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C H A P T E R  1

CHOOSING THE SEMANTIC
PROPERTIES  OF  LANGUAGE

1.1 Introduction

This chapter will present a research agenda whose prime
objective is to explain how features of natural language are
consistent with the optimization of certain “reasonable”
target functions. Rather than discuss the research agenda
in abstract, I will begin with the specific argument and
return to the general discussion at the end of the chapter.

This chapter discusses binary relations. A binary rela-
tion on a set V specifies a connection between elements
within the set. Such binary relations are common in
natural language. For example, “person x knows person y,”
“tree x is to the right of tree y,” “picture x is similar to
picture y,” “chair x and chair y are the same color,” and so
on. I will avoid binary relations such as “Professor x works
for university y” or “the Social Security number of x is y,”
which specify “relationships” between elements which
naturally belong to two distinct sets. I will further restrict
the term “binary relation” to be irreflexive: No element
relates to itself. The reason for this is that the term
“x relates to y” when x5y is fundamentally different
from “x relates to y” when xÞy. For example, the state-
ment “a loves b” is different from the statement “a loves
himself.”

Certain binary relations, by their nature, must satisfy
certain properties. For example, the relation “x is a neigh-
bor of y” must, in any acceptable use of this relation,
satisfy the symmetry property (if x is a neighbor of y, then
y is a neighbor of x). The relation “x is to the right of y”
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must be a linear ordering, thus satisfying the properties of
completeness (for every xÞy, either x relates to y or y to x),
asymmetry (for every x and y, if x relates to y, y does not
relate to x), and transitivity (for every x, y, and z, if x relates
to y and y to z, then x relates to z). In contrast, the nature of
many other binary relations, such as the relation “x loves
y,” does not imply any specific properties that the relation
must satisfy a priori. It may be true that among a particular
group of people, “x loves y” implies “y loves x.” However,
there is nothing in our understanding of the relation “x
loves y” which necessitates this symmetry.

The subject of this chapter is in fact the properties of
those binary relations which appear in natural language.
Formally, a property of the relation R is defined to be a sen-
tence in the language of the calculus of predicates which
uses a name for the binary relation R, variable names, con-
nectives, and qualifiers, but does not include any individ-
ual names from the set of objects V. I will refer to the
combination of properties of a term as its structure.

I am curious as to the structures of binary relations in
natural language. I search for explanations as to why, out of
an infinite number of potential properties, we find that
only a few are common in natural languages. For example,
it is difficult to find natural properties of binary relations
such as the following:

A1: If xRy and xRz (yÞz), and both yRa and zRa, then also
xRa.

A2: For every x there are three elements y for which xRy.
(In contrast, the relation “x is the child of y” on the set
of human beings does satisfy the property that for
every x there are two elements y which x relates to.)

Alternatively, it is difficult to find examples of natural
structures of binary relations which are required to be
tournaments (satisfying completeness and asymmetry)
but which are not required to satisfy transitivity. One
exception is the structure of the relation “x is located
clockwise from y (on the shortest arc connecting x and y).”
Is it simply a coincidence that only a few structures exist
in natural language?

Economics of language
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The starting point for the following discussion is that
binary relations fulfill certain functions in everyday life.
There are many possible criteria for examining the func-
tionality of binary relations. In this discussion, I examine
only three. I will argue that certain properties, shared by
linear orderings, perform better according to each of these
criteria. Of course, other criteria are also likely to provide
alternative explanations for the frequent use of various
common structures such as equivalence and similarity
relations.

1.2 Indication-friendliness

Consider the case in which two parties observe a group of
trees and the speaker wishes to refer to a certain tree. If
the tree is the only olive tree in the grove, the speaker
should simply use the term “the olive tree.” If there is no
mutually recognized name for the tree and the two parties
have a certain binary relation defined on the set of trees in
their mutual vocabulary, the user can use this relation to
define the element. For example, the phrase “the third
tree on the right” indicates one tree out of many by using
the linear ordering “x stands to the left of y” when the
group of trees is well defined and the relation “being to
the left of” is a linear ordering. Similarly, the phrase “the
seventh floor” indicates a location in a building given the
linear ordering “floor x is above floor y.” There would be
no need to use the phrase if it was known to be “the presi-
dential floor.” On the other hand, the relation “line x on
the clock is clockwise to line y (with the smallest angle
possible)” does not enable the user to indicate a certain
line on a number-less clock; any formula which is satis-
fied by three o’clock is satisfied by four o’clock as well. In
fact, the existence of even one designated line such as
“twelve o’clock”, would enable the use of the relation to
specify all lines on the clock. The effect of using such a
designated element is equivalent to transforming the
circle into a line.

