Wavelets in Physics

Edited by
J.C. VAN DEN BERG

Wageningen Agricultural University,
The Netherlands
Contents

List of contributors
page xiii

Preface
J.C. van den Berg (ed.)

xix

0 **A guided tour through the book**
J.C. van den Berg
1

1 **Wavelet analysis: a new tool in physics**
J.-P. Antoine
9

1.1 What is wavelet analysis? 9
1.2 The continuous WT 12
1.3 The discrete WT: orthonormal bases of wavelets 14
1.4 The wavelet transform in more than one dimension 18
1.5 Outcome 20
References 21

2 **The 2-D wavelet transform, physical applications and generalizations**
J.-P. Antoine
23

2.1 Introduction 23
2.2 The continuous WT in two dimensions 24
2.2.1 Construction and main properties of the 2-D CWT 24
2.2.2 Interpretation of the CWT as a singularity scanner 26
2.2.3 Practical implementation: the various representations 27
2.2.4 Choice of the analysing wavelet 29
2.2.5 Evaluation of the performances of the CWT 34
2.3 Physical applications of the 2-D CWT 39
2.3.1 Pointwise analysis 39
2.3.2 Applications of directional wavelets 43
2.3.3 Local contrast: a nonlinear extension of the CWT 50
2.4 Continuous wavelets as affine coherent states 53
 2.4.1 A general set-up 53
 2.4.2 Construction of coherent states from a square integrable group representation 55
2.5 Extensions of the CWT to other manifolds 59
 2.5.1 The three-dimensional case 59
 2.5.2 Wavelets on the 2-sphere 61
 2.5.3 Wavelet transform in space-time 63
2.6 The discrete WT in two dimensions 65
 2.6.1 Multiresolution analysis in 2-D and the 2-D DWT 65
 2.6.2 Generalizations 66
 2.6.3 Physical applications of the DWT 68
2.7 Outcome: why wavelets? 70
References 71

3 Wavelets and astrophysical applications 77
A. Bijaoui
3.1 Introduction 78
3.2 Time–frequency analysis of astronomical sources 79
 3.2.1 The world of astrophysical variable sources 79
 3.2.2 The application of the Fourier transform 80
 3.2.3 From Gabor’s to the wavelet transform 81
 3.2.4 Regular and irregular variables 81
 3.2.5 The analysis of chaotic light curves 82
 3.2.6 Applications to solar time series 83
3.3 Applications to image processing 84
 3.3.1 Image compression 84
 3.3.2 Denoising astronomical images 86
 3.3.3 Multiscale adaptive deconvolution 89
 3.3.4 The restoration of aperture synthesis observations 91
 3.3.5 Applications to data fusion 92
3.4 Multiscale vision 93
 3.4.1 Astronomical surveys and vision models 93
 3.4.2 A multiscale vision model for astronomical images 94
 3.4.3 Applications to the analysis of astrophysical sources 97
 3.4.4 Applications to galaxy counts 99
 3.4.5 Statistics on the large-scale structure of the Universe 102
Contents

3.5 Conclusion 106
Appendices to Chapter 3 107
A. The à trous algorithm 107
B. The pyramidal algorithm 108
C. The denoising algorithm 109
D. The deconvolution algorithm 109
References 110

4 Turbulence analysis, modelling and computing using wavelets 117
M. Farge, N.K.-R. Kevlahan, V. Perrier and K. Schneider

4.1 Introduction 117
4.2 Open questions in turbulence 121
4.2.1 Definitions 121
4.2.2 Navier–Stokes equations 124
4.2.3 Statistical theories of turbulence 125
4.2.4 Coherent structures 129
4.3 Fractals and singularities 132
4.3.1 Introduction 132
4.3.2 Detection and characterization of singularities 135
4.3.3 Energy spectra 137
4.3.4 Structure functions 141
4.3.5 The singularity spectrum for multifractals 143
4.3.6 Distinguishing between signals made up of isolated and dense singularities 147
4.4 Turbulence analysis 148
4.4.1 New diagnostics using wavelets 148
4.4.2 Two-dimensional turbulence analysis 150
4.4.3 Three-dimensional turbulence analysis 158
4.5 Turbulence modelling 160
4.5.1 Two-dimensional turbulence modelling 160
4.5.2 Three-dimensional turbulence modelling 165
4.5.3 Stochastic models 168
4.6 Turbulence computation 170
4.6.1 Direct numerical simulations 170
4.6.2 Wavelet-based numerical schemes 171
4.6.3 Solving Navier–Stokes equations in wavelet bases 172
4.6.4 Numerical results 179
4.7 Conclusion 185
References 190
5 Wavelets and detection of coherent structures in fluid turbulence
 L. Hudgins and J.H. Kaspersen

