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1

Wavelet analysis: a new tool in physics

J . - P . ANTO INE

Institut de Physique TheÂorique,
UniversiteÂ Catholique de Louvain, Belgium

Abstract

We review the general properties of the wavelet transform, both in its con-

tinuous and its discrete versions, in one or more dimensions. We also indicate

some generalizations and applications in physics.

1.1 What is wavelet analysis?

Wavelet analysis is a particular time- or space-scale representation of signals

which has found a wide range of applications in physics, signal processing

and applied mathematics in the last few years. In order to get a feeling for it

and to understand its success, let us consider ®rst the case of one-dimensional

signals.

It is a fact that most real life signals are nonstationary and usually cover a

wide range of frequencies. They often contain transient components, whose

apparition and disparition are physically very signi®cant. In addition, there is

frequently a direct correlation between the characteristic frequency of a given

segment of the signal and the time duration of that segment. Low frequency

pieces tend to last a long interval, whereas high frequencies occur in general

for a short moment only. Human speech signals are typical in this respect:

vowels have a relatively low mean frequency and last quite long, whereas

consonants contain a wide spectrum, up to very high frequencies, especially

in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals,

since it loses all information about the time localization of a given frequency

component. In addition, it is very uneconomical: when the signal is almost

¯at, i.e. uninteresting, one still has to sum an in®nite alternating series for

reproducing it. Worse yet, Fourier analysis is highly unstable with respect to

9



perturbation, because of its global character. For instance, if one adds an

extra term, with a very small amplitude, to a linear superposition of sine

waves, the signal will barely be modi®ed, but the Fourier spectrum will be

completely perturbed. This does not happen if the signal is represented in

terms of localized components.

For all these reasons, signal analysts turn to time-frequency (TF) represen-

tations. The idea is that one needs two parameters: one, called a, characterizes

the frequency, the other one, b, indicates the position in the signal. This

concept of a TF representation is in fact quite old and familiar. The most

obvious example is simply a musical score!

If one requires in addition the transform to be linear, a general TF trans-

form will take the form:

s�x� 7!S�a; b� �
Z 1
ÿ1

 ab�x� s�x� dx; �1:1�

where s is the signal and  ab the analysing function. Within this class, two TF

transforms stand out as particularly simple and ef®cient: the Windowed or

Short Time Fourier Transform (WFT) and the Wavelet Transform (WT).

For both of them, the analysing function  ab is obtained by acting on a basic

(or mother) function  , in particular b is simply a time translation. The

essential difference between the two is in the way the frequency parameter

a is introduced.

(1) Windowed Fourier Transform:

 ab�x� � eix=a  �xÿ b�: �1:2�
Here  is a window function and the a-dependence is a modulation �1=a �
frequency); the window has constant width, but the lower a, the larger the

number of oscillations in the window (see Figure 1.1 (left))

(2) Wavelet transform:

 ab�x� �
1���
a
p  

xÿ b

a

� �
: �1:3�

The action of a on the function  (which must be oscillating, see below) is a

dilation �a > 1� or a contraction �a < 1�: the shape of the function is

unchanged, it is simply spread out or squeezed (see Figure 1.1 (right)).

The WFT transform was originally introduced by Gabor (actually in a dis-

cretized version), with the window function  taken as a Gaussian; for this

reason, it is sometimes called the Gabor transform. With this choice, the

function  ab is simply a canonical (harmonic oscillator) coherent state [17],

as one sees immediately by writing 1=a � p. Of course this book is concerned

10 J.-P. Antoine



essentially with the wavelet transform, but the Gabor transform will occa-

sionally creep in, as for instance in Chapter 8.

One should note that the assumption of linearity is nontrivial, for there

exists a whole class of quadratic, or more properly sesquilinear, time-fre-

quency representations. The prototype is the so-called Wigner±Ville trans-

form, introduced originally by E.P. Wigner in quantum mechanics (in 1932!)

and extended by J. Ville to signal analysis:

Ws�a; b� �
Z

eÿix=a s bÿ x

2

� �
s b� x

2

� �
dx: �1:4�

Further information may be found in [6, 11].

