
Modelling Financial Derivatives
with Mathematica

Mathematical Models and Benchmark Algorithms

WILLIAM T . SHAW

Quantitative Analysis Group
Nomura International plc, London

and Balliol College, Oxford



pub l i s h ed by th e pr e s s s ynd i c a t e o f th e un i v e r s i t y o f cambr i dg e

The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

cambr i dg e un i v e r s i t y pr e s s

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk

40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

c© Nomura International plc 1998

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1998

Printed in the United Kingdom at the University Press, Cambridge

Typeset in Mathematica 3 and TEX

A catalogue record of this book is available from the British Library

ISBN 0 521 59233 X hardback (with CD-ROM)

DISCLAIMER

The information contained herein has been developed by Nomura International plc and is

based on sources which we believe to be reliable. Nomura International plc has

endeavoured to ensure the accuracy of the information, but it does not represent that it is

accurate and complete. Neither Nomura International plc and/or connected persons

nor Cambridge University Press accept any liability whatsoever for any direct, indirect or

consequential loss arising from use of the information or its contents.

To the best of the knowledge of Nomura International plc, the author and Cambridge

University Press, none of the code included in this book in itself contains any date sensitive

elements that will cause Year 2000-related problems. However, this statement implies no warranty

in this matter, on the part of the Nomura International plc, the author or the publisher.



for
Susan Mary Wallace

[1946–1997]
and

Sarah-Jane





Contents

Preface page vi
1 Advanced Tools for Rocket Science 1
2 An Introduction to Mathematica 12
3 Mathematical Finance Preliminaries 68
4 Mathematical Preliminaries 85
5 Log and Power Contracts 127
6 Binary Options and the Normal Distribution 136
7 Vanilla European Calls and Puts 151
8 Barrier Options - a Case Study in Rapid Development 167
9 Analytical Models of Lookbacks 189
10 Vanilla Asian Options - Analytical Methods 200
11 Vanilla American Options - Analytical Methods 215
12 Double Barrier, Compound, Quanto Options and Other Exotics 237
13 The Discipline of the Greeks and Overview of Finite-Difference Schemes 258
14 Finite-Difference Schemes for the Diffusion Equation with Smooth Initial Conditions 266
15 Finite-Difference Schemes for the Black-Scholes Equation with Non-smooth Payoff Initial

Conditions 279
16 SOR and PSOR Schemes for the Three-Time-Level Douglas Scheme and Application to

American Options 306
17 Linear Programming Alternatives to PSOR and Regression 331
18 Traditional and Supersymmetric Trees 344
19 Tree Implementation in Mathematica and Basic Tree Pathology 363
20 Turbo-charged Trees with the Mathematica Compiler 387
21 Monte Carlo and Wozniakowski Sampling 400
22 Basic Applications of Monte Carlo 420
23 Monte Carlo Simulation of Basket Options 437
24 Getting Jumpy over Dividends 454
25 Simple Deterministic and Stochastic Interest-Rate Models 470
26 Building Yield Curves from Market Data 482
27 Simple Interest Rate Options 504
28 Modelling Volatility by Elasticity 515
Index 534

v



Preface

This text has a number of aims. The first is to show how Mathematica (version 3 in particular),
can be used as a derivatives modelling tool. Second, it presents a complete if concise development
of the mathematical approach to the valuation and hedging of a large class of derivative securities.
Third, although the basic mathematical development is oriented towards dynamic hedging and partial
differential equations, this book aims to present a balanced approach to algorithm development, in
which analytical, finite-difference, tree and Monte Carlo methods are each applied in the appropriate
context, without any forced adherence to any particular method. Fourth, it is intended that this text
collects together and highlights many of the mathematical pathologies that exist in derivatives modelling
problems. This last point is all too frequently ignored, so a discussion here may be appropriate.