5.1 Introduction 201
5.2 Advantages of wavelets 205
5.3 Experimental details 205
5.4 Approach 208
 5.4.1 Methodology 208
 5.4.2 Estimation of the false-alarm rate 209
 5.4.3 Estimation of the probability of detection 211
5.5 Conventional coherent structure detectors 212
 5.5.1 Quadrant analysis (Q2) 212
 5.5.2 Variable Interval Time Average (VITA) 212
 5.5.3 Window Average Gradient (WAG) 214
5.6 Wavelet-based coherent structure detectors 215
 5.6.1 Typical wavelet method (psi) 215
 5.6.2 Wavelet quadrature method (Quad) 216
5.7 Results 219
5.8 Conclusions 225
References 225

6 Wavelets, non-linearity and turbulence in fusion plasmas
 B.Ph. van Milligen

6.1 Introduction 227
6.2 Linear spectral analysis tools 228
 6.2.1 Wavelet analysis 228
 6.2.2 Wavelet spectra and coherence 231
 6.2.3 Joint wavelet phase-frequency spectra 233
6.3 Non-linear spectral analysis tools 234
 6.3.1 Wavelet bispectra and bicoherence 234
 6.3.2 Interpretation of the bicoherence 237
6.4 Analysis of computer-generated data 240
 6.4.1 Coupled van der Pol oscillators 242
 6.4.2 A large eddy simulation model for two-fluid plasma turbulence 245
 6.4.3 A long wavelength plasma drift wave model 249
6.5 Analysis of plasma edge turbulence from Langmuir probe data 255
 6.5.1 Radial coherence observed on the TJ-IU torsatron 255
 6.5.2 Bicoherence profile at the L/H transition on CCT 256
6.6 Conclusions 260
References 261
7 Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking

A. Fournier

7.1 Introduction
7.2 Data and blocking description
7.3 Analysis
 7.3.1 Conventional statistics
 7.3.2 Fundamental equations
 7.3.3 Review of statistical equations
 7.3.4 Review of Fourier based energetics
 7.3.5 Review of wavelet analysis
 7.3.6 Energetics in the domain of wavelet indices
 (or any orthogonal basis)
 7.3.7 Kinetic energy localized flux functions
7.4 Results and interpretation
 7.4.1 Time averaged statistics
 7.4.2 Time dependent multiresolution analysis at fixed \((\varphi, p)\)
 7.4.3 Kinetic energy transfer functions
7.5 Concluding remarks
References

8 Wavelets in atomic physics and in solid state physics

J.-P. Antoine, Ph. Antoine and B. Piraux

8.1 Introduction
8.2 Harmonic generation in atom–laser interaction
 8.2.1 The physical process
 8.2.2 Calculation of the atomic dipole for a one-electron atom
 8.2.3 Time–frequency analysis of the dipole acceleration: H(1s)
 8.2.4 Extension to multi-electron atoms
8.3 Calculation of multi-electronic wave functions
 8.3.1 The self-consistent Hartree–Fock method (HF)
 8.3.2 Beyond Hartree–Fock: inclusion of electron correlations
 8.3.3 CWT realization of a 1-D HF equation
8.4 Other applications in atomic physics
 8.4.1 Combination of wavelets with moment methods
 8.4.2 Wavelets in plasma physics
8.5 Electronic structure calculations
 8.5.1 Principle
 8.5.2 A non-orthogonal wavelet basis
 8.5.3 Orthogonal wavelet bases
Contents

8.5.4 Second generation wavelets 326
8.6 Wavelet-like orthonormal bases for the lowest Landau level 327
 8.6.1 The Fractional Quantum Hall Effect setup 328
 8.6.2 The LLL basis problem 329
 8.6.3 Wavelet-like bases 330
 8.6.4 Further variations on the same theme 333
8.7 Outcome: what have wavelet brought to us? 334
References 335