Wavelet analysis: a new tool in physics 11

Fig. 1.1. The function  ab�x� for increasing values of 1=a � frequency, in the case of
the Windowed Fourier Transform (left) and the wavelet transform (right).



1.2 The continuous WT

Actually one should distinguish two different versions of the wavelet trans-

form, the continuous WT (CWT) and the discrete (or more properly, discrete

time) WT (DWT) [10,14]. The CWT plays the same roÃ le as the Fourier

transform and is mostly used for analysis and feature detection in signals,

whereas the DWT is the analogue of the Discrete Fourier Transform (see for

instance [4] or [29]) and is more appropriate for data compression and signal

reconstruction. The situation may be caricatured by saying that the CWT is

more natural to the physicist, while the DWT is more congenial to the signal

analyst and the numericist. This explains why the CWT will play a major part

in this book.

The two versions of the WT are based on the same transformation for-

mula, which reads, from (1.1) and (1.3):

S�a; b� � aÿ1=2
Z 1
ÿ1

 
xÿ b

a

� �
s�x� dx; �1:5�

where a > 0 is a scale parameter and b 2 R a translation parameter.

Equivalently, in terms of Fourier transforms:

S�a; b� � a1=2
Z 1
ÿ1

b �a!�bs �!�eib! d!: �1:6�

In these relations, s is a square integrable function (signal analysts would say:

a ®nite energy signal) and the function  , the analysing wavelet, is assumed

to be well localized both in the space (or time) domain and in the frequency

domain. In addition  must satisfy the following admissibility condition,

which guarantees the invertibility of the WT:Z 1
ÿ1
jb �!�j2 d!

j!j <1: �1:7�

In most cases, this condition may be reduced to the requirement that  has

zero mean (hence it must be oscillating):Z 1
ÿ1

 �x� dx � 0: �1:8�

In addition,  is often required to have a certain number of vanishing

moments: Z 1
ÿ1

xn  �x� dx � 0; n � 0; 1; . . . ;N: �1:9�

12 J.-P. Antoine



This property improves the ef®ciency of  at detecting singularities in the

signal, since it is blind to polynomials up to order N.

One should emphasize here that the choice of the normalization factor

aÿ1=2 in (1.3) or (1.5) is not essential. Actually, one often uses instead a factor

aÿ1 (the so-called L1 normalization), and this has the advantage of giving

more weight to the small scales, i.e. the high frequency part (which contains

the singularities of the signal, if any). The choice aÿ1=2 makes the transform

unitary: k abk � k k and also kSk � ksk, where k � k denotes the L2 norm in

the appropriate variables (the squared norm is interpreted as the total energy

of the signal).

Notice that, instead of (1.5), which de®nes the WT as the scalar product of

the signal s with the transformed wavelet  ab, S�a; b� may also be seen as the

convolution of s with the scaled, ¯ipped and conjugated wavelete a�x� � aÿ1=2  �ÿx=a� :

S�a; b� � �e a � s��b� �
Z 1
ÿ1

e a�bÿ x� s�x� dx: �1:10�

In other words, the CWT acts as a ®lter with a function of zero mean.

This property is crucial, for the main virtues of the CWT follow from it,

combined with the support properties of  . Indeed, if we assume  and b to

be as well localized as possible (but respecting the Fourier uncertainty prin-

ciple), then so are the transformed wavelets  ab and b ab. Therefore, the WT

s 7!S performs a local ®ltering, both in time (b) and in scale (a). The trans-

form S�a; b� is nonnegligible only when the wavelet  ab matches the signal,

that is, the WT selects the part of the signal, if any, that lives around the time

b and the scale a.

In addition, if b has an essential support (bandwidth) of width 
, then b ab

has an essential support of width 
=a. Thus, remembering that 1=a behaves

like a frequency, we conclude that the WT works at constant relative band-

width, that is, �!=! � constant. This implies that it is very ef®cient at high

frequency, i.e. small scales, in particular for the detection of singularities in

the signal. By comparison, in the case of the Gabor transform, the support ofb ab keeps the same width 
 for all a, that is, the WFT works at constant

bandwidth, �! � constant. This difference in behaviour is often the key

factor in deciding whether one should choose the WFT or the WT in a

given physical problem (see for instance Chapter 8).