Financial analysts use often-complex mathematical models to guide their decisions when trading deriva-
tive financial instruments. However, derivative securities are capable of exhibiting some diverse forms of
mathematical pathology that confound our intuition and play havoc with standard or even state-of-the-
art algorithms. The potential traps fall into two categories. The first category contains problems arising
from the complexity of some models, leading to their being seriously error-prone in their implementation,
even if not intrinsically flawed. The second category contains algorithms that are intrinsically flawed.
Let’s take a look at some problems in each category.

An obvious example of a type-one problem relates to the computation of hedge parameters, or “Greeks.”
These are the partial derivatives of the option value with respect to the underlying price and other
variables such as time and interest rates. For all but the simplest vanilla options, the pen-and-paper
computation of such entities is very complex and therefore error-prone, leading to the potential of
errors in coding. The estimation of such quantities by purely numerical methods (differencing) leads to
other types of problems associated with inaccuracies in the estimate of the analytical derivative. Such
difficulties can often be eliminated in one swoop with the Mathematica system, which is able to compute
the symbolic derivatives – and hence the hedge parameters – exactly by analytical differentiation of the
option-pricing formula.

A more subtle type-one difficulty relates to the computation of implied volatility, which is a favourite
parameter of traders. Implied volatility makes sense only for the simplest vanilla options. In other
cases, the implied volatility may be unstable, double-valued, or triple-valued, or may even possess
infinitely many values. The implementation must check that the price is a strictly increasing or a strictly
decreasing function of volatility; otherwise, nonsense can and will be obtained for the implied volatility.
In Mathematica the graphical tools can be used to test this very quickly.

Some quite well-known algorithms are intrinsically flawed. Problems which we might identify as a
type-two issue can be found in the following models.

vi



Preface vii

(i) Binomial models
(ii) Implicit finite-difference models
(iii) Monte Carlo simulation models

These are essentially numerical methods, and this book looks in detail at them in comparison with exact
solutions for known cases. This is straightforward in a system such as Mathematica, where complex, exact
solutions can be expressed exactly and worked out to any degree of precision. As numerical methods,
they involve an essential discretization of time and other relevant variables such as the underlying asset
price. A common theme is what happens when the time-step is taken to be large, which is very tempting
in an implementation in order to obtain results quickly.

For example, several of the standard binomial models suffer from the well-known difficulty that as
the time-step becomes large, the probabilities associated with the underlying tree model may become
negative, which is manifest nonsense. In other types of models, the asset prices can become negative. Both
of these effects are well known. What appears not to be understood is that the reason for these difficulties
has a common root in the fact that tree models are typically underspecified from a mathematical point
of view. A number of constraints can be written down that should apply to a tree. The solution of a
full set can be quite hard, so in practice the authors of tree models have worked with a subset and made
up one or more missing conditions in order to solve for the tree structure. This leads to the problems
with negative probabilities or negative asset prices. When one is armed with Mathematica’s symbolic
equation-solving capabilities, the solution of a full set of tree constraints is a straightforward matter –
and in fact leads to a model where neither the up-and-down tree probabilities nor the asset price can
become negative. Other problems with trees, discovered by others in relation to barrier and cap effects,
are also discussed.

One of the most surprising and deeply rooted difficulties relates to the use of implicit finite-difference
schemes. In principle, these allow a larger numerical time-step to be used than in treelike models and
are becoming increasingly popular. When properly used, they combine accuracy with efficiency. There
is, however, a major difficulty with them that appears not to have fully migrated in its appreciation from
the academic numerical analysis community to the market practitioners. When the initial conditions for
the associated partial differential equation (in financial terms, the option payoff) are nice and smooth
(in loose terms, continuous with continuous slopes), one can get away with almost any implicit finite-
difference scheme. This is emphatically not the case in option-pricing problems, where the payoffs
are typically non-smooth and frequently discontinuous. Such “glitches” in the payoff will propagate
through the solution, and while they do not necessarily cause a large error in the option value, they
can cause significant errors in the Greeks such as Delta, Gamma, and Theta. This will occur with
some of the most common schemes in current use for larger time-steps. It can be avoided only with
a certain subset of implicit schemes. Which subset works and which does not is in fact well known to
the numerical analysis community. In the text this is made crystal clear by comparison with some exact
solutions; and the good, but infrequently used, schemes are contrasted with the bad, but widely used,
schemes.