9 The thermodynamics of fractals revisited with wavelets 339
A. Arneodo, E. Bacry and J.F. Muzy
9.1 Introduction 340
9.2 The multifractal formalism 343
 9.2.1 Microcanonical description 343
 9.2.2 Canonical description 346
9.3 Wavelets and multifractal formalism for fractal functions 348
 9.3.1 The wavelet transform 348
 9.3.2 Singularity detection and processing with wavelets 349
 9.3.3 The wavelet transform modulus maxima method 350
 9.3.4 Phase transition in the multifractal spectra 357
9.4 Multifractal analysis of fully developed turbulence data 360
 9.4.1 Wavelet analysis of local scaling properties of a turbulent velocity signal 361
 9.4.2 Determination of the singularity spectrum of a turbulent velocity signal with the WTMM method 363
9.5 Beyond multifractal analysis using wavelets 366
 9.5.1 Solving the inverse fractal problem from wavelet analysis 367
 9.5.2 Wavelet transform and renormalization of the transition to chaos 373
9.6 Uncovering a Fibonacci multiplicative process in the arborescent fractal geometry of diffusion-limited aggregates 377
9.7 Conclusion 384
References 385

10 Wavelets in medicine and physiology 391
10.1 Introduction 391
10.2 Nonstationary physiological signals 394
10.3 Wavelet transform 396
1

Wavelet analysis: a new tool in physics

J.-P. ANTOINE
Institut de Physique Théorique,
Université Catholique de Louvain, Belgium

Abstract
We review the general properties of the wavelet transform, both in its con-
tinuous and its discrete versions, in one or more dimensions. We also indicate
some generalizations and applications in physics.

1.1 What is wavelet analysis?
Wavelet analysis is a particular time- or space-scale representation of signals
which has found a wide range of applications in physics, signal processing
and applied mathematics in the last few years. In order to get a feeling for it
and to understand its success, let us consider first the case of one-dimensional
signals.

It is a fact that most real life signals are nonstationary and usually cover a
wide range of frequencies. They often contain transient components, whose
apparition and disparition are physically very significant. In addition, there is
frequently a direct correlation between the characteristic frequency of a given
segment of the signal and the time duration of that segment. Low frequency
pieces tend to last a long interval, whereas high frequencies occur in general
for a short moment only. Human speech signals are typical in this respect:
vowels have a relatively low mean frequency and last quite long, whereas
consonants contain a wide spectrum, up to very high frequencies, especially
in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals,
since it loses all information about the time localization of a given frequency
component. In addition, it is very uneconomical: when the signal is almost
flat, i.e. uninteresting, one still has to sum an infinite alternating series for
reproducing it. Worse yet, Fourier analysis is highly unstable with respect to
perturbation, because of its global character. For instance, if one adds an
extra term, with a very small amplitude, to a linear superposition of sine
waves, the signal will barely be modified, but the Fourier spectrum will be
completely perturbed. This does not happen if the signal is represented in
terms of localized components.

For all these reasons, signal analysts turn to time-frequency (TF) represen-
tations. The idea is that one needs two parameters: one, called a, characterizes
the frequency, the other one, b, indicates the position in the signal. This
concept of a TF representation is in fact quite old and familiar. The most
obvious example is simply a musical score!

If one requires in addition the transform to be linear, a general TF trans-
form will take the form:

$$ s(x) \mapsto S(a, b) = \int_{-\infty}^{\infty} \overline{\psi_{ab}(x)} s(x) \, dx, $$

where s is the signal and ψ_{ab} the analysing function. Within this class, two TF
transforms stand out as particularly simple and efficient: the Windowed or
Short Time Fourier Transform (WFT) and the Wavelet Transform (WT).
For both of them, the analysing function ψ_{ab} is obtained by acting on a basic
(or mother) function ψ, in particular b is simply a time translation. The
essential difference between the two is in the way the frequency parameter
a is introduced.

(1) Windowed Fourier Transform:

$$ \psi_{ab}(x) = e^{ix/a} \psi(x - b). $$

Here ψ is a window function and the a-dependence is a modulation ($1/a \sim$
frequency); the window has constant width, but the lower a, the larger the
number of oscillations in the window (see Figure 1.1 (left))

(2) Wavelet transform:

$$ \psi_{ab}(x) = \frac{1}{\sqrt{a}} \psi\left(\frac{x - b}{a}\right). $$

The action of a on the function ψ (which must be oscillating, see below) is a
dilation ($a > 1$) or a contraction ($a < 1$): the shape of the function is
unchanged, it is simply spread out or squeezed (see Figure 1.1 (right)).

The WFT transform was originally introduced by Gabor (actually in a dis-
cretized version), with the window function ψ taken as a Gaussian; for this
reason, it is sometimes called the Gabor transform. With this choice, the
function ψ_{ab} is simply a canonical (harmonic oscillator) coherent state [17],
as one sees immediately by writing $1/a = p$. Of course this book is concerned
essentially with the wavelet transform, but the Gabor transform will occasion-
ally creep in, as for instance in Chapter 8.

