

Early Flowers and Angiosperm Evolution

The recent discovery of diverse fossil flowers and floral organs in Cretaceous strata has revealed astonishing details about the structural and systematic diversity of early angiosperms. Exploring the rich fossil evidence that has been accumulated over the past three decades, this unique study follows the evolutionary history of flowering plants from their earliest phases in obscurity to their dominance in modern vegetation.

The book provides comprehensive biological and geological background information, before moving on to summarise the fossil record in detail. Including previously unpublished results based on research into Early and Late Cretaceous fossil floras from Europe and North America, the authors draw together direct palaeontological evidence of the pattern of angiosperm evolution through time.

Synthesising palaeobotanical data with information from living plants, this book explores the latest research in the field and highlights connections with phylogenetic systematics as well as the structure and the biology of extant angiosperms.

ELSE MARIE FRIIS is in the Department of Palaeobotany at the Swedish Museum of Natural History. Her research interests include Cretaceous flowers and other fossil reproductive structures, with particular focus on the origin and early diversification of angiosperms and related seed plants.

PETER R. CRANE is in the School of Forestry and Environmental Studies at Yale University. His research interests include large-scale patterns and processes of plant evolution and integrated palaeobotanical and neobotanical studies of plant diversity and evolution.

KAJ RAUNSGAARD PEDERSEN is in the Department of Geology at the University of Aarhus. His research interests include integrated palynological and palaeobotanical studies of Mesozoic seed plants with particular focus on Cretaceous reproductive structures and flowering plant evolution.

Early Flowers and Angiosperm Evolution

Else Marie Friis Swedish Museum of Natural History, Stockholm

Peter R. Crane School of Forestry & Environmental Studies, Yale University

Kaj Raunsgaard Pedersen Department of Geology, University of Aarhus

Line drawings by Pollyanna von Knorring

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521592833

© E. M. Friis, P. R. Crane and K. R. Pedersen 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Friis, Else Marie.

Early flowers and angiosperm evolution / Else Marie Friis, Peter R. Crane, Kaj Raunsgaard Pedersen.

p. cm

ISBN 978-0-521-59283-3 (Hardback)

- 1. Angiosperms, Fossil. 2. Angiosperms-Evolution. I. Crane, Peter R.
- II. Pedersen, Kaj Raunsgaard. III. Title.

QE980.F75 2011

561-dc22

2011001815

ISBN 978-0-521-59283-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface		page ix	5	Angiosperms in context: extant and fossil	
				seed plants	101
1	Introduction to angiosperms	1		5.1 Angiosperms among extant and fossil	
	1.1 Phylogenetic position of angiosperms	1		seed plants	101
	1.2 Characteristic features of angiosperms	6		5.2 Bennettitales–Erdtmanithecales–Gnetales	
	1.3 Timing of angiosperm diversification	16		(BEG) group	104
	1.4 Rise to ecological dominance	19		5.3 Gnetales	105
				5.4 Erdtmanithecales	114
2	The nature of the angiosperm fossil			5.5 Unassigned dispersed seeds of the	
	record	23		BEG group	119
	2.1 Understanding the plant fossil record	23		5.6 Bennettitales (Cycadeoidales)	124
	2.2 The adequacy of the angiosperm fossil			5.7 Pentoxylales	130
	record	38		5.8 Other Palaeozoic and Mesozoic seed plants	131
3	The environmental context of early		6	Origin and age of angiosperms	141
	angiosperm evolution	39		6.1 Hypotheses of seed plant relationships	141
	3.1 Palaeogeography	39		6.2 Origin of angiosperm structure	150
	3.2 Palaeoclimate	45		6.3 The age of angiosperms	155
	3.3 Climate change during the			6.4 Pre-Cretaceous angiosperm-like fossils	158
	Cretaceous	50			
	3.4 Implications for angiosperm		7	Phylogenetic framework and the	
	diversification	53		assignment of fossils to extant groups	163
				7.1 Early ideas on angiosperm phylogeny	163
4	Stratigraphic framework and key areas			7.2 Phylogenetic studies of angiosperms based on	
	for Cretaceous angiosperms	55		molecular data	163
	4.1 The stratigraphic framework	55		7.3 Angiosperm phylogeny group classification	
	4.2 Key areas for Cretaceous angiosperms	56		(APGIII)	164
	4.3 Europe	57		7.4 Angiosperm phylogeny: future directions	167
	4.4 Eastern North America	72		7.5 Assignment of fossils to extant groups	168
	4.5 Western Interior of the United States				
	and Canada	79	8	Fossils near the base of the angiosperm tree	169
	4.6 Alaska	81		8.1 Early-diverging angiosperm lineages at the	
	4.7 Greenland	82		ANITA grade	169
	4.8 Israel, Jordan and Lebanon	82		8.2 Amborellaceae	171
	4.9 North Africa	84		8.3 Nymphaeales	171
	4.10 West Africa and Brazil	85		8.4 Austrobaileyales	176
	4.11 Asia	88		8.5 Chloranthaceae	180
	4.12 Southern Gondwana and India	96		8.6 Ceratophyllaceae	185