Monte Carlo simulation is a popular method for the valuation of options that are European in style but
path-dependent. The manner in which simulated solutions converge to the correct answer is investigated
for some cases where the exact solution is known. This reveals several difficulties with such numerical
simulation methods, and in particular the very slow convergence associated with certain classes of
options. We give suggestions for control variates in a number of useful cases but highlight the difference
between getting the variance down – but possibly converging to the wrong answer – and getting the
right answer.
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However, it would be wrong to assume that the purpose of writing this book was merely to discuss what
can go wrong! The illumination of pathology is only one of the abilities of Mathematica. For example,
in addition to being able to do calculus, Mathematica has other advantages over traditional modelling
environments such as spreadsheets and C/C++. For example, the presence of a vast library of special
functions, coupled with the ability to do differentiation and integration, means that novel, exact solutions
can be implemented with ease. A beautiful example of this is the exact solution for the Asian option
with arithmetic averaging, which requires that one invert the Laplace transform of a hypergeometric
function. This requires just a few lines in Mathematica and can be directly differentiated to obtain the
Greeks. Other areas in which Mathematica can be fruitfully applied include novel analytical techniques
for double-Barrier options and accurate analytical approximations for American options.

How the Text is Organized

This book is divided into six groups of chapters. The first group establishes the preliminaries in terms
of the use of Mathematica, the basics of stochastic calculus and the derivation of partial differential
equations, and the basic technique for solving the Black-Scholes PDE family. The next group of chapters
explores a wide variety of analytical models, from simple vanilla options, through a range of by-now
standard “exotics”, and also develops more complex analytical models for Asian and American options.
Next we take a long hard look at the finite-difference models, including the standard approaches and
also novel methods with much better numerical characteristics. This block makes particularly good use
of the new features of Mathematica 3.0, and it is shown how to use the Mathematica compiler to build
numerical solutions of the PDEs in an efficient manner.

The fourth group of chapters explores the fundamentals and implementation aspects of binomial and
trinomial tree models, using Mathematica both to define new tree models, and to implement traditional
and novel tree models using the compiler. Group five looks in detail at Monte Carlo simulation and
applications in particular to path-dependent and Basket options. Finally we take a brief look at some
simpler interest-rate models and related non-log-normal equity models.

Some History

The origins of this text are diverse. Many years ago I began running courses for modelling professionals
under the auspices of my consulting firm, Oxford System Solutions. Inspired by Ross Miller’s work in
The Mathematica Journal, I began to look at developing a programme tailored to financial applications,
and gave it to several London financial organizations. This course focused largely on the analytical
aspects – the limited compilation features of version 2.X of Mathematica did not then allow complex
numerical models to be developed in an efficient fashion. Later, when employed as a consultant to
Nomura Research Institute Europe Ltd., the question of how to carefully test the integrity of the models
then being employed by Nomura arose. Although the existing models had been developed and tested
with considerable care, I proposed that a systematic sweep through all the existing models be done, using
Mathematica to independently build all the models, using the basic published mathematical research as
a starting point. Furthermore, with one eye on the features of the then forthcoming Mathematica 3.0,
I realized that one could begin to use Mathematica to perform detailed numerical computation, so that
the project need not be limited to the simpler models admitting exact solutions. The project scope was
then expanded not just to include the existing in-house models, but to explore numerous other models
in the literature, with a view to assessing the desirability of their implementation. That extended project
led to this text, and continues move to forward now that I am on the staff of Nomura International plc,
and involved in the specification, prototyping and testing of a wide range of derivative models.
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Technology Aspects