One should note that the assumption of linearity is nontrivial, for there exists a whole class of quadratic, or more properly sesquilinear, time-frequency representations. The prototype is the so-called Wigner–Ville transform, introduced originally by E.P. Wigner in quantum mechanics (in 1932!) and extended by J. Ville to signal analysis:

\[
W_s(a, b) = \int e^{-ix/a} s(b + \frac{x}{2}) s(b - \frac{x}{2}) dx.
\]

Further information may be found in [6, 11].
1.2 The continuous WT

Actually one should distinguish two different versions of the wavelet transform, the continuous WT (CWT) and the discrete (or more properly, discrete time) WT (DWT) [10,14]. The CWT plays the same rôle as the Fourier transform and is mostly used for analysis and feature detection in signals, whereas the DWT is the analogue of the Discrete Fourier Transform (see for instance [4] or [29]) and is more appropriate for data compression and signal reconstruction. The situation may be caricatured by saying that the CWT is more natural to the physicist, while the DWT is more congenial to the signal analyst and the numericist. This explains why the CWT will play a major part in this book.

The two versions of the WT are based on the same transformation formula, which reads, from (1.1) and (1.3):

\[S(a, b) = a^{-1/2} \int_{-\infty}^{\infty} \frac{x-b}{a} \psi \left(\frac{x-b}{a} \right) s(x) \, dx, \]

where \(a > 0 \) is a scale parameter and \(b \in \mathbb{R} \) a translation parameter. Equivalently, in terms of Fourier transforms:

\[S(a, b) = a^{1/2} \int_{-\infty}^{\infty} \overline{\psi(a\omega)} \hat{s}(\omega) e^{ib\omega} \, d\omega. \]

In these relations, \(s \) is a square integrable function (signal analysts would say: a finite energy signal) and the function \(\psi \), the analysing wavelet, is assumed to be well localized both in the space (or time) domain and in the frequency domain. In addition \(\psi \) must satisfy the following admissibility condition, which guarantees the invertibility of the WT:

\[\int_{-\infty}^{\infty} |\hat{\psi}(\omega)|^2 \frac{d\omega}{|\omega|} < \infty. \]

In most cases, this condition may be reduced to the requirement that \(\psi \) has zero mean (hence it must be oscillating):

\[\int_{-\infty}^{\infty} \psi(x) \, dx = 0. \]

In addition, \(\psi \) is often required to have a certain number of vanishing moments:

\[\int_{-\infty}^{\infty} x^n \psi(x) \, dx = 0, \quad n = 0, 1, \ldots, N. \]
This property improves the efficiency of ψ at detecting singularities in the signal, since it is blind to polynomials up to order N.

One should emphasize here that the choice of the normalization factor $a^{-1/2}$ in (1.3) or (1.5) is not essential. Actually, one often uses instead a factor a^{-1} (the so-called L^1 normalization), and this has the advantage of giving more weight to the small scales, i.e. the high frequency part (which contains the singularities of the signal, if any). The choice $a^{-1/2}$ makes the transform unitary: $\|\psi_{ab}\| = \|\psi\|$ and also $\|S\| = \|s\|$, where $\| \cdot \|$ denotes the L^2 norm in the appropriate variables (the squared norm is interpreted as the total energy of the signal).

Notice that, instead of (1.5), which defines the WT as the scalar product of the signal s with the transformed wavelet ψ_{ab}, $S(a, b)$ may also be seen as the convolution of s with the scaled, flipped and conjugated wavelet $\tilde{\psi}_a(x) = a^{-1/2} \tilde{\psi}(-x/a)$:

$$S(a, b) = (\tilde{\psi}_a * s)(b) = \int_{-\infty}^{\infty} \tilde{\psi}_a(b - x)s(x) \, dx.$$ \hspace{1cm} (1.10)

In other words, the CWT acts as a filter with a function of zero mean.

This property is crucial, for the main virtues of the CWT follow from it, combined with the support properties of ψ. Indeed, if we assume ψ and $\tilde{\psi}$ to be as well localized as possible (but respecting the Fourier uncertainty principle), then so are the transformed wavelets ψ_{ab} and $\tilde{\psi}_{ab}$. Therefore, the WT $s \mapsto S$ performs a local filtering, both in time (b) and in scale (a). The transform $S(a, b)$ is nonnegligible only when the wavelet ψ_{ab} matches the signal, that is, the WT selects the part of the signal, if any, that lives around the time b and the scale a.

