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A guided tour through the book

J . C . VAN DEN BERG

Department of Agricultural, Environment and Systems Technology,
Subdepartment of Mathematics,

Wageningen Agricultural University.

The reader might want to jump right into the book, but I decided to give a

guided tour (which one may leave and rejoin at will of course) through the

chapters, to whet the reader’s taste.

Antoine opens in Chapter 1 with a brief survey of the basic properties of

wavelet transforms, both continuous (CWT) and discrete (DWT). In the

latter case one learns about the intuitively very appealing concept of multi-

resolution analysis. Section 1.4 looks ahead to the two- and more-dimensional

versions, and summarily brings out connections with well known symmetry

groups of physics, and the theory of coherent states.

In the second chapter, also by Antoine, the 2-D wavelet transform is trea-

ted. Here the characterization as mathematical microscope must be further

qualified, because it misses the new and important property of orientability of

the 2-D wavelets, which the 1-D case lacks. A real-world microscope is not

more sensitive in one direction than in another one, it is ‘isotropic’. But the

mathematical microscope as embodied in 2-D wavelets has an extra feature:

these wavelets can be designed in such a way that they are directionally selec-

tive. Apart from dilation and translation, one can now also rotate the wavelet,

which makes possible a sensitive detection of oriented features of a signal (a 2-

D image). In many texts the 2-D case is still limited to the DWT, and the

wavelets are usually formed by taking tensor products of 1-D wavelets in the x

and y-direction, thereby giving preference to horizontal, vertical and diagonal

features in the plane. The continuous case is described here in some detail, first

because it admits interesting physical applications, such as measuring the

velocity field of a 2-D turbulent flow around an obstacle, the disentangling

of a superposition of damped plane waves under water produced by a source

above the water surface, fault detection in geology, analysis of spectra, con-

trast enhancement of images. By using the scale-angle measure one can exhibit

symmetries of objects. Another neat example under development is the
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detection of Einstein rings by using an annular-shaped wavelet at a fixed scale,

leading to, e.g., distance measurements of quasars. The second reason to

devote much attention to the 2-D CWT is that the mathematical background,

as mapped out in section 2.4, brings out the connections with group repre-

sentations and coherent states, both used in physics long before wavelets came

into the picture. It turns out that wavelets are the coherent states associated to

the similitude groups (Euclidean groups with dilations). This section is math-

ematically somewhat more abstract than the rest of the chapter. The impor-

tance of it is that it is shown here, how one can extend the CWT to other

‘spaces’, such as 3-D space, the sphere, and to space-time (‘kinematical’ wave-

lets used in motion tracking, including relativistic effects (using wavelets asso-

ciated to the Galilei or Poincaré group resp.). Also some applications of the 2-

D DWT are indicated.

In Chapter 3 we turn to applications on the largest scale in the Universe:

Bijaoui describes a wide variety of applications in astrophysics and observa-

tional cosmology. The wavelet transform is a very good tool to study power-

law signals, and these occur in many astrophysical sources, such as the light

intensity of the solar surface, the brightness of interstellar clouds, or galaxy

distributions from galaxy counts. Often the power law behaviour is exhibited

by statistical correlation functions, so in many applications there is a combi-

nation of statistical techniques with wavelet methods. Cluster analysis of

galaxies for instance, was much improved. Image compression is frequently

needed in astronomy. Much work was done on Hubble Space Telescope

(HST) images and astronomical aperture synthesis. The DWT is not only

used in the form resulting from multiresolution analysis, but also by other

methods: the ‘à trous algorithm’, and the ‘pyramidal transform’ are used for

image restoration and analysis. Denoising images also receives a good deal of

attention: criteria to establish the notion of ‘significant coefficient’ were

developed. Connected with that is the problem of deconvolving an observed

signal (image) to obtain the true object signal: that is the signal before it is

convolved with the response function (called the ‘point spread function’ in

optics) of the measuring apparatus. Multiresolution techniques yield a good

reduction of resolution here, especially for HST data. To obtain an auto-

mated image analysis for astronomical images, one needs a so called ‘vision

model’: a protocol of operations to analyse the image. The classical examples

of this were based on edge detection, but this is not adequate to recognize

astronomical objects accurately. In a typical image one can see point-like

sources (stars), quasi-point-like objects (double stars, faint galaxies...) and

complex diffuse structures (galaxies, nebulae, clusters...). The multiscale

vision model developed here is able to optimize the detection of objects,
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because it yields a background mapping adapted to a given object. The ear-

lier methods were only suited to stars of quasi-stellar sources with a slowly

varying background. Since in the multiscale approach the notion of sub-

object is defined, much more complex structures can be analysed.