Another crucial fact is that the transformation s�x� 7!S�a; b� may be

inverted exactly, which yields a reconstruction formula (this is only the

simplest one, others are possible, for instance using different wavelets for

the decomposition and the reconstruction):

Wavelet analysis: a new tool in physics 13



s�x� � cÿ1 

Z 1
ÿ1

db

Z 1
0

da

a2
 ab�x�S�a; b�; �1:11�

where c is a normalization constant. This means that the WT provides a

decomposition of the signal as a linear superposition of the wavelets  ab with

coef®cients S�a; b�. Notice that the natural measure on the parameter space

�a; b� is da db=a2, and it is invariant not only under time translation, but also

under dilation. This fact is important, for it suggests that these geometric

transformations play an essential roÃ le in the CWT. This aspect will be dis-

cussed thoroughly in Chapter 2.

All this concerns the continuous WT (CWT). But, in practice, for numer-

ical purposes, the transform must be discretized, by restricting the parameters

a and b in (1.5) to the points of a lattice, typically a dyadic one:

Sj;k � 2ÿj=2
Z 1
ÿ1

 �2ÿjxÿ k� s�x� dx; j; k 2 Z: �1:12�

Then the reconstruction formula (1.11) becomes simply

s�x� �
X
j;k2Z

Sj;k
g j;k�x�; �1:13�

where the function g j;k may be explicitly constructed from  j;k. In this way,

one arrives at the theory of frames or nonorthogonal expansions [9, 10],

which offer a good substitute to orthonormal bases. Very general functions

 satisfying the admissibility condition (1.7) described above will yield a

good frame, but not an orthonormal basis, since the functions

f j;k�x� � 2j=2 �2 jxÿ k�; j; k 2 Zg are in general not orthogonal to each

other!

Yet orthonormal bases of wavelets can be constructed, but by a totally

different approach, based on the concept of multiresolution analysis. We

emphasize that the discretized version of the CWT just described is totally

different in spirit and method from the genuine DWT, to which we now turn.

The full story may be found in [10], for instance.

1.3 The discrete WT: orthonormal bases of wavelets

One of the successes of the WT was the discovery that it is possible to

construct functions  for which f j;k; j; k 2 Zg is indeed an orthonormal

basis of L2�R�.

14 J.-P. Antoine



In addition, such a basis still has the good properties of wavelets, including

space and frequency localization. Moreover, it yields fast algorithms, and this

is the key to the usefulness of wavelets in many applications

The construction is based on two facts: ®rst, almost all examples of ortho-

normal bases of wavelets can be derived from a multiresolution analysis, and

then the whole construction may be transcribed into the language of digital

®lters, familiar in the signal processing literature.

A multiresolution analysis of L2�R� is an increasing sequence of closed

subspaces

. . . � Vÿ2 � Vÿ1 � V0 � V1 � V2 � . . . ; �1:14�
with

T
j 2Z Vj � f0g and

S
j 2Z Vj dense in L2�R� (loosely speaking, this means

limj!1Vj � L2�R�), and such that

(1) f �x� 2 Vj , f �2x� 2 Vj�1
(2) there exists a function � 2 V0, called a scaling function, such that the family

f��xÿ k�; k 2 Zg is an orthonormal basis of V0.

Combining conditions (1) and (2), one gets an orthonormal basis of Vj,

namely f�j;k�x� � 2j=2��2jxÿ k�; k 2 Zg: Note that we may take for � a real

function, since we are dealing with signals.