In addition, if $\tilde{\psi}$ has an essential support (bandwidth) of width Ω, then $\tilde{\psi}_{ab}$ has an essential support of width Ω/a. Thus, remembering that $1/a$ behaves like a frequency, we conclude that the WT works at constant relative bandwidth, that is, $\Delta \omega/\omega = \text{constant}$. This implies that it is very efficient at high frequency, i.e. small scales, in particular for the detection of singularities in the signal. By comparison, in the case of the Gabor transform, the support of $\tilde{\psi}_{ab}$ keeps the same width Ω for all a, that is, the WFT works at constant bandwidth, $\Delta \omega = \text{constant}$. This difference in behaviour is often the key factor in deciding whether one should choose the WFT or the WT in a given physical problem (see for instance Chapter 8).

Another crucial fact is that the transformation $s(x) \mapsto S(a, b)$ may be inverted exactly, which yields a reconstruction formula (this is only the simplest one, others are possible, for instance using different wavelets for the decomposition and the reconstruction):
\[s(x) = c_\psi^{-1} \int_{-\infty}^{\infty} db \int_{0}^{\infty} \frac{da}{a^2} \psi_{ab}(x) S(a, b), \]

where \(c_\psi \) is a normalization constant. This means that the WT provides a decomposition of the signal as a linear superposition of the wavelets \(\psi_{ab} \) with coefficients \(S(a, b) \). Notice that the natural measure on the parameter space \((a, b) \) is \(da \, db / a^2 \), and it is invariant not only under time translation, but also under dilation. This fact is important, for it suggests that these geometric transformations play an essential rôle in the CWT. This aspect will be discussed thoroughly in Chapter 2.

All this concerns the continuous WT (CWT). But, in practice, for numerical purposes, the transform must be \textit{discretized}, by restricting the parameters \(a \) and \(b \) in (1.5) to the points of a lattice, typically a dyadic one:

\[S_{j,k} = 2^{-j/2} \int_{-\infty}^{\infty} \overline{\psi(2^{-j}x - k)} s(x) \, dx, \quad j, k \in \mathbb{Z}. \]

Then the reconstruction formula (1.11) becomes simply

\[s(x) = \sum_{j,k \in \mathbb{Z}} S_{j,k} \tilde{\psi}_{j,k}(x), \]

where the function \(\tilde{\psi}_{j,k} \) may be explicitly constructed from \(\psi_{j,k} \). In this way, one arrives at the theory of \textit{frames} or nonorthogonal expansions [9, 10], which offer a good substitute to orthonormal bases. Very general functions \(\psi \) satisfying the admissibility condition (1.7) described above will yield a good frame, but not an orthonormal basis, since the functions \(\{ \psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k), j, k \in \mathbb{Z} \} \) are in general not orthogonal to each other!

Yet orthonormal bases of wavelets can be constructed, but by a totally different approach, based on the concept of \textit{multiresolution analysis}. We emphasize that the discretized version of the CWT just described is totally different in spirit and method from the genuine DWT, to which we now turn. The full story may be found in [10], for instance.

1.3 The discrete WT: orthonormal bases of wavelets

One of the successes of the WT was the discovery that it is possible to construct functions \(\psi \) for which \(\{ \psi_{j,k}, j, k \in \mathbb{Z} \} \) is indeed an orthonormal basis of \(L^2(\mathbb{R}) \).
In addition, such a basis still has the good properties of wavelets, including space and frequency localization. Moreover, it yields fast algorithms, and this is the key to the usefulness of wavelets in many applications.

The construction is based on two facts: first, almost all examples of orthonormal bases of wavelets can be derived from a multiresolution analysis, and then the whole construction may be transcribed into the language of digital filters, familiar in the signal processing literature.

A multiresolution analysis of $L^2(\mathbb{R})$ is an increasing sequence of closed subspaces

\[\ldots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \ldots, \tag{1.14} \]

with $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$ and $\bigcup_{j \in \mathbb{Z}} V_j$ dense in $L^2(\mathbb{R})$ (loosely speaking, this means $\lim_{j \to \infty} V_j = L^2(\mathbb{R})$), and such that

1. $f(x) \in V_j \iff f(2x) \in V_{j+1}$
2. there exists a function $\phi \in V_0$, called a scaling function, such that the family \{$(\phi(x - k), k \in \mathbb{Z})$\} is an orthonormal basis of V_0.