The chapters of this book exist in their entirety as a collection of Mathematica 3 Notebooks. All chapter
material, including Mathematica code, text, graphics and typeset mathematical material, is native to
Mathematica 3. The front- and end-matter (this preface, contents and index etc.) were prepared in
LaTeX using Textures 1.8. The book was produced in final form on Power Macintoshes, in the form
of an 8500/120 upgraded with a 266 MHz G3, and a further G3/266, with Notebooks being printed
to disk as PostScript files, which were then used by the publisher to produce the final printed version.
Timing results are based on the G3/266, running Mathematica 3.0.0, which in general is slightly faster
on average than a Pentium II at 300 MHz running NT4 (if you are a Windows user make sure that you
are using Mathematica 3.01 or later, because that version is fully Pentium optimized, and note that NT
is significantly more efficient that ’95). The timings should therefore be typical of desktop computers in
production at the intended publication date of mid-1998. The printed version made use of a few features
of the 3.1 or 3.5 system with regard to page layout only. The kernel code is targeted at Mathematica
3, though most of the non-compiled material is V2.X friendly. Work in progress in the numerical
optimization of future versions of Mathematica may modify some of the conclusions regarding numerical
efficiency issues.

Accuracy and Errors

In a project of this size and scope it is impossible to guarantee the absolute correctness of all the
material and its implementation. I have made significant efforts to check the models contained herein
against basic research results and other model implementations, but can make no guarantees regarding
these implementations. I have prepared this material both for its educational value, and to provide a
set of implementations of valuation models for comparison with other systems. This material should
emphatically not be used in isolation for pricing and hedging in real-world applications (see the disclaimer
also). Note also that some of the algorithms are highly experimental. Furthermore, it should be noted
that all results printed here are those obtained on Apple Power Macintosh systems. A substantial number
of the calculations (but not necessarily all) have been re-run on Intel Pentium systems running Microsoft
Windows 95 and NT4, and on various UNIX systems from SUN, and have been found to give identical
results. However, the author cannot guarantee complete hardware independence. Wolfram Research Inc.
make their own best efforts to ensure that the Mathematica system operates in a consistent fashion, but
there are inevitable minor differences, usually when machine-precision arithmetic is employed.

Stylistic Issues

The coding contained herein is for the most part based on my own efforts, except as explicitly acknowl-
edged within the text. My efforts have focused on accuracy and speed, and I have deemed elegance
and compactness to be secondary to transparency of function. In financial applications, for checking
purposes, transparency of function is critical, and I hope the code contained here is legible and easy to
understand and check. I make no apologies for allegedly ugly code! All that matters to me is getting an
accurate answer and getting it efficiently.

Typesetting Issues

Mathematica 3.0 and later versions have a variety of styles for the display of Mathematica code and
mathematical equations. Except in the early tutorial chapters of this book, where consistency has been
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the goal in order to avoid confusing the reader, I have been fairly liberal in switching between styles,
where it appears to be useful to select a particular style for displaying material. Most Mathematica
input uses the old version 2.X input form that is pure text, but occasionally, in order, for example,
to make it easier to compare input with published research, I have converted input cells to “Standard
Form” so that they look more like ordinary mathematics. Similarly, most of the output is in Standard
Form, but occasionally it has been converted to “Traditional Form” so that it looks exactly like ordinary
mathematical notation. Some of the Traditional Form outputs have in addition been typeset as numbered
equations. Where there is mathematical material without any related Mathematica input or output it is
almost all Traditional Form, usually created from Input Form, styled as numbered equations.

One notational point needs to be made here. Mathematica 3 Traditional Form uses a partially double-
struck font for symbols such as i and e, and for the d in dS in integrals. I have avoided using this when
creating my own equations, e.g. in the stochastic calculus material, but equations that are converted
Mathematica output use the default typefaces employed by the software system. Typographical purists
may dislike this notation, but I have tried to avoid editing Mathematica-created output wherever possible,
in order that “what you see is what Mathematica made” or, as we shall remark quickly in the text to
remind the reader that something strange and unfamiliar may be about to appear: “WYSIWMAMA”.