Thus, binary relations are viewed here as tools for indi-
cating elements in a set whose objects do not have names.

Choosing the semantic properties of language
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We look for structures that enable the user to unambigu-
ously single out any element out of any subset of V. We are
led to the following definition:

Definition: A binary relation R on a set V is indication-
friendly if for every A#V, and every element a[A, there
is a formula fa,A(x) (in the language of the calculus of predi-
cates with one binary relation and without individual con-
stants) such that a is the only element in A satisfying the
formula (when substituting a in place of the free variable
x).

All linear orderings are indication-friendly. If R is a
linear ordering, the formula P1(x)5;y(xÞy→xRy) defines
the “maximal” element in the set A for A#V. The formula
P2(x)5;y(xÞy`2P1(y)→xRy) defines the “second-to-the-
maximal” element, and so on. Note that in natural lan-
guage there are “short cuts” for describing the various
elements. For example, the “short cuts” for P1(x) and P2(x)
are “the first” and “the second.”

In contrast, consider the set V5{a,b,c,d} and the non-
linear binary relation R, called “beat,” depicted in the fol-
lowing diagram (aRb, aRc, dRa, bRd, bRc and cRd):

Referring to the grand set V, the element a is defined by
“it beats two elements, one of which also beats two ele-
ments.” The element b is defined by “it beats two ele-
ments, which each beat one element.” And so on.
However, whereas the relation R allows the user to define
any element in the set V, the relation is not effective in

Economics of language
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defining elements in the subset {a,b,d}, in which case the
induced relation is cyclical.

We will now demonstrate that if V is a finite set and R is
a binary relation, then R is indication-friendly if and only if
R is a linear ordering. We have already noted that if R is a
linear ordering on V, then for every A#V and every a[A,
there is a formula which indicates a. Assume that a binary
relation R is indication-friendly. For any two elements
a,b[V, in order to indicate any of the elements in the
two-member set A5{a,b}, it must be that either aRb or
bRa but not both; thus, R must be complete and asymmet-
ric. R must also be transitive since for every three ele-
ments a,b,c[V, the relation must not be cyclical in order
to indicate each of the elements in the set A5{a,b,c}.

Conclusion 1: A binary relation enables the user to indi-
cate any element in any subset of the grand set if and only
if it is a linear ordering. Linear orderings are the most effi-
cient binary relations for indicating every element in every
subset.

1.3 A detour: splitting a set

We will now make a brief detour from the world of binary
relations in order to discuss unary relations. Assume that
the user of the language can refer to a set of objects X (such
as “the set of flowers”). From time to time, the speaker
will wish to refer to subsets of X (either for the purpose of
conversing with another person or for storing information
in his own mind). However, he will be able to refer only to
terms that appear in his language. Initially, the speaker can
refer to the set of all Xs (“pick all flowers”) or to the null
set (“don’t pick any flowers”). In order to extend his vocab-
ulary the designer of the language is permitted to invent
(given “hardware” constraints) one additional term for one
subset of X. The objective of the designer is to introduce
one new term so that the speaker can refer to a new set in
as accurate a manner as possible (on average).

Let us be more precise: Restrict X to be a finite set. If the
term “the set S” is well defined, then the user will have

Choosing the semantic properties of language
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four expressions available for referring to subsets of X: “all
Xs,” “the Ss,” “the not Ss,” and “nothing.” We will call the
collection of sets V(S)5{X,S,2S,À} the vocabulary spanned
by S.

The basic idea is that language should be flexible enough
to function under unforeseen circumstances. The speaker
can use the terms in V(S) but will eventually need to refer
to sets not necessarily contained in V(S). The term S will
be evaluated by the vocabulary’s ease of use with “least
loss.” It is assumed that when the speaker wishes to refer
to a set Z#X, he will use an element in V(S) which is
“closest” to the set Z. In order to formally state this idea,
we need to define the distance between two sets. Let the
distance between A and B, d(A,B) be the cardinality of the
asymmetric difference between A and B (the set of all ele-
ments which are in A and not in B or in B and not in A) –
i.e. d(A,B)5|(A2B)<(B2A)|. One interpretation of this
distance function fits the case in which the user who
wishes to refer to the set B and employs a term A[V(S)
lists the elements in B which are excluded from A or
appended to A and bears a “cost” measured by the number
of elements which have to be excluded or appended (for
example, the sentence “You may eat only bread or any fruit
with the exception of apples and bananas” utilizes the
term fruit and three individual names: bread, apples, and
bananas).

