetery. 83
4.2 Juvenility index in stable populations with different mortality levels and rates of population growth. 86
4.3 Age-specific mortality in four archaeological samples of human skeletal remains. 90
4.4 Age-specific mortality in hunter-gatherers and subsistence agriculturalists. 91
4.5 Unfused epiphysis at the proximal end of the femur. 100
4.6 Growth profiles constructed from archaeological samples of skeletal remains, compared to the modern Denver growth standard. 104
4.7 Age-related changes in the pubic symphysis. 107
4.8 Pattern of wear on the occlusal surfaces of the lower teeth. 109
4.9 Estimated distribution of age at death for Loisy-en-Brie. 118
4.10 Distribution of gestational ages estimated from the diaphyseal lengths of femurs. 124
4.11 Distribution of adult ages at death for two catastrophic skeletal assemblages.

4.12 Proxy archaeological data indicating relative changes in population size in Roman London.

4.13 Distribution of 14C dates obtained on human bone from Mesolithic and early Neolithic archaeological sites in Britain.

5.1 Survivorship curves and average mortality for natural cervid populations.

5.2 Survivorship curves for cercopithecine monkeys, *Pan troglodytes* and *Homo sapiens*.

5.3 Survivorship curves for cercopithecine monkeys, *Pan troglodytes* and *Homo sapiens*, compared to a common developmental scale.

5.4 Age distributions in samples of *Homo heidelbergensis* and *Homo neanderthalensis*.

6.1 Osteomyelitis in an arm bone.

6.2 Season of mortality in Rome.

6.3 *Cribra orbitalia*.

6.4 Nitrogen isotope ratios in infant skeletons.
Tables

2.1 Changes in population parameters during the demographic transition.
2.2 Life table for Northern Ache females.
2.3 Leslie matrix for Northern Ache females.
2.4 Comparison of mortality in the Early Period (AD 300–550) and the Late Period (AD 550–700) at the Tlajinga 33 site at Teotihuacan, Mexico.
3.1 Data recorded on a family reconstitution form (FRF).
3.2 Population structure from census data for hunter-gatherer and subsistence-farming populations.
3.3 Age-specific risk of death in hunter-gatherer populations.
4.1 Factors contributing to differences between the skeletons of human adult males and females.
4.2 Options for the selection of prior probabilities of age in Bayesian age estimation.
4.3 Distribution of femoral-head trabecular involution in a reference series.
4.4 Diaphyseal length of femurs in known-age individuals.
4.5 Posterior probabilities of gestational age given femur length.
5.1 Average duration (in years) of the formation of teeth.
5.2 Numbers and proportions of old adults in mortality samples.
5.3 Proportions of subadults in samples of fossil hominids.
5.4 Distributions of age at death in *Homo heidelbergensis* and *Homo neanderthalensis*. 143

6.1 Changes in prevalence of selected health conditions at the transition from foraging to farming. 159

6.2 Modern frequencies of congenital diseases (per thousand live births) that are diagnosable from skeletal remains. 167

6.3 Proportions of juveniles and of adult females in skeletal assemblages from European prehistoric conflict sites. 171
The original impetus to write this volume emerged nearly a decade ago. It stemmed from a dissatisfaction, in fact a cognitive dissonance, between on the one hand the need to instruct graduate students in the available procedures for the reconstruction of past populations from skeletal remains, and on the other hand a profound unease at the results generated by such exercises. Fortunately it turned out that several researchers were simultaneously trying to square the same circle, and although the gestation of this book has been inordinately long, it has benefited from the insights provided by the combined endeavours of a new generation of anthropologists, archaeologists, population geneticists and biostatisticians whose research has reinvigorated the science of palaeodemography. In this book I have attempted to summarise and evaluate some of these exciting new developments, as well as to revisit some of the older and more established procedures for inferring population parameters from archaeological evidence.

Many individuals and organisations have knowingly or unwittingly contributed to the production of this book. Thanks are due first of all to the stimulating intellectual environment provided by colleagues and students at the University of Sheffield, and to the long-standing policy of the Department of Archaeology to resource periods of study leave for some of its academic staff. Some of the ideas expressed in this book have been trialled on successive cohorts of students enrolled on the Human Osteology masters
training programme at the University of Sheffield. A few of those students have helped me substantially by contributing to the research reported here through their graduate and postdoctoral studies, in particular Dr Rebecca Gowland of the University of Cambridge and Dr Jo Buckberry of the University of Bradford. Other colleagues have been generous with their data, ideas and opinions – too many to name them all individually, but a particular debt of thanks is owed to Professor Charlotte Roberts of the University of Durham who sensibly reminded me of the inverse correlation between health and mortality! And quietly watching from the sidelines have been my editors at Cambridge University Press, whose enduring patience and support, flavoured with occasional gentle cajoling, have been invaluable.

Funding for some of my research has been provided by the Arts and Humanities Research Council, and several individuals and organisations have facilitated the study of unpublished skeletal remains. Louise Humphrey (Natural History Museum) and Eugenia Cunha (Coimbra) permitted access to their collections of known-age skeletons, and James Vaupel (Director of the Max Planck Institute of Demographic Research) kindly invited me to participate in some of the research projects sponsored by his Institute.