From astronomical scales down to microscopically small scales one finds

turbulence, naturally occurring or man-made. The study of fully developed

(high Reynolds number) turbulence by means of the wavelet transform is

presented by Farge et al. in Chapter 4. The authors argue that part of the

reason the subject has not undergone fundamental progress for a long time is

that point measurements are used to compute averages in the statistical

theory, and also because one keeps thinking in terms of Fourier modes.

Thus the presence of coherent structures (here defined as local condensations

of the vorticity field which survive much longer than the typical eddy turn-

over time) is missed, although these are observed in physical space, and their

role seems essential in the dynamics. The classical theory of turbulence is not

able to see the coherent structures, because they are only felt in the high order

statistical moments of the velocity increments in the flow, which have been

measured only relatively recently and turn out not to obey Kolmogorov’s

theory. Wavelets can play a role in separating the coherent components from

the incoherent components of turbulent flows, so that one can arrive at new

conditional averages, replacing the classical ensemble averages. Fourier space

analysis is not capable of this disentanglement, because it averages over space

and thus loses local information. The coherent structures correspond to

spatio-temporally quasi-singular structures, and thus the use of wavelets to

analyse isolated or dense distributions of singularities is brought out, a sub-

ject that will be dealt with in extenso in Arneodo et al.’s Chapter 9. The

separation of coherent structures and random background flow allows new

proposals in the modelling of turbulence in which one may expect to be able

to explore back and forth transfers of energy between coherent components

and the background of the flow. Similar transfers are estimated from real-

world global atmospheric data (albeit outside the turbulent regime) by

Fournier in Chapter 7. Also in stochastic models of turbulence wavelets

are beginning to be used.

Wavelet bases are also increasingly being used to solve partial differential

equations numerically. Section 4.6 describes some examples in the literature

and presents in some detail algorithms to solve the two-dimensional Navier–

Stokes equations.

Coherent structures are also the subject of Chapter 5 by Hudgins and

Kaspersen. They focus on the case of cylinder wake flow, and compare the

performance of conventional as well as wavelet-based coherent structure
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detector algorithms. This performance is measured by two statistics: the

probability of detection PD, and the false alarm-rate PFA, that is the prob-

ability that a detection will be reported when the relevant event is in fact not

present. These quantities are dependent, and this dependence can be para-

metrized, giving rise to a plot of PD vs. PFA. The authors test their algorithms

on a particular kind of coherent structure called a burst: an outrush from the

wall, during which the transverse velocity is positive while the streamwise

velocity temporarily falls below its mean value. Three conventional detectors

are described, and two different wavelet detectors are introduced.

Comparison of the results then shows that wavelet methods perform better

than the conventional ones, and for high detection rates the second wavelet

method outperforms all of the others.

Van Milligen aims at getting a grip on the non-linearity aspect of turbu-

lence in Chapter 6. He defines the notions of bispectrum and bicoherence

based on wavelets. The bicoherence is a measure of the amount of phase

coupling that occurs in a signal or between two signals, which means that if

two frequencies are simultaneously present in the signal(s) along with their

sum (or difference), the sum of the phases of these frequency components is

constant in time. Since the wavelet version of these notions is based on

integration over a short time interval, temporal variations in phase coupling

(intermittent behaviour) can be revealed. Two possible interpretations of the

bicoherence are presented: one in terms of coherent structures passing by the

observation point, and another one in terms of a coupling constant in a

quadratic wave-interaction model. The usefulness of these concepts is first

demonstrated in numerical examples: two coupled van der Pol oscillators

exhibiting chaos, and then two models for plasma turbulence. It turns out

that one can perform detailed spectral analysis on turbulence simulations

although only short data series are available (due to CPU-time limitations)

rendering Fourier analysis impracticable or impossible. In the last section

van Milligen analyses in detail data from torsatron and tokamak plasma

experiments.