For a set B and a vocabulary V, define d(B,V)5
minA[Vd(A,B), the distance of the set B from the closest set
in the vocabulary V. By assigning equal “probabilities” a
priori to all possible sets that the user might wish to refer
to, the problem for the designer becomes minS^z#Xd
(Z,V(S))/2|X|. Essentially, the problem boils down to the
choice of the number of elements in the optimal set S.

To further clarify the nature of the problem, we will
carry out a detailed calculation for a four-element set X.
Consider the case in which S contains two elements. The
user can refer to any of the sets X, À, S or 2S, without
incurring any loss. He can approximate any one- or
three-element set by using the set f or the set X, respec-
tively, while bearing a “cost” of 1. If he wishes to refer to

Economics of language

14



one of the four two-element sets which are not S or 2S, he
incurs a loss of 2. Thus, the average loss is [4(0)18(1)1
4(2)]/1651. A similar calculation leads to the conclusion
that a choice of S as À or X leads to an expected loss of 5/4
(no loss for À and X, a loss of 1 for the eight sets of size 1 and
3, and a loss of 2 for the six sets of size 2 – i.e. [2(0)18(1)1
6(2)]/1655/4). If S is taken to be a one-element set (or a
three-element set), the average loss is only [4(0)16(1)1
6(1)]/1653/4. Thus, splitting X into two unequal subsets
of sizes 1 and 3 minimizes imprecision.

Despite the above results, our intuition is correct in that
the optimal size of S should be half that of X. When the set
X is “large,” the loss associated with choosing an S con-
taining half of X’s members is “close” to being minimal.
The following proposition is an exact statement of this
result (its proof, omitted here, includes a combinatorial
calculation):

Claim: Let X be an n-element set. The difference between
the solution of the problem minS^z#Xd(Z,V(S))/2|X| and the
expected loss from the optimal use of the vocabulary
spanned by an (n/2)-member subset of X, is in the magni-
tude of 1/n1/2.

1.4 Informativeness

We now return to the world of binary relations on some set
V. An additional function of binary relations on a set V is
to transfer or store information concerning a specific rela-
tionship existing between the elements of V. Consider the
case in which the grand set includes all authors of articles
in some field of research and the speaker is interested in
describing the relation “x quotes y in his article.” The
speaker may describe the relation by listing the pairs of
authors who satisfy the relation. Alternatively, he may use
those binary relations which are available in his vocabu-
lary to describe the “x quotes y” relation. If he finds his
vocabulary insufficient to describe the relation, he will use
a binary relation which is the best approximation. For
example, if the relation “x is older than y” is well defined,

Choosing the semantic properties of language
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the speaker can use the sentence: “An author quotes
another if he is older than himself.” As this may not be
entirely correct, he can add a qualifying statement such as
“the exceptions are a who did not quote b (though b is
older), and c who did quote d (though d is not older).” Such
qualifying statements are the “loss” incurred from the use
of an imprecise relation in order to approximate the “who
quotes whom” relation.

Our discussion envisages an imaginary “planner” who is
able to design only one binary relation during the “initial
stage of the world.” Of course, real-life language includes
numerous relations and the effectiveness of each depends
on the entire fabric of the language. The assumption that
the designer is planning only one binary relation is made
solely for analytical convenience.

The design of one binary relation allows the speaker to
select one of four binary relations. For instance, he can
state: “Every author is quoted by all others younger than
him,” or “Every author is quoted by all others not younger
than him,” and of course he can also state “Everyone quotes
everyone” and “No one quotes anyone,” which do not
require familiarity with any binary relations. Given a rela-
tion R, we will refer to these four relations as the vocabulary
spanned by R and denote it by V(R). (Note that in defining
the vocabulary spanned by R, we ignore other possibilities
for defining a binary relation using R, such as statements of
the type “xSy if there is a z such that xRz and zRy.”)