Combining conditions (1) and (2), one gets an orthonormal basis of V_j, namely \{$(\phi_{j,k}(x) = 2^{j/2}\phi(2^j x - k), k \in \mathbb{Z})$\}. Note that we may take for ϕ a real function, since we are dealing with signals.

Each V_j can be interpreted as an approximation space: the approximation of $f \in L^2(\mathbb{R})$ at the resolution 2^{-j} is defined by its projection onto V_j, and the larger j, the finer the resolution obtained. Then condition (1) means that no scale is privileged. The additional details needed for increasing the resolution from 2^{-j} to $2^{-(j+1)}$ are given by the projection of f onto the orthogonal complement W_j of V_j in V_{j+1}:

\[V_j \oplus W_j = V_{j+1}, \tag{1.15} \]

and we have:

\[L^2(\mathbb{R}) = \bigoplus_{j \in \mathbb{Z}} W_j. \tag{1.16} \]

Equivalently, fixing some lowest resolution level j_0, one may write

\[L^2(\mathbb{R}) = V_{j_0} \oplus \left(\bigoplus_{j \geq j_0} W_j \right). \tag{1.17} \]

Then the theory asserts the existence of a function ψ, called the mother wavelet, explicitly computable from ϕ, such that \{$(\psi_{j,k}(x) = 2^{j/2}\psi(2^j x - k), j, k \in \mathbb{Z})$\} constitutes an orthonormal basis of $L^2(\mathbb{R})$: these are the orthonormal wavelets.
The construction of ψ proceeds as follows. First, the inclusion $V_0 \subset V_1$ yields the relation (called the scaling or refining equation):

$$
\phi(x) = \sqrt{2} \sum_{n=-\infty}^{\infty} h_n \phi(2x - n), \quad h_n = \langle \phi_{1,n} | \phi \rangle. \quad (1.18)
$$

Taking Fourier transforms, this gives

$$
\hat{\phi}(\omega) = m_0(\omega/2)\hat{\phi}(\omega/2), \quad (1.19)
$$

where

$$
m_0(\omega) = \frac{1}{\sqrt{2}} \sum_{n=-\infty}^{\infty} h_ne^{-i\omega n} \quad (1.20)
$$

is a 2π-periodic function. Iterating (1.19), one gets the scaling function as the (convergent!) infinite product

$$
\hat{\phi}(\omega) = (2\pi)^{-1/2} \prod_{j=1}^{\infty} m_0(2^{-j}\omega). \quad (1.21)
$$

Then one defines the function $\psi \in W_0 \subset V_1$ by the relation

$$
\hat{\psi}(\omega) = e^{i\omega/2} \frac{m_0(\omega/2 + \pi)}{m_0(\omega/2)} \hat{\phi}(\omega/2), \quad (1.22)
$$

or, equivalently

$$
\psi(x) = \sqrt{2} \sum_{n=-\infty}^{\infty} (-1)^n h_{-n-1} \phi(2x - n), \quad (1.23)
$$

and proves that the function ψ indeed generates an orthonormal basis with all the required properties.

Various additional conditions may be imposed on the function ψ (hence on the basis wavelets): arbitrary regularity, several vanishing moments (in any case, ψ has always mean zero), symmetry, fast decrease at infinity, even compact support. The technique consists in translating the multiresolution structure into the language of digital filters. Actually this means nothing more than expanding (filter) functions in a Fourier series. For instance, (1.19) means that $m_0(\omega)$ is a filter (multiplication operator in frequency space), with filter coefficients h_n. Similarly, (1.22) may be written in terms of the filter $m_1(\omega) = e^{i\omega} m_0(\omega + \pi)$. (Notice that this particular relation between m_0, m_1, together with the identity $|m_0(\omega)|^2 + |m_1(\omega)|^2 = 1$, define what electrical engineers call a Quadrature Mirror Filter or QMF.) Then the various restrictions imposed on ψ translate into suitable constraints on
the filter coefficients h_n. For instance, ψ has compact support if only finitely many h_n differ from zero.

The simplest example of this construction is the Haar basis, which comes from the scaling function $\phi(x) = 1$ for $0 \leq x < 1$ and 0 otherwise. Similarly, various spline bases may be obtained along the same line. Other explicit examples may be found in [5] or [10].