One decision on presentation was to suppress all the “In” and “Out” numbered statements. This has the
benefit of tidyness, but also has the potential for confusion as to what is input and what is output. In
the printed form, I have used indentation on most of the outputs to try to indicate their character, but if
there is any confusion as to the types or styles of cells, this can be resolved by reference to the electronic
form.

Conventions

There are may different issues of convention that plague this subject. For example, how shold Delta
be quoted? We could quote the raw partial derivative; the same expressed as a percentage; the same
expressed in terms of a one per cent change in the underlying, and so on. The following are the rules,
except as explicitly stated in the text:

• All variables are in natural units:

– the interest-rate and continuous dividend yield are continuously compounded, and expressed in
absolute terms, i.e., an interest-rate of 10 per cent continuously compounded corresponds to
r = 0.10;

– the time is in years;

– the volatility is in absolute annual terms, and will normally (but not always) be a number less than
unity, so that σ = 0.25 corresponds to 25 per cent annualized volatility;

• All Greeks are based on the raw partial derivatives with respect to absolute quantities in natural units,
so that, e.g.,

– Delta corresponds to the instantaneous rate of change of option value with respect to the underlying
price, with the latter expressed in currency terms – for a vanilla Call Delta lies between zero and
one;

– Rho is rate of change with respect to absolute continuously compounded interest rates;

– Vega is rate of change with respect to absolute volatility;

– Theta is rate of change with respect to time in years.
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These are most convenient for the mathematical description, as it means there are very few occurences of
factors of 100, 365, 1/365 and so on. In making comparisons with your own on-desk systems, this may
require various conversion factors to be applied. Note that if you have numerical differencing algorithms
in place, you may have made a choice to calculate actual changes rather than rates of change.

Feedback

Comments are actively sought on this material, especially if material errors are discovered. I also wish to
hear about how things could have been done better, particularly with regard to speed and/or accuracy.
I am not representing this text as necessarily the best way of implementing models in Mathematica, and
have not doubt that many others will be able to improve on the material here.

Feedback to: william.shaw@nomura.co.uk

All trademarks are acknowledged.
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=, 22
==, 22
:= and = compared, 56
; and output suppression, 35
/. and temporary substitution, 40
? and getting help, 48
# and pure functions, 53

algebra, commands for, 36
algorithm risk, 2
affine bond models, 474
American options,

analytical approximations for
puts, 218, 222

analytical model for calls, 229
boundary conditions for puts,

216
finite-difference models for, 306
linear programming approach,

331
package for, 233

approximate numbers, 20
Asian options,

payoff types, 201
analytical models in

Mathematica, 202-214
arithmetic, continuous and

approximate, 203
arithmetic, continuous and

exact, 206
control variates for, 432
geometric, continuous and

exact, 201
geometric, discrete and exact,

201
Laplace transforms and, 206
Monte Carlo simulation of, 422,

427
as you like it options, 254

barrier options,
derivation of formulae, 112
and implied volatility, 8
double, 237

Greeks for, 170-182
Mathematica model of, 168-188

basket options,
analysis of two-asset case, 446,
arithmetic, defined, 437
arithmetic log-normal model,

analysis, 451
arithmetic log-normal model

implementation, 443
geometric, as control variate,

441
random sampling for, 438
spread variant, 446

binary options,
derivation of solution, 111
Greeks for, 138
hedging issues, 140
Mathematica model of, 137

Black model of interest rate
options,

and Vasicek world bond
options, 508

generalities, 505
swaptions in, 506

Black-Scholes formula,
and implied volatility, 6
for calls and puts, 112
implemenation in Mathematica,