Each Vj can be interpreted as an approximation space: the approximation

of f 2 L2�R� at the resolution 2ÿj is de®ned by its projection onto Vj, and the

larger j, the ®ner the resolution obtained. Then condition (1) means that no

scale is privileged. The additional details needed for increasing the resolution

from 2ÿj to 2ÿ�j�1� are given by the projection of f onto the orthogonal

complement Wj of Vj in Vj�1:

Vj �Wj � Vj�1; �1:15�
and we have:

L2�R� �
M
j2Z

Wj: �1:16�

Equivalently, ®xing some lowest resolution level jo, one may write

L2�R� � Vjo �
M
j�jo

Wj

 !
: �1:17�

Then the theory asserts the existence of a function  , called the mother

wavelet, explicitly computable from �, such that f j;k�x� � 2j=2 �2jxÿ k�;
j; k 2 Zg constitutes an orthonormal basis of L2�R�: these are the orthonormal

wavelets.

Wavelet analysis: a new tool in physics 15



The construction of  proceeds as follows. First, the inclusion V0 � V1

yields the relation (called the scaling or re®ning equation):

��x� �
���
2
p X1

n�ÿ1
hn��2xÿ n�; hn � h�1;nj�i: �1:18�

Taking Fourier transforms, this gives

b��!� � m0�!=2�b��!=2�; �1:19�
where

m0�!� �
1���
2
p

X1
n�ÿ1

hne
ÿin! �1:20�

is a 2�-periodic function. Iterating (1.19), one gets the scaling function as the

(convergent!) in®nite product

b��!� � �2��ÿ1=2Y1
j�1

m0�2ÿj!�: �1:21�

Then one de®nes the function  2W0 � V1 by the relationb �!� � ei!=2 m0�!=2� �� b��!=2�; �1:22�
or, equivalently

 �x� �
���
2
p X1

n�ÿ1
�ÿ1�nÿ1hÿnÿ1��2xÿ n�; �1:23�

and proves that the function  indeed generates an orthonormal basis with

all the required properties.

Various additional conditions may be imposed on the function  (hence on

the basis wavelets): arbitrary regularity, several vanishing moments (in any

case,  has always mean zero), symmetry, fast decrease at in®nity, even

compact support. The technique consists in translating the multiresolution

structure into the language of digital ®lters. Actually this means nothing

more than expanding (®lter) functions in a Fourier series. For instance,

(1.19) means that m0�!� is a ®lter (multiplication operator in frequency

space), with ®lter coef®cients hn. Similarly, (1.22) may be written in terms

of the ®lter m1�!� � ei! m0�!� ��. (Notice that this particular relation

between m0;m1, together with the identity jm0�!�j2 � jm1�!�j2 � 1, de®ne

what electrical engineers call a Quadrature Mirror Filter or QMF.) Then

the various restrictions imposed on  translate into suitable constraints on

16 J.-P. Antoine



the ®lter coef®cients hn. For instance,  has compact support if only ®nitely

many hn differ from zero.

The simplest example of this construction is the Haar basis, which comes

from the scaling function ��x� � 1 for 0 � x < 1 and 0 otherwise. Similarly,

various spline bases may be obtained along the same line. Other explicit

examples may be found in [5] or [10].

In practical applications, the (sampled) signal is taken in some VJ , and

then the decomposition (1.17) is replaced by the ®nite representation

VJ � Vjo �
MJÿ1
j�jo

Wj

 !
: �1:24�

Figure 1.2 shows an example (obtained with the MATLAB Wavelet Toolbox

[3]) of a decomposition of order 5, namely

V0 � Vÿ5 �Wÿ5 �Wÿ4 �Wÿ3 �Wÿ2 �Wÿ1: �1:25�

As we just saw, appropriate ®lters generate orthonormal wavelet bases.

However, this result turns out to be too rigid and various generalizations

have been proposed (see [25] for details).

(i) Biorthogonal wavelet bases:

As we mentioned in Section 1.2, the wavelet used in the CWT for reconstruc-

tion need not be the same as that used for decomposition, the two have only to

satisfy a cross-compatibility condition. The same idea in the discrete case leads

to biorthogonal bases, i.e. one has two hierarchies of approximation spaces, Vj

and �Vj, with cross-orthogonality relations. This gives a better control, for

instance, on the regularity or decrease properties of the wavelets.