vi Contents

9 Ear	ly fossil angiosperms of uncertain		13.7 Caryophyllales	315
rela	ationships	189	13.8 Saxifragales	316
9.1	Putative angiosperms	189		
9.2	Fossil flowers attached to inflorescences		14 Fossils of core eudicots: rosids	327
	and stems	192	14.1 Classification of rosids	327
9.3	Isolated flowers and fruits preserved as		14.2 Fossil evidence of rosids	327
	compressions/impressions	200	14.3 Vitales	329
9.4	Permineralised flowers	201	14.4 Fabids (Eurosids I)	329
9.5	Isolated angiosperm mesofossils	202	14.5 The COM clade	329
9.6	Dispersed monoaperturate pollen	208	14.6 The nitrogen-fixing clade	332
9.7	Fossil leaves of uncertain relationships	215	14.7 Malvids (Eurosids II)	354
	ly fossils of eumagnoliids	219	15 Early fossils of eudicots: asterids	361
10.	l Classification of eumagnoliids	219	15.1 Classification of asterids	361
10.2	2 Magnoliales	223	15.2 Cornales	363
10	3 Laurales	231	15.3 Ericales	365
10.4	4 Canellales	244	15.4 Lamiids (Euasterids I)	378
10	5 Piperales	246	15.5 Boraginaceae, Icacinaceae and Vahliaceae	379
11 E	ssils of monocots	249	15.6 Garryales	381
11 FOS 11.		249	15.7 Gentianales	381
	2 Fossil evidence of monocot diversification	250	15.8 Solanales and Lamiales	382
		250	15.9 Campanulids (Euasterids II)	382
11.3 11.4	J		15.10 Aquifoliales, Escalloniales and Asterales	383
11.		255 256	15.11 Bruniales, Apiales, Paracryphiales and	
11.		266	Dipsacales	385
11.0		266	•	
11.8		267	16 Patterns of structural diversification in	
11.9		267	angiosperm reproductive organs	387
	10 Commelinids	268	16.1 Inflorescence structure	388
11.	To Commennes	200	16.2 Floral organisation	391
12 Fos	ssils of eudicots: early-diverging groups	275	16.3 Other aspects of floral construction	412
	1 Classification of eudicots	275		
	2 Early-diverging eudicots	276	17 History and evolution of pollination in	
	3 Fossil evidence of eudicot diversification	277	angiosperms	415
	Fossils of uncertain relationships	277	17.1 Pollination in extant non-angiosperm seed	
	5 Ranunculales	289	plants	415
12.0	6 Proteales	292	17.2 Pollination in extant angiosperms	417
12.7	7 Sabiaceae	301	17.3 Insects as pollinators	419
	8 Buxales	303	17.4 Vertebrates as pollinators	426
12.9	9 Trochodendrales	308	17.5 History of pollination in angiosperms	428
			17.6 Large-scale trends in the history of	
13 Fos	ssils of core eudicots: basal lineages	311	angiosperm pollination	441
13.	1 Classification of core eudicots	311		
13.2	2 Early fossil evidence of core eudicots	312	18 History and evolution of dispersal in	
	3 Gunnerales	312	angiosperms	445
13.4	4 Dilleniaceae	313	18.1 Dispersal in extant non-angiosperm	
13.	5 Berberidopsidales	313	seed plants	445
13.0	6 Santalales	314	18.2 Dispersal in extant angiosperms	447

475
475
477
483
486
488
495
498
501
573

Preface

Developments in the study of fossil and living plants over the past few decades have greatly clarified many aspects of early angiosperm evolution. Explicit phylogenetic analyses, facilitated by the development of computer technology and based on both morphological and molecular data, have renewed interest in the relationships of angiosperms to other plants, the patterns of relationship among major groups of angiosperms, and the processes that have generated angiosperm diversity at both microevolutionary and macroevolutionary scales. At the same time, a rapid accumulation of new information on the structure and biology of many key groups of living angiosperms has catalysed comparative studies and brought to light many previously unrecognised features that provide new perspectives on angiosperm evolution.