We assume that the speaker who wishes to refer to
a binary relation S will use a relation in V(R) which is
the “closest” approximation. The loss is measured by the
number of differences between the relation which the
speaker wishes to describe and the one he finds available in
his vocabulary. The distance between any two binary rela-
tions R9 and R0 is taken to be the number of pairs (a,b) for
which it is not true that aR’b if and only if aR0b. Note that
according to this measure, any pair for which R9 and R0 dis-
agree receives the same weight. Regarding the initial state,
it seems proper to put equal weights on all possible
“imprecisions.” The designer’s problem is to minimize the
expected loss resulting from the optimal use of his vocabu-

Economics of language
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lary. It is assumed that from his point of view, all possible
binary relations are equally likely to be required by the
speaker. Thus, the designer’s problem is minR^Sd(S,V(R)),
where d(S,V(R))5minT[V(R)d(S,T) and d(S,T) is the distance
between the relations S and T.

Stated in this way, the problem becomes a special case of
the problem discussed in the previous section. The set X, in
the terminology employed in that section, is the set V3V2
5(v,v)|v[V6. A binary relation R is identified with the graph
of R – i.e. the subset of X of all (a,b) for which aRb. Recall
that we concluded earlier that splitting the set X into two
equal sets is nearly optimal for the designer if he wishes to
reduce the expected number of “imprecisions.”

We have one more step to go to reach the goal of this
section. In planning a binary relation on V, the designer
may also consider the possibility that the relation will
eventually be used in reference to a subset of V. This is
analogous to a binary relation being indication-friendly if
it allows the indication of any object out of any subset
of objects (see section 1.2). Hence, R has to be “optimal”
for potential use in indicating a subset of V93V92
5(v,v)|v[V96 for every subset V9#V. If R is complete and
asymmetric, for every subset V9#V, the induced relation
R|V9 (defined by aR|V9b iff a,b[V9 and aRb) includes exactly
half the pairs in V93V92 5(v,v)|v[V96.

In summary, our fictitious planner wishes to design a
binary relation which spans a vocabulary with the goal of
minimizing the expected inaccuracy of the term the user
will actually use. Viewing a relation as a set of pairs of ele-
ments, the problem was linked to the optimization problem
discussed in the previous section. There we concluded that
splitting a set into two subsets allows “close to optimal” use
of the induced vocabulary. Requiring the relation to be com-
plete and asymmetric guarantees that for any subset of the
grand set, the restricted relation will be “close to optimal”
as an aid to the user in specifying a relation on the subset.

Conclusion 2: In order to express binary relations as
accurately as possible on any subset of a set V using a
vocabulary spanned by a single binary relation on the set

Choosing the semantic properties of language
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V, a binary relation on V which is complete and asym-
metric is close to optimal.

1.5 Ease of describability

In this section we discuss the third and last criterion by
which binary relations are assessed in this chapter.
Imagine that a hunter wishes to instruct his son on how to
behave in the forest. When he observes two potential
animals a and b, should he pursue a or b? The instructions
have to be applicable to any pair of animals and must be
clear. Thus, the set of instructions can be represented by a
complete and asymmetric binary relation R where aRb
means that when the son simultaneously observes a and b
he should pursue a.

The son is aware of the sets of animals that are edible
and the structure of the relation R (i.e., the list of proper-
ties satisfied). The son is acquainted with the structure of
the relation either because it is instinctual or because his
father has informed him of these properties. Therefore, all
that is left for the father to do, when transferring the
content of R to his son, is to provide him with a list of
“examples” – i.e., statements of the type “animal a should
be pursued when you see it together with animal b.” The
examples should be rich enough to allow the son to infer
the entire relation from the structure and examples.

To illustrate, consider the case in which the relation R is
a linear ordering and the number of elements in V is n. The
minimal number of examples that the father must provide
in this case is n21 (a1Ra2, a2Ra3 …, an21Ran).

This brings us to the main topic of our discussion. We
assume that providing examples is costly. (The complex-
ities of the structure and process of making the inferences
are ignored here.) The following problem comes to mind:
What are the structures of the complete and asymetric
binary relations (tournaments) for which the number of
examples required for their description is minimal?

Definitions: We say that (f,{aiRbi}i[I) defines the binary
relation R* on V when

Economics of language
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• f is a sentence in the language of the calculus of
predicates with one binary relation named ai, biR and for
all i, ai,bi[V

• R* is the unique binary relation on V satisfying the sen-
tence f and for all i, it is true that aiR*bi.