(ii) Wavelet packets and the best basis algorithm:

The construction of orthonormal wavelet bases leads to a special subband

coding scheme, rather asymmetrical: each approximation space Vj gets further

decomposed into Vjÿ1 and Wjÿ1, whereas the detail space Wj is left unmodi®ed.

Thus more ¯exible subband schemes have been considered, called wavelet pack-

ets; they provide rich libraries of orthonormal bases, and also strategies for

determining the optimal basis in a given situation [7, 32].

(iii) The lifting scheme:

One can go one step beyond, and abandon the regular dyadic scheme and the

Fourier transform altogether. The resulting method leads to the so-called sec-

ond-generation wavelets [31], which are essentially custom-designed for any

given problem.

Wavelet analysis: a new tool in physics 17



1.4 The wavelet transform in more than one dimension

Wavelet analysis may be extended to 2-D signals, that is, in image analysis.

This extension was pioneered by Mallat [19, 20], who developed systemati-

cally a 2-D discrete (but redundant) WT. This generalization is indeed a very

natural one, if one realizes that the whole idea of multiresolution analysis lies

at the heart of human vision. In fact, most of the concepts are indeed already

present in the pioneering work of Marr [22] on vision modelling. As in 1-D,

this discrete WT has a close relationship with numerical ®lters and related

techniques of signal analysis, such as subband coding. It has been applied

successfully to several standard problems of image processing. As a matter of

fact, all the approaches that we have mentioned above in the 1-D case have

been extended to 2-D: orthonormal bases, biorthogonal bases, wavelet pack-

ets, lifting scheme. These topics will be discussed in detail in Chapter 2.

18 J.-P. Antoine

Fig. 1.2. A decomposition of order 5. The signal s lives in V0 and it is decomposed
into its approximation a5 2 Vÿ5 and the increasingly ®ner details dj 2Wÿj;
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However, the continuous transform may also be extended to 2 (or more)

dimensions, with exactly the same properties as in the 1-D case [2, 26]. Here

again the mechanism of the WT is easily understood from its very de®nition

as a convolution (in the sense of (1.10)):

S�a; �; ~b� �
Z

d2 ~x � �aÿ1rÿ��~xÿ ~b��s�~x�; a > 0; 0 � � < 2�; b 2 R2; �1:26�

where s is the signal and  is the analysing wavelet, which is translated by ~b,

dilated by a and rotated by an angle � �rÿ� is the rotation operator). Since the

wavelet  is required to have zero mean, we have again a ®ltering effect, i.e.

the analysis is local in all four parameters a; �; ~b, and here too it is particu-

larly ef®cient at detecting discontinuities in images.

Surprisingly, most applications have treated the 2-D WT as a `mathema-

tical microscope', like in 1-D, thus ignoring directions. This is particularly

true for the discrete version. There, indeed, a 2-D multiresolution is simply

the tensor product of two 1-D schemes, one for the horizontal direction and

one for the vertical direction (in technical terms, one uses only separable

®lters). However the 2-D continuousWT, including the orientation parameter

�, may be used for detecting oriented features of the signal, that is, regions

where the amplitude is regular along one direction and has a sharp variation

along the perpendicular direction, for instance, in the classical problem of

edge detection. The CWT is a very ef®cient tool in this respect, provided one

uses a wavelet which has itself an intrinsic orientation (for instance, it con-

tains a plane wave). For this reason, a large part of Chapter 2 will be devoted

to the continuous WT and its applications.

For further extensions of the CWT, it is crucial to note that the 2-D

version comes directly from group representation theory, the group in this

case being the so-called similitude group of the plane, consisting of transla-

tions, rotations and global dilations [26]. Note that the 1-D CWTmay also be

derived from group theory [10], in that case from the so-called `ax� b' group

of dilations and translations of the line.

What we have here is in fact a general pattern. Consider the class of ®nite

energy signals living on a manifold Y , i.e. s 2 L2�Y; d�� � H. For instance,
Y could be space Rn, the 2-sphere S2, space-time R�R or R2 �R, etc.