152
Black-Scholes PDE,

CEV form, 517
derivation, 70
FD numerical solution in

Mathematica, 279
for composite option, 73
for convertible bonds, 71, 122
for general foreign underlying,

73
for path-dependency, 81
for quanto option, 79
European solution from given

payoff, 107
reduction to diffusion equation,

91

similarity solutions of, 94
simple solutions of, 85
steady-state solutions of, 89

binomial,
and finite-difference, 263
trees, see trees

bonds,
log-linear pricing models, 474
PDE with known interest rates,

471
price in Cox-Ingersoll-Ross

world, 477
price in Hull-White world, 479
price in Vasciek world, 476
related to yield curve, 472

boostrapping, for yield curve, 495
brackets, 16

C & C++, issues with, 4
calculus,

functions for, 41
and Greeks, 3

call options,
CEV pricing of, 520-527
derivation of solution, 112
Greeks for, 154
implied volatility for, 159
Mathematica model of, 152
with barriers, 170, 174

cells, opening and closing, 15
CEV models,

approximate option formulae,
524

call option valuation in, 520-527
defined, 516
diffusion equation analogue,

519
fast evaluation, 522
Green’s function for, 519
PDE for, 517
put option valuation in, 530
relation to Cox-Ingersoll-Ross

model, 516
skew in, 527

534
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chooser options, 254
clearing definitions, 33
Clear, 33
Coefficient, 40
Collect, 39
compilation,
Compile and explicit FD

methods, 268
Compile and PSOR, 309
Compile and SOR, 308
Compile and trees, 388-398
Compile and tridiagonal solver,

270
complex numbers, 46
composite options, 79
compound options, 243
constant elasticity of variance, see

CEV
control variates,

for Asian options, 432
for basket, 441

convertible bonds, PDE for, 71
coupons, basic management, 122
Cox-Ross-Rubenstein, see trees
covariance,

Mathematica implementation,
438

multivariate simulation and,
450

role in basket modelling, 451
Cox-Ingersoll-Ross interest rate

model,
bond option price in, 513
bond price in, 477
distribution properties, 509-513
random walk defined, 473
relationship to CEV model, 516

Crank-Nicholson,
numerical scheme defined, 262
solution of diffusion equation,

273
solution of Black-Scholes PDE

for Put, 287
problems with Greeks for

European options, 294-295

D, differentiation operator, 41
data,

controlling large data sets, 35
interpolating, 483
list structures for, 27

delta,
defined, 81
linked to rho, 83

diffusion equation,

and method of images, 99
CEV variant, 519
derived for convertible bonds,

122
derived from Black-Scholes

equation, 91
Green’s function for, 95
solution given initial conditions,

98
dilution and warrants, 252
discount factors,

in practical yield curve
construction, 490

theory of, 472
dividends,

analytical models for, 457, 464
discrete, and jump-conditions,

122
discrete, in Black-Scholes PDE,

122
discrete, in Monte Carlo

analysis, 455
effective price model for, 457

double barrier options, 237
Douglas,

applied to American options,
308-330

applied to diffusion equation,
275

two time level scheme defined,
262

three time level scheme defined,
280

three time level applied to
European Put, 295

behaviour of Greeks for
European options, 301-304

DSolve, symbolic ODE solver, 44

editing, 15
efficiency, see compilation
exact numbers, 20
Expand, 36
European options,

derivation of general formulae,
107-117

binaries, 137
calls, puts, 151
package for, 162

exchange options, 255
exotic options,

miscellaneous, 237-257
see also barrier, binary, Asian

options

Factor, 36

Fit,
fitting functions to data, 25
as potential tool for yield

curves, 482
non-linear extension of, 486

FindRoot, numerical solver, 26
finite-differences,

and American options, 306
and trees, 263
applied to European Put, 281
Crank-Nicholson, see