Turning away from turbulence, in Chapter 7 we find an application, by

Fournier, of wavelets to an anomalous state of the earth’s atmosphere,

namely blocking. This is a period of time during which the normal progres-

sion (approximately eastward translation) of weather patterns is locally

inhibited. It is associated with a quasi-persistent anomalous high pressure

system. Fournier reviews the equations derived by Saltzman for the evolution

of the mean kinetic energy of eddies. The contributions to this from atmo-

spheric structures of distinct scales are conventionally resolved by (truncated)

Fourier series representations. This is replaced here by an analysis in terms of
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a periodic orthonormal wavelet basis. In terms of these it is possible to

construct scale dependent transfer and flux functions of kinetic energy at a

certain location. These new concepts are then applied to real-world data from

the National Meteorological Center: wind components u (eastward) and v

(northward) and the ‘geopotential height’ Z. Analysis of these data tells us

that blocking is largely described by the largest scale part of the multiresolu-

tion analysis, and new support is found for the hypothesis that blocking is

partially maintained by a particular kind of inverse energy cascade (going

from smaller to larger scales).

Scaling down to very small distances brings us to applications of wavelets

in the domains of atomic and solid state physics. In Chapter 8, Antoine et al.

start with the case of the generation of light emission resulting from the

exposure of atoms to a strong laser pulse. Odd harmonics of the laser fre-

quency are emitted, and in order to understand the mechanism of emission

better one would like to know for instance when the harmonics are emitted

during the optical cycle, and what the time evolution is during the laser pulse.

Standard spectral analysis cannot answer these questions. For atomic hydro-

gen the emission is investigated by both the Gabor Transform (Windowed

Fourier Transform) and the Wavelet Transform, yielding time profiles of

each individual harmonic. Analysis of these profiles leads to the conclusion

that harmonic emission takes place only when the electron is close to the

nucleus. The authors emphasize that in this type of analysis the Gabor trans-

form and the wavelet transform are not each others competitors, but rather

they supply complementary information, depending on the exact physical

problem one studies. A further development on the basis of these results

may be the temporal control of the harmonic emissions by tuning the polar-

ization of the laser, eventually allowing the production of intense attosecond

(10�18 s) pulses. For the case of multi-electronic wave functions orthogonal

wavelet bases on ð0;1Þ are being proposed as a basis for the radial part of

the wave function, allowing improvements over more conventional Hartree–

Fock methods. A combination of wavelet transforms and conventional tech-

niques also allowed a better calculation of energy levels in atoms.

In the second part of the chapter Antoine et al. deal with electronic struc-

ture calculations in solid state physics. Here both non-orthogonal and ortho-

gonal wavelet bases have been applied successfully, and the recently

developed second generation wavelets, used in a biorthogonal basis (see

Ch. 1) have been used to solve a 3-D atomic Coulomb problem, namely

the Poisson equation for the potential of, for instance, a uranium dimer.

The potential is obtained with 6 significant digits throughout the region of
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interest. In the last section of this chapter the use of 2-D wavelet bases to a 2-

D phenomenon, the Fractional Quantum Hall Effect, is explored.

The last three chapters all deal with phenomena in which scaling is of

central importance.

Arneodo et al. show in Chapter 9 how wavelets can be applied to analyse

the scaling properties of multifractal signals which have densely packed sin-

gularities of varying strengths. When a signal possesses a single isolated

singularity at x0, with strength, �ðx0Þ (mathematicians call this the Hölder

exponent), this property is reflected in the behaviour of the wavelet transform

at that location, and �ðx0Þ can therefore be extracted from, a log-log plot of

the wavelet transform amplitude versus the scale. The dense packing of

singularities in a multifractal signal makes straightforward application of

this impossible. In order to analyse multifractal signals, a method not invol-

ving wavelets, called the thermodynamical formalism was developed more

than a decade ago. It enables one to calculate the spectrum of singularities,

the f ð�Þ spectrum, by statistical means. Before the advent of wavelets this

spectrum could be determined for singular measures only, but as the authors

show, by using wavelets one can extend this to singular functions as well,

thereby making the method applicable to any experimental signal.

Roughly speaking a (multi)fractal function is non-smooth in all or a large

part of its domain, thus making traditional analytical (calculus) methods

inadequate to analyse it. Unfolding the function in the wavelet domain

restores the applicability of these methods. In particular, the wavelet trans-

form modulus maxima (WTMM) are used to obtain a skeleton of the function,

which provides a partition allowing the merging of the WTMM method with

the thermodynamical formalism, so that the singularity spectrum can be

determined. This remedies some defects of classical ‘box counting’ for mea-

sures, and of the ‘structure function’ method used for turbulent signals.