In practical applications, the (sampled) signal is taken in some V_j, and then the decomposition (1.17) is replaced by the finite representation

$$V_J = V_0 \oplus \left(\bigoplus_{j=j_0}^{J-1} W_j \right). \tag{1.24}$$

Figure 1.2 shows an example (obtained with the MATLAB Wavelet Toolbox [3]) of a decomposition of order 5, namely

$$V_0 = V_{-5} \oplus W_{-5} \oplus W_{-4} \oplus W_{-3} \oplus W_{-2} \oplus W_{-1}. \tag{1.25}$$

As we just saw, appropriate filters generate orthonormal wavelet bases. However, this result turns out to be too rigid and various generalizations have been proposed (see [25] for details).

(i) **Biorthogonal wavelet bases:**

As we mentioned in Section 1.2, the wavelet used in the CWT for reconstruction need not be the same as that used for decomposition, the two have only to satisfy a cross-compatibility condition. The same idea in the discrete case leads to biorthogonal bases, i.e. one has two hierarchies of approximation spaces, V_j and \tilde{V}_j, with cross-orthogonality relations. This gives a better control, for instance, on the regularity or decrease properties of the wavelets.

(ii) **Wavelet packets and the best basis algorithm:**

The construction of orthonormal wavelet bases leads to a special subband coding scheme, rather asymmetrical: each approximation space V_j gets further decomposed into V_{j-1} and W_{j-1}, whereas the detail space W_j is left unmodified. Thus more flexible subband schemes have been considered, called wavelet packets; they provide rich libraries of orthonormal bases, and also strategies for determining the optimal basis in a given situation [7, 32].

(iii) **The lifting scheme:**

One can go one step beyond, and abandon the regular dyadic scheme and the Fourier transform altogether. The resulting method leads to the so-called second-generation wavelets [31], which are essentially custom-designed for any given problem.
Wavelet analysis may be extended to 2-D signals, that is, in image analysis. This extension was pioneered by Mallat [19, 20], who developed systematically a 2-D discrete (but redundant) WT. This generalization is indeed a very natural one, if one realizes that the whole idea of multiresolution analysis lies at the heart of human vision. In fact, most of the concepts are indeed already present in the pioneering work of Marr [22] on vision modelling. As in 1-D, this discrete WT has a close relationship with numerical filters and related techniques of signal analysis, such as subband coding. It has been applied successfully to several standard problems of image processing. As a matter of fact, all the approaches that we have mentioned above in the 1-D case have been extended to 2-D: orthonormal bases, biorthogonal bases, wavelet packets, lifting scheme. These topics will be discussed in detail in Chapter 2.

Fig. 1.2. A decomposition of order 5. The signal s lives in V_0 and it is decomposed into its approximation $a_5 \in V_{-5}$ and the increasingly finer details $d_j \in W_{-j}$, $j = 5, 4, 3, 2, 1$.
However, the continuous transform may also be extended to 2 (or more) dimensions, with exactly the same properties as in the 1-D case [2, 26]. Here again the mechanism of the WT is easily understood from its very definition as a convolution (in the sense of (1.10)):

\[
S(a, \theta, \tilde{b}) \sim \int d^2 \tilde{x} \, \overline{\psi(a^{-1} r_{-\theta} (\tilde{x} - \tilde{b}))} s(\tilde{x}), \quad a > 0, 0 \leq \theta < 2\pi, b \in \mathbb{R}^2, \quad (1.26)
\]

where \(s\) is the signal and \(\psi\) is the analysing wavelet, which is translated by \(\tilde{b}\), dilated by \(a\) and rotated by an angle \(\theta\) (\(r_{-\theta}\) is the rotation operator). Since the wavelet \(\psi\) is required to have zero mean, we have again a filtering effect, i.e. the analysis is local in all four parameters \(a, \theta, \tilde{b}\), and here too it is particularly efficient at detecting discontinuities in images.

Surprisingly, most applications have treated the 2-D WT as a ‘mathematical microscope’, like in 1-D, thus ignoring directions. This is particularly true for the discrete version. There, indeed, a 2-D multiresolution is simply the tensor product of two 1-D schemes, one for the horizontal direction and one for the vertical direction (in technical terms, one uses only separable filters). However the 2-D continuous WT, including the orientation parameter \(\theta\), may be used for detecting oriented features of the signal, that is, regions where the amplitude is regular along one direction and has a sharp variation along the perpendicular direction, for instance, in the classical problem of edge detection. The CWT is a very efficient tool in this respect, provided one uses a wavelet which has itself an intrinsic orientation (for instance, it contains a plane wave). For this reason, a large part of Chapter 2 will be devoted to the continuous WT and its applications.