Crank-Nicholson
Douglas, see Douglas
explicit applied in Mathematica,

267
problems with two time-level

schemes, 264, 293-295
schemes for the diffusion

equation, 261
theta-method, 262

Flatten, 31
Fold, 33
FoldList, 33
forward rates, 499
front end, introduced, 12
functions,

building your own, 52
controlling operation of, 49
in pure form, 53
Options in, 49
recursive definition, 55

gamma,
defined, 81
and Black-Scholes PDE, 82
link to vega, 82

graphics
introduced, 17
using, see plotting

Greeks,
defined, 81
identities linking, 82
problems in FD models, 258,

294-295
for American options in FD

scheme, 315, 321, 326
Green’s function,

for CEV diffusion equation, 519
for diffusion equation, 95
transforms of, 96

heat equation, see diffusion
equation

hedging, dymanic, 69
help, on function definitions, 49
Hull-White interest rate model,
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bond price in, 479
random walk defined, 473

images, method of,
and diffusion equation, 99
barrier option details, 112

impedance boundary condition
and diffusion equation, 103
financial analogue of, 117

implied volatility,
CEV analysis, 527
issues with, 5
for calls, puts, 159

input, 12
Input Form, 16
integration,

symbolic, 41
numerical, 43

interest rate models,
Black, 506-508
Black-Derman-Toy, 474
Black-Karasinski, 474
bond pricing in, 474
Cox-Ingersoll-Ross, 473, 477,

509, 513, 516
Ho-Lee, 473
Hull-White, 473, 479
one-factor model families, 473
options, generalities, 504
options, in the Black world, 505
Rendleman-Bartter, 473
swaption pricing, 506
Vasicek, 473, 508

Integrate, 41
interpolation, 483
iteration, 33
Itô’s lemma, 69

Jarrow-Rudd, see trees
jump conditions,

for discrete dividends, 122
implementation in

finite-differences, 458

kernel,
introduced, 12
quitting, 16

knock-in/out options, see barrier
options

ladder option, definition and
model, 197

Laplace transforms,
and Asian options, 206
and double barriers, 238
package for, 96

Limit, taking limits, 43
lists,

introduced, 27
one-dimensional, 27
functions acting on, 28
two-dimensional, 29
changing dimension, 31

ListPlot, 18
log options,

from Black-Scholes PDE, 92
Greeks for, 128
implied volatility for, 130
Mathematica model of, 127

lookback options,
analytical Mathematica models

of, 190-197
and impedance boundary

conditions, 118
classified, 189
Greeks for, 191-192
Monte Carlo simulation of, 421,

424

matrices, 29
MatrixForm, 29
mean reversion, for interest rates,

473
model risk, 2
Monte Carlo modelling,

Asian options, 422, 427
European options re-visited, 413
hedge parameter computation

in, 414
lookback options, 421, 424
multivariate analysis, 450
multivariate simulation, 438
paths, fine clockwork, 407
paths, coarse clockwork, 411
paths, coarse irregularly-spaced,

412

N, numerical evaluation, 19
NDSolve, numerical ODE solver,

45
Nest, 33
NestList, 33
Newton-Raphson, 27
Norm definition, 141
normal distribution,

continued fractions for, 148
relation to Erf, 141
Monte Carlo sampling
series for, 147
traditional approximations for,

142

NSolve, numerical solver, 26
NIntegrate,

defined, 43
applied to two-asset options,

447
numerical methods, see

finite-differences, trees, Monte
Carlo, SOR, PSOR,
NDSolve, NSolve,
NIntegrate etc.

object oriented programming, 4
ODE, solution of, 44-45
OOP, 4
option prices,

basic derivations, 107
types, see e.g. calls, puts and

names in general.
ordinary differential equations

symbolic solution 44
numerical solution 45

Options, 49

packages
basic use, 59
American options, 233
European options, 162
FourierTransform, 59
LaplaceTransform, 96

partial differential equations, see
Black-Scholes PDE

Partition, 31
path-dependent options,

PDE for, 81
Monte Carlo sampling, see

Monte Carlo
see also Asian, lookback

options
PDE, see Black-Scholes PDE
pure functions, 53
Plot, introduced 17
plotting,

colours and, 60
legends and, 61
several functions, 60
several data sets, 63
functions of many variables, 65
movies, 67