Suppose there is a group G of transformations acting on Y , that contains

dilations of some kind. As usual, this action will be expressed by a unitary

representation U of G in the space H of signals. Then, under a simple tech-

nical assumption on U (`square integrability'), a wavelet analysis on Y ,

adapted to the symmetry group G, may be constructed, following the general

construction of coherent states on Y associated to G [1]. This technique has
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been implemented successfully for extending the CWT to higher dimensions

(in 3-D, for instance, one gets a tool for target tracking), the 2-sphere (a tool

most wanted by geophysicists) or to space-time (time-dependent signals or

images, such as TV or video sequences), including relativistic effects (using

wavelets associated to the af®ne Galilei or PoincareÂ group). This general

approach will be described with all the necessary mathematical details in

Chapter 2.

It is interesting to remark that the CWT was in fact designed by physicists.

The idea of deriving it from group theory is entirely natural in the framework

of coherent states [1, 17], and the connection was made explicitly from the

very beginning [12, 13]. In a sense, the CWT consists in the application of

ideas from quantum physics to signal and image processing. The resulting

effect of cross-fertilization may be one of the reasons of its richness and its

success.

1.5 Outcome

As a general conclusion, it is fair to say that the wavelet techniques have

become an established tool in signal and image processing, both in their

CWT and DWT incarnations and their generalizations. They are being incor-

porated as a new tool in many reference books and software codes. They

have distinct advantages over concurrent methods by their adaptive charac-

ter, manifested for instance in their good performances in pattern recognition

or directional ®ltering (in the case of the CWT), and by their very economical

aspect, achieved in impressive compression rates (in the case of the DWT).

This is especially useful in image processing, where huge amount of data,

mostly redundant, have to be stored and transmitted.

As a consequence, they have found applications in many branches of

physics, such as acoustics, spectroscopy, geophysics, astrophysics, ¯uid

mechanics (turbulence), medical imagery, atomic physics (laser±atom inter-

action), solid state physics (structure calculations), . . . . Some of these

results will be reviewed in the subsequent chapters. For additional informa-

tion, see [24].

Thus we may safely bet that wavelets are here to stay, and that they have a

bright future. Of course wavelets don't solve every dif®culty, and must be

continually developed and enriched, as has been the case over the last few

years. In particular, one should expect a proliferation of specialized wavelets,

each dedicated to a particular type of problem, and an increasingly diverse

spectrum of physical applications. This trend is only natural, it follows from

the very structure of the wavelet transform ± and in that respect the wavelet
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philosophy is exactly opposite to that of the Fourier transform, which is

usually seen as a universal tool.

Finally a word about references. The literature on wavelet analysis is

growing exponentially, so that some guidance may be helpful. As a ®rst

contact, an introductory article such as [29] may be a good suggestion, fol-

lowed by the the popular, but highly successful book of Burke Hubbard [4].

Slightly more technical, but still elementary and aimed at a wide audience,

are the books of Meyer [25] and Ogden [27]. While the former is a nice

introduction to the mathematical ideas underlying wavelets, the latter focuses

more on the statistical aspects of data analysis. Note that, since wavelets have

found applications in most branches of physics, pedestrian introductions on

them have been written in the specialized journals of each community (to give

an example, meteorologists will appreciate [18]).

For a survey of the various applications, and a good glimpse of the chron-

ological evolution, there is still no better place to look than the proceedings

of the three large wavelet conferences, Marseille 1987 [8], Marseille 1989 [23]

and Toulouse 1992 [24]. Finally a systematic study requires a textbook.

Among the increasing number of books and special issues of journals appear-

ing on the market, we recommend in particular the volumes of Daubechies

[10], Chui [5], Kaiser [16] and Holschneider [14], the collection of review

articles in [30] and several special issues of IEEE journals [15,28]. In parti-

cular, [3] gives a useful survey of the available software related to wavelets.

Another good choice, complete but accessible to a broad readership, is the

recent textbook of Mallat [21].
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