In a further development the WTMM skeleton method is used to address

the ‘inverse fractal problem’: if a fractal object is produced by a dynamical

system, can one then extract enough information from the object to recover

the dynamical system that produced it? This is a big problem if stated in such

generality, but as the authors show, one can solve this for instance in the case

when the dynamics is generated by ‘cookie-cutter maps’.

Finally the method is applied to the analysis of diffusion-limited-aggrega-

tion (DLA) processes, and it is shown how one uncovers the ‘Fibonacci

multiplicative process’ responsible for the branching morphology of the clus-

ters formed by DLA. This is a remarkable result, given the geometrically

featureless random walk process that generates the clusters.
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The method as described in this chapter is being further developed, as

Farge et al. mention in Ch. 4, and has also been applied for instance to

the analysis of DNA nucleotide sequences (Ch. 10, ref. 81).

The application of wavelets in medicine and biology has proliferated in

many different directions, witness the reference list to Chapter 10, by Ivanov

et al. One area is the study of physiological time series, which generally have

a non-stationary character. The specific case analysed here is the comparison

between time series of heart beat intervals in healthy human individuals, and

in patients suffering from sleep apnea. The authors develop the cumulative

variation amplitude analysis (CVAA), consisting of a sequential application of

the wavelet transform and the Hilbert transform. The first step is to take

analysing wavelets that are able to eliminate the influence of linear and low-

degree polynomial trends in a signal sðtÞ (the derivatives of the Gaussian

supply wavelets that can do this), keeping only in sight the variations of

patterns of a certain duration a of interest. By fixing the scale parameter of

the wavelet transform one obtains again a 1-D signal, say saðtÞ, expressing
how strongly patterns with a certain duration around the value a are present

within the signal. It is the variations in this strength which are of interest. The

Hilbert Transform, applied to the signal saðtÞ enables one to calculate an

‘instantaneous amplitude’ of that signal, which is an envelope of it. By count-

ing how often in saðtÞ a given instantaneous amplitude occurs, one obtains a

distribution of instantaneous amplitude values which tells one what the rela-

tive length (total duration in the entire signal) of an ‘a-scale pattern’ with a

given amplitude is. Every individual has its own amplitude distribution, but it

turns out that they are scaling copies of a common distribution, at least in

groups of healthy patients. Thus by rescaling individual ‘healthy distribu-

tions’, one can collapse them on their common distribution. Moreover this

collapse repeats itself, in healthy individuals, for many different values of a.

The collapse fails, however, in groups of subjects suffering from sleep apnea.

These two groups can thereby be distinguished from one another. (Applying

the Hilbert Transform directly to sðtÞ itself fails to bring this out.) The

authors describe how one may attempt to develop this result further into a

tool to separate healthy from abnormal cardiac dynamics for an individual,

thus setting up a diagnostic. Finally the relation of the scaling property with

the non-linear dynamics of the heartbeat control mechanism is discussed.

The last chapter, by Guérin and Holschneider, concerns the description of

intermittency in the time evolution of a system. They define the concept of a

lacunarity dimension which quantifies the notion of intermittent behaviour.

This is the only chapter where detailed mathematical proofs are presented,

but we have relegated them to the Appendix so that the flow of the argument
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is not interrupted. Intermittency is a concept that has been mentioned many

times already in previous chapters, but only qualitatively. If you think of a

particle recurring intermittently in a region A of phase space, its presence in A

can be described by a function hðtÞ ¼ �AðxðtÞÞ, where xðtÞ is the trajectory in

phase space, and �A is the characteristic function of A, registering whether or

not xðtÞ is in the region A. If one knows the dynamics xðtÞ over a time interval

½0;T �, one can calculate the fraction of T the particle spends in A, by taking

the time average of hðtÞ over this interval. If this fraction converges to a finite

constant as T ! 1, this limit can be interpreted as a rate of presence in

region A. By considering not just the average of hðtÞ, but also its higher

moments, the authors find the definition of the lacunarity dimension. So

far, no wavelets. This definition is then applied to the case of time evolution

of a system obeying the Schrödinger equation with a time independent

Hamiltonian. The function hðtÞ is now the probability to find the system in

a certain region of space. The lacunarity dimension can be calculated if hðtÞ is
known over a very large time span, but this may be too long for measure-