POO, see OOP
power options,

from Black-Scholes PDE, 92
Greeks for, 134
implied volatility for, 135
Mathematica model of, 133

probability functions,
log-normal, 108
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non-central chi-squared, 509
normal, see normal distribution

put options,
CEV model of, 530
derivation of solution, 112
Greeks for, 154
implied volatility for, 159
Mathematica model of, 152
with barriers, 178, 180

projected successive
over-relaxation, see PSOR

PSOR,
compiled solver for, 309
alternatives to, using linear

programming, 331

Quanto options,
PDE derivation, 79
Greeks for, 250
Mathematica model of, 249

rebates,
PDE basics, 101
calculated for barrier options,

114
recursion, 55
regression,

least squares, see Fit
robust, 340

rho,
defined, 82
link to delta, 83

risk-neutrality and dynamic
hedging, 70

Series function, 44
simulation, see Monte Carlo
skew, for volatility in CEV

models, 527
Solve function, 21
SOR, 307
speed, improving, see compilation
spread, two asset option, 446
spreadsheets, issues with, 4
SRCEV, see CEV
Standard Form, 16
stochastic process, naive view, 69
substitutions,

permanent, 40
temporary, 40

successive over-relaxation, see
SOR

supersymmetric, see trees
swaps,

use in yield curve construction,
487

options on, 506
swaptions, Black model, 506

Together, 37
Traditional Form, 16
transforms,

Fourier, package for, 59
Laplace, see Laplace

transforms
trees,

barriers, nasty behaviour of, 381
binomial Cox-Ross-Rubenstein,

compiled implementation,
387

binomial Cox-Ross-Rubenstein,
convergence analysis, 367

binomial Cox-Ross-Rubenstein,
magic tree sizes, 367

binomial Cox-Ross-Rubenstein,
recursive implementation,
364

binomial Cox-Ross-Rubenstein
style defined, 348

binomial Jarrow-Rudd,
convergence analysis, 373

binomial Jarrow-Rudd, magic
tree sizes, 374

binomial Jarrow-Rudd,
recursive implementation,
371

binomial Jarrow-Rudd style
defined, 347

binomial supersymmetric,
convergence analysis, 377

binomial supersymmetric,
magic tree sizes, 379

binomial supersymmetric,
recursive implementation,
375

binomial supersymmetric style
defined, 350

general specification, 344
Mathematica solution of

binomial constraint
equations, 354

relation to finite-differences, 263
trinomial supersymmetric,

compiled implementation,
396

trinomial supersymmetric,
Mathematica solution of
constraints, 356

trinomial supersymmetric style
defined, 356

tridiagonal equations,

compiled solver for, 270
solution of implicit FD schemes

using, 271

up and in options,
calls, 170
puts, 178

up and out options,
calls, 174
puts, 180

vanilla option, see call, put option
Vasicek interest rate model,

bond option pricing, 508
bond price in, 476
random walk defined, 473

vega,
defined, 82
link to gamma, 82

verification,
in general, 2
of FD schemes for European

Put, 281
of tree schemes, 367, 373, 377

volatility,
approaches to, 515
CEV model of, 516
implied, see implied volatility
implied for named options, see

e.g. call options, implied
volatilty

introduction as random walk
parameter, 69

warrant pricing
and implied volatility, 7
Greeks for, 253
Mathematica model of, 252

Wozniakowksi integration, 416

yield curve,
bonds and, 472
bootstrapping algorithm for,

495
construction from market data,

487
forward rate computation and,

499

zero-coupon bonds,
and yield curve, 472
options on, 508, 513