For further extensions of the CWT, it is crucial to note that the 2-D version comes directly from group representation theory, the group in this case being the so-called similitude group of the plane, consisting of translations, rotations and global dilations [26]. Note that the 1-D CWT may also be derived from group theory [10], in that case from the so-called ‘\(ax + b\)’ group of dilations and translations of the line.

What we have here is in fact a general pattern. Consider the class of finite energy signals living on a manifold \(Y\), i.e. \(s \in L^2(Y, d\mu) \equiv \mathcal{H}\). For instance, \(Y\) could be space \(\mathbb{R}^n\), the 2-sphere \(S^2\), space-time \(\mathbb{R} \times \mathbb{R}\) or \(\mathbb{R}^2 \times \mathbb{R}\), etc. Suppose there is a group \(G\) of transformations acting on \(Y\), that contains dilations of some kind. As usual, this action will be expressed by a unitary representation \(U\) of \(G\) in the space \(\mathcal{H}\) of signals. Then, under a simple technical assumption on \(U\) (‘square integrability’), a wavelet analysis on \(Y\), adapted to the symmetry group \(G\), may be constructed, following the general construction of coherent states on \(Y\) associated to \(G\) [1]. This technique has
been implemented successfully for extending the CWT to higher dimensions (in 3-D, for instance, one gets a tool for target tracking), the 2-sphere (a tool most wanted by geophysicists) or to space-time (time-dependent signals or images, such as TV or video sequences), including relativistic effects (using wavelets associated to the affine Galilei or Poincaré group). This general approach will be described with all the necessary mathematical details in Chapter 2.

It is interesting to remark that the CWT was in fact designed by physicists. The idea of deriving it from group theory is entirely natural in the framework of coherent states [1, 17], and the connection was made explicitly from the very beginning [12, 13]. In a sense, the CWT consists in the application of ideas from quantum physics to signal and image processing. The resulting effect of cross-fertilization may be one of the reasons of its richness and its success.

1.5 Outcome

As a general conclusion, it is fair to say that the wavelet techniques have become an established tool in signal and image processing, both in their CWT and DWT incarnations and their generalizations. They are being incorporated as a new tool in many reference books and software codes. They have distinct advantages over concurrent methods by their adaptive character, manifested for instance in their good performances in pattern recognition or directional filtering (in the case of the CWT), and by their very economical aspect, achieved in impressive compression rates (in the case of the DWT). This is especially useful in image processing, where huge amount of data, mostly redundant, have to be stored and transmitted.

As a consequence, they have found applications in many branches of physics, such as acoustics, spectroscopy, geophysics, astrophysics, fluid mechanics (turbulence), medical imagery, atomic physics (laser–atom interaction), solid state physics (structure calculations), ... Some of these results will be reviewed in the subsequent chapters. For additional information, see [24].

Thus we may safely bet that wavelets are here to stay, and that they have a bright future. Of course wavelets don’t solve every difficulty, and must be continually developed and enriched, as has been the case over the last few years. In particular, one should expect a proliferation of specialized wavelets, each dedicated to a particular type of problem, and an increasingly diverse spectrum of physical applications. This trend is only natural, it follows from the very structure of the wavelet transform – and in that respect the wavelet
philosophy is exactly opposite to that of the Fourier transform, which is usually seen as a universal tool.

Finally a word about references. The literature on wavelet analysis is growing exponentially, so that some guidance may be helpful. As a first contact, an introductory article such as [29] may be a good suggestion, followed by the the popular, but highly successful book of Burke Hubbard [4]. Slightly more technical, but still elementary and aimed at a wide audience, are the books of Meyer [25] and Ogden [27]. While the former is a nice introduction to the mathematical ideas underlying wavelets, the latter focuses more on the statistical aspects of data analysis. Note that, since wavelets have found applications in most branches of physics, pedestrian introductions on them have been written in the specialized journals of each community (to give an example, meteorologists will appreciate [18]).

For a survey of the various applications, and a good glimpse of the chronological evolution, there is still no better place to look than the proceedings of the three large wavelet conferences, Marseille 1987 [8], Marseille 1989 [23] and Toulouse 1992 [24]. Finally a systematic study requires a textbook. Among the increasing number of books and special issues of journals appearing on the market, we recommend in particular the volumes of Daubechies [10], Chui [5], Kaiser [16] and Holschneider [14], the collection of review articles in [30] and several special issues of IEEE journals [15,28]. In particular, [3] gives a useful survey of the available software related to wavelets. Another good choice, complete but accessible to a broad readership, is the recent textbook of Mallat [21].

References

[28] *Proc. IEEE*, Special issue on Wavelets, **84**, No.4, April 1996