The complexity of R*, denoted ø(R*), is the minimum
number of examples that needs to be appended to R* in
order to enable a definition of R* – i.e., the minimum size
of the set I on all possible definitions of R*.

As previously stated, our attention is limited to binary
relations which are tournaments. The mathematical
problem we wish to solve is:

minR*is a tournamentø(R*).

Note that for a given (finite) set of objects V5{a1,...,an}, the
“structure” of any binary relation R* can be expressed
by the sentence wR*(x1, …, xn)5'x1, …, xn(`{xiRxj|aiR*aj}).
Thus, the optimization problem proposed above is equiva-
lent to the following “puzzle-type” problem: Start with the
graph of a tournament in which the names of the vertices
have been erased. What is the minimum number of exam-
ples required to recover the names of the vertices (up to
isomorphism)?

Example 1: Consider the tournament R* on the set
V5{a,b,c} where aR*b, bR*c and cR*a. The sentence
which states that R is complete, asymmetric, and anti-
transitive (;x,y,z(xRy and yRz→2xRz)) is consistent with
two relations on V; hence, a single observation, aRb, is
needed to complete the definition of R*. Thus, ø(R*)51.

Example 2: Let R* be a linear relation. The relation is
defined by a sentence f expressing completeness, asymme-
try and transitivity, and by n21 examples {aiR*ai11}i51, …, n21,
where a1R*a2R*a3, …, an21R*an. Obviously, there is no defi-
nition of a linear relation with less than n21 observations.
Thus, ø(R*)5n21.

Example 3: Let V5{a,b,c,d} (n54) and let R* be the rela-
tion satisfying aRx for all x and bRcRdRb. R* is defined by

Choosing the semantic properties of language
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'wxyz[wRx`wRy`wRz`xRy`yRz`zRx] and the three
observations aRb, aRc and bRc.

Example 4: Consider the relation R* on the set V5{a,b,c,d}
described in figure 1.2. The structure of the relation R can be
formulated by a sentence of the type 'v1v2v3v4w(v1,v2,v3,v4).
Twenty-four different binary relations on V have this struc-
ture. It is simple to verify that ø(R*)54.

Example 5 (Fishburn, Kim and Tetali, 1994):

This relation, R*, defined on the 5-element set V5{a,b,c,d,e}
satisfies ø(R*)53. It is nicely defined by a sentence express-
ing the property that for every x there are precisely two ele-
ments “beaten” by x. The three observations aRb, aRc, and
eRb, define the relation through the chain of conclusions
{dRa, eRa}, {cRe, dRe}, {bRd, cRd} and, finally, bRc.

Examples 2 and 5 illustrate that for n53 and n55, a linear
ordering is not the most “economical” structure. Are there
any other binary relations with n.7 which are defined by
less than n21 observations? I am not aware of a complete
answer to this question. However, we do know the follow-
ing (this proposition was suggested to me by Noga Alon):

Proposition 1.3: For any e there exists n(e) such that for
any n.n(e) and for any complete and asymmetric relation
R on a set of n elements, ø(R).(12e)n.

Economics of language
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Thus, at least for large sets, linear orderings are “almost”
optimal with respect to the criterion of minimizing the
number of observations required for their definition.

Comment: Notice that in the above discussion, we
allowed the relation to be defined by a formula which
depends on the number of elements in the set V. In con-
trast, the properties of linear orderings are expressed by a
formula which does not depend on the number of elements
in the set V. This leads to the following conjecture:

Conjecture: Let w be a sentence in the language of the cal-
culus of predicates which includes a single name of a
binary relation R. There exists n* such that if |V|$n*;
then, for any tournament R* which is defined on the set V
by the sentence w, ø(R*)$|V|21.

In other words, although one can define a relation for
“small” sets with less than |V|21 examples, it is conjec-
tured that a sentence must be accompanied by at least
|V|21 elements in order to define a tournament when the
size of the set is “large enough.”

Comment: We conclude this section with an explanation
of why the term “describability” – and not “learnability”
– is used in this section. In our scenario the father chooses
the examples he presents to his son. The number ø(R*) is
the minimum number of examples the father has to
present in order to convey enough information for the son
to deduce the content of R*. When choosing the examples,
the father knows the relation which he would like his son
to learn. On the other hand, had the son wished to acquire
the content of the relation R* by asking a list of “ques-
tions” of the type “what should be chased, a or b?,” he
would not necessarily have asked first for the ø(R*)
“examples” which could convey the relation R*. For
example, he would need 2.5 inquiries “on average” in
order to infer a linear ordering defined on a three-element
set.