Palaeobotanical studies have also been central in revitalising research on early angiosperm evolution and have advanced significantly our understanding of early angiosperm history. In particular, the discovery of diverse and exquisitely preserved fossil flowers and floral organs from the Cretaceous has yielded detailed information on the structural and systematic diversity of early angiosperms. These data complement the information available from living plants, and are also invaluable for testing evolutionary hypotheses based on extant taxa against palaeobotanical and stratigraphic evidence. The recognition of fossil pollen grains in situ within flowers has also provided new possibilities for interpreting the record of dispersed fossil pollen. Only a few decades ago the abundant occurrence of fossil angiosperm flowers in Cretaceous strata was unimagined, but today there is a rich floral record, much of which still remains to be analysed in detail. The key breakthrough was the recognition that numerous small fossil flowers, which are generally not visible to collectors in the field, can be extracted from Cretaceous sediments by using bulk-sieving techniques and studied with scanning electron microscopy (SEM), and now also with synchrotron X-ray microtomography (SXRTM). These techniques, modified from standard approaches to Cenozoic fossil floras in Europe, and pioneered in the Late Cretaceous of Scania, Sweden, have now yielded diverse angiosperm flowers from many new fossil floras (mesofossil floras) discovered in Lower and Upper Cretaceous strata in Europe, North America, Asia, New Zealand and Antarctica.

In this book we provide a synthesis and overview of current data and ideas on the major patterns of angiosperm evolution, focusing especially on the early evolution of the group. Our emphasis is on the new information from the fossil record that has accumulated over the past three decades and how this relates to recent findings on the phylogenetic systematics, structure and biology of extant angiosperms. Central to this synthesis of the palaeobotanical data is its integration with information from living plants and the presentation of previously unpublished results based on our research with Early and mid-Cretaceous fossil floras from eastern North America and Portugal.

Chapters 1 to 4 provide the background to information and ideas discussed in more detail later in the book. Chapter 1 introduces recent developments in angiosperm palaeobotany, molecular systematics and studies of the flowers of living plants, and briefly considers some of the ways in which these advances are changing our perspective on early angiosperm evolution. Major features of angiosperm structure and biology are also reviewed along with previous ideas on the origin and early evolution of angiosperms and their flowers, as well as the rise of angiosperms to ecological dominance. Chapter 2 provides an overview of the nature of the angiosperm fossil record. Chapter 3 briefly outlines changes in palaeogeography and climate since the Early Cretaceous, as an introduction to the changing world in which angiosperm diversification took place. Chapter 4 briefly discusses the stratigraphic framework and occurrence of the angiosperm fossils considered in this book and provides a review of the key fossil localities.

x Preface

Chapter 5 places angiosperms in context with respect to other groups of extant and extinct seed plants and focuses especially on those plants that have been thought to be closely related to angiosperms. In particular, we highlight new palaeobotanical data on the Gnetales and the potentially related extinct Bennettitales and Erdtmanithecales. Chapters 6 and 7 review the development of ideas concerning seed plant and angiosperm phylogeny.

The core of this book, Chapters 8–15, summarises in a phylogenetic framework the fossil record of angiosperms with particular emphasis on floral structures known from the Cretaceous. Brief mention is also made of key records from the Early Cenozoic.

In Chapter 16 we consider major patterns in the structural diversification of angiosperm flowers based on current phylogenetic hypotheses and evidence from the fossil record.

Chapters 17–20 consider the biological and ecological consequences of angiosperm diversification, including the nature of vegetational change during the Cretaceous and the evolution of interactions with pollinators and dispersers. Through these interactions, the diversification of flowering plants has been inextricably linked with diversification in the animal world, as well as with the origin of modern ecosystems.

All photographs and plates are by Else Marie Friis and Kaj Raunsgaard Pedersen, and all line drawings by Pollyanna von Knorring, unless otherwise specified; the maps were drawn by Wieslaw Smolinsky. We thank all staff members of the Department of Palaeobotany, Swedish Museum of Natural History, Stockholm, for much help and encouragement during the production of this book. We are also grateful for the support and patience of our families in the process of completing this work. We are also deeply grateful for stimulating discussions with many colleagues around the world over many years. We have greatly appreciated and benefited from their advice and friendship.

Major support for this work was obtained from the Swedish Museum of Natural History and the Swedish Natural Science Research Council. Additional substantial support was provided by the Carlsberg Foundation, the United States National Science Foundation, The Field Museum, The Royal Botanic Gardens, Kew, The University of Chicago, Yale University and The University of Aarhus. We also acknowledge support from the TOMCAT Beamline at the Swiss Light Source, Paul Scherrer Institute, Switzerland, the Asian–Swedish Research Link Programme, and the WCU program of the National Research Foundation of Korea