ments. It turns out that one can circumvent this by using wavelets to define

the generalized wavelet dimensions of the Hamiltonian’s spectral measure. The

latter can be determined from time independent data which are known about

the system. The main theorem of the chapter establishes that the lacunarity

dimension of the time evolution generated by the Schrödinger equation is

obtainable from the generalized wavelet dimensions of the spectral measure

of the Hamiltonian. Thus the long time chaotic behaviour of the system and

small scale spectral properties of the Hamiltonian are strictly related.

This ends our guided tour. I hope it has aroused your curiosity enough to

take a closer look into the chapters that follow.
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Wavelet analysis: a new tool in physics

J . - P . ANTO INE

Institut de Physique Théorique,
Université Catholique de Louvain, Belgium

Abstract

We review the general properties of the wavelet transform, both in its con-

tinuous and its discrete versions, in one or more dimensions. We also indicate

some generalizations and applications in physics.

1.1 What is wavelet analysis?

Wavelet analysis is a particular time- or space-scale representation of signals

which has found a wide range of applications in physics, signal processing

and applied mathematics in the last few years. In order to get a feeling for it

and to understand its success, let us consider first the case of one-dimensional

signals.

It is a fact that most real life signals are nonstationary and usually cover a

wide range of frequencies. They often contain transient components, whose

apparition and disparition are physically very significant. In addition, there is

frequently a direct correlation between the characteristic frequency of a given

segment of the signal and the time duration of that segment. Low frequency

pieces tend to last a long interval, whereas high frequencies occur in general

for a short moment only. Human speech signals are typical in this respect:

vowels have a relatively low mean frequency and last quite long, whereas

consonants contain a wide spectrum, up to very high frequencies, especially

in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals,

since it loses all information about the time localization of a given frequency

component. In addition, it is very uneconomical: when the signal is almost

flat, i.e. uninteresting, one still has to sum an infinite alternating series for

reproducing it. Worse yet, Fourier analysis is highly unstable with respect to
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perturbation, because of its global character. For instance, if one adds an

extra term, with a very small amplitude, to a linear superposition of sine

waves, the signal will barely be modified, but the Fourier spectrum will be

completely perturbed. This does not happen if the signal is represented in

terms of localized components.

For all these reasons, signal analysts turn to time-frequency (TF) represen-

tations. The idea is that one needs two parameters: one, called a, characterizes

the frequency, the other one, b, indicates the position in the signal. This

concept of a TF representation is in fact quite old and familiar. The most

obvious example is simply a musical score!

If one requires in addition the transform to be linear, a general TF trans-

form will take the form:

sðxÞ 7!Sða; bÞ ¼
Z 1

�1
 abðxÞ sðxÞ dx; ð1:1Þ

where s is the signal and  ab the analysing function. Within this class, two TF

transforms stand out as particularly simple and efficient: the Windowed or

Short Time Fourier Transform (WFT) and the Wavelet Transform (WT).

For both of them, the analysing function  ab is obtained by acting on a basic

(or mother) function  , in particular b is simply a time translation. The

essential difference between the two is in the way the frequency parameter

a is introduced.

(1) Windowed Fourier Transform:

 abðxÞ ¼ eix=a  ðx� bÞ: ð1:2Þ
Here  is a window function and the a-dependence is a modulation ð1=a �
frequency); the window has constant width, but the lower a, the larger the

number of oscillations in the window (see Figure 1.1 (left))

(2) Wavelet transform:

 abðxÞ ¼
1ffiffiffi
a

p  
x� b

a

� �
: ð1:3Þ

The action of a on the function  (which must be oscillating, see below) is a

dilation ða > 1Þ or a contraction ða < 1Þ: the shape of the function is

unchanged, it is simply spread out or squeezed (see Figure 1.1 (right)).

The WFT transform was originally introduced by Gabor (actually in a dis-

cretized version), with the window function  taken as a Gaussian; for this

reason, it is sometimes called the Gabor transform. With this choice, the

function  ab is simply a canonical (harmonic oscillator) coherent state [17],

as one sees immediately by writing 1=a ¼ p. Of course this book is concerned
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