Choosing the semantic properties of language
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1.6 Discussion

This chapter investigated the observation that in a natural
language, certain structures of binary relations appear
much more frequently than others; in particular, we dis-
cussed properties that are satisfied by linear orderings. It
was argued that certain functions of binary relations in
natural languages are better served by relations satisfying
these properties. I believe that this is no more than an
interesting fact. A stronger interpretation of the results
requires establishing a connection between the optimality
considerations presented above and the realization of the
optimal solutions in the real world. Such a connection
would require at least three premises:

(1) In order to function, natural languages include only a
small number of structured binary relations.

(2) Binary relations fulfill several functions in natural lan-
guages.

(3) There are forces (evolution or a planner) which make it
more likely that structures which are “optimal” with
regard to the functions of binary relations will be
observed in natural languages.

The first premise states that language inherently exhibits
few of the properties of binary relations. Only if the
number of possible structures is small can a user of the lan-
guage deduce a relation’s structure from a small number of
instances in which the relation is used. (It is amazing how
few observations of the type “a is better than b” are suffi-
cient to teach a child that this relation is transitive.)

The second premise is the central one in this discussion.
There are numerous potential criteria by which to measure
the functionality of binary relations. Three such criteria
were examined above. It was argued that certain properties
(all shared by linear orderings) perform better according to
each of these criteria.

The third premise, which links the first two, states that
either there is a linguistic “engineer” who chooses the
properties of binary relations so that they function effec-
tively or that evolutionary forces select structures which
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are optimal or nearly so with respect to the functions they
fulfill. This idea, which is popular in economics, has also
been noted by philosophers. For example, Quine states: “If
people’s innate spacing of qualities is a gene-linked trait,
then the spacing that has made for the most successful
inductions will have tended to predominate through
natural selection” (Quine, 1969, p.126).

The approach adopted in this chapter is related to the
functionality of the language approach discussed in lin-
guistics (see, for example, Piatelli-Palmarini, 1970) and to
attempts to explain the classification system in natural
language (see Rosch and Lloyd, 1978).

The discussion in this chapter is also related to classical
philosophical discussions on “natural kinds.” The notion
of a “natural kind” emerges from the philosophical inquiry
into the factors which confirm an inductive argument
(see, for example, Goodman, 1972, Quine, 1969, Watanabe,
1969. A key puzzle in this literature is the so called “riddle
of induction”: Let us say that up to this moment, all
observed emeralds were green. Why does this observation
imply that all emeralds are green rather than all emeralds
are “grue,” an alternative category which includes all
objects which were green up to this moment and blue from
now on?

One possible answer to this question is that the induc-
tive process relies on notions of similarity. Inductive argu-
ments are made only with regard to categories of similar
objects. The category green contains similar elements;
grue does not. A green element yesterday and a green
element tomorrow are similar; in contrast, a grue element
yesterday is not similar to a grue element tomorrow.
However, this only begs the question since one is left with
the problem of determining the natural similarity rela-
tions. Here we run into similar difficulties. One possible
solution is to argue that two objects are similar if “most”
unary predicates coincide in satisfying the two objects.
The difficulty with this criterion is raised by “The Ugly
Duckling Theorem” (see Watanabe, 1969, Section 7.6). If
the set of predicates is closed under Boolean operations,
then the number of predicates which satisfies any possible

Choosing the semantic properties of language

23



object is constant; thus, the existence of elementary unary
predicates cannot be the basis for explaining the existence
of specific similarity relations. This led Watanabe to con-
clude that “if we acknowledge the empirical existence of
classes of similar objects, it means that we are attaching
nonuniform importance to various predicates, and that
this weighting has an extra-logical origin” (Watanabe,
1969, p. 376). Thus, there is no escape from assuming that
a certain kind of predicate (like “green” and not like
“grue”) has a preferred status called “natural kind” (see
Quine, 1969).

Within the class of properties of binary relations, linear
orderings, more than other structures, appear to be of a
“natural kind.” This chapter has attempted to provide
some rationale as to why this is so.
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