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Thermodynamics and Statistical Mechanics Review

This is a book about techniques, and the first few chapters are about the techniques you

have to learn before you can learn the real techniques.

Your mastery of these crucial chapters will be presumed in subsequent ones. So go

though them carefully, paying special attention to exercises whose answers are numbered

equations.

I begin with a review of basic ideas from thermodynamics and statistical mechanics.

Some books are suggested at the end of the chapter [1–4].

In the beginning there was thermodynamics. It was developed before it was known that

matter was made of atoms. It is notorious for its multiple but equivalent formalisms and

its orgy of partial derivatives. I will try to provide one way to navigate this mess that will

suffice for this book.

1.1 Energy and Entropy in Thermodynamics

I will illustrate the basic ideas by taking as an example a cylinder of gas, with a piston on

top. The piston exerts some pressure P and encloses a volume V of gas. We say the system

(gas) is in equilibrium when nothing changes at the macroscopic level. In equilibrium the

gas may be represented by a point in the (P,V) plane.

The gas has an internal energy U. This was known even before knowing the gas was

made of atoms. The main point about U is that it is a state variable: it has a unique value

associated with every state, i.e., every point (P,V). It returns to that value if the gas is taken

on a closed loop in the (P,V) plane.

There are two ways to change U. One is to move the piston and do some mechanical

work, in which case

dU = −PdV (1.1)

by the law of conservation of energy. The other is to put the gas on a hot or cold plate. In

this case some heat δQ can be added and we write

dU = δQ, (1.2)
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2 Thermodynamics and Statistical Mechanics Review

which acknowledges the fact that heat is a form of energy as well. The first law of

thermodynamics simply expresses energy conservation:

dU = δQ − PdV . (1.3)

I use δQ and not dQ since Q is not a state variable. Unlike U, there is no unique Q

associated with a point (P,V): we can go on a closed loop in the (P,V) plane, come back

to the same state, but Q would have changed by the negative of the work done, which is

the area inside the loop.

The second law of thermodynamics introduces another state variable, S, the entropy,

which changes by

dS =
δQ

T
(1.4)

when heat δQ is added reversibly, i.e., arbitrarily close to equilibrium. It is a state variable

because it can be shown that
∮

dS = 0 (1.5)

for a quasi-static cyclic process.

Since dU is independent of how we go from one point to another, we may as well

assume that the heat was added reversibly, and write

dU = TdS − PdV , (1.6)

which tells us that

U = U(S,V), (1.7)

T =
∂U

∂S

∣

∣

∣

∣

V

, (1.8)

−P =
∂U

∂V

∣

∣

∣

∣

S

. (1.9)

For future use note that we may rewrite these equations as follows:

dS =
1

T
dU +

P

T
dV , (1.10)

S = S(U,V), (1.11)

1

T
=

∂S

∂U

∣

∣

∣

∣

V

, (1.12)

P

T
=

∂S

∂V

∣

∣

∣

∣

U

. (1.13)

These equations will be recalled shortly when we consider statistical mechanics, in which

macroscopic thermodynamic quantities like energy or entropy emerge from a microscopic

description in terms of the underlying atoms and molecules.
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1.2 Equilibrium as Maximum of Entropy 3

The function U(S,V), called the fundamental relation, constitutes complete thermody-

namics knowledge of the system.

This is like saying that the Hamiltonian function H(x,p) constitutes complete

knowledge of a mechanical system. However, we still need to find what H is for a particular

situation, say the harmonic oscillator, by empirical means.

As an example, let us consider n moles of an ideal gas for which it is known from

experiments that

U(S,V) = C

[

eS/nR

V

]2/3

, (1.14)

where R = 8.31 J mol−1 K−1 is the universal gas constant and C is independent of S and V .

From the definition of P and T in Eqs. (1.8) and (1.9), we get the equations of state:

P = −
∂U

∂V

∣

∣

∣

∣

S

=
2

3

U

V
, (1.15)

T =
∂U

∂S

∣

∣

∣

∣

V

=
2

3nR
U. (1.16)

The two may be combined to give the more familiar PV = nRT .

1.2 Equilibrium as Maximum of Entropy

The second law of thermodynamics states that when equilibrium is disturbed, the entropy

of the universe will either increase or remain the same. Equivalently,

S is a maximum at equilibrium.

But I have emphasized that S, like U, is a state variable defined only in equilibrium! How

can you maximize a function defined only at its maximum?

What this statement means is this. Imagine a box of gas in equilibrium. It has a volume

V and energy U. Suppose the box has a conducting piston that is held in place by a pin.

The piston divides the volume into two parts of size V1 = αV and V2 = (1−α)V . They are

at some common temperature T1 = T2 = T , but not necessarily at a common pressure. The

system is forced into equilibrium despite this due to a constraint, the pin holding the piston

in place. The entropy of the combined system is just the sum:

S = S1(V1)+ S2(V2) = S1(αV)+ S2((1 −α)V). (1.17)

Suppose we now let the piston move. It may no longer stay in place and α could change.

Where will it settle down? We are told it will settle down at the value that maximizes S:

0 = dS = dS1 + dS2 (1.18)

=
∂S1

∂V1
dV1 +

∂S2

∂V2
dV2 (1.19)
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4 Thermodynamics and Statistical Mechanics Review

=
(

P1

T1
−

P2

T2

)

dα V (1.20)

0 =
(

P1 − P2

T

)

dα, (1.21)

which is the correct physical answer: in equilibrium, when S is maximized, the pressures

will be equal.

So the principle of maximum entropy means that when a system held in equilibrium

by a constraint becomes free to explore new equilibrium states due to the removal of the

constraint, it will pick the one which maximizes S. In this example, where its options are

parametrized by α, it will pick

∂S(α)

∂α
= 0

def= equilibrium. (1.22)

A subtle point: Suppose initially we had α = 0.1, and finally α = 0.5. In this experiment,

only S(α = 0.1) and S(α = 0.5) are equilibrium entropies. However, we could define an

S(α) by making any α into an equilibrium state by restraining the piston at that α and

letting the system settle down. It is this S(α) that is maximized at the new equilibrium.

1.3 Free Energy in Thermodynamics

Temporarily, let V be fixed, so that U = U(S) and

T =
dU

dS
. (1.23)

Since U = U(S), this gives us T as a function of S:

T = T(S). (1.24)

Assuming that this relation can be inverted to yield

S = S(T), (1.25)

let us construct a function F(T), called the free energy, as follows:

F(T) = U(S(T))− TS(T). (1.26)

Look at the T-derivative of F(T):

dF

dT
=

dU(S(T))

dT
− S(T)− T

dS(T)

dT
(1.27)

=
dU

dS
·

dS

dT
− S(T)− T

dS(T)

dT
(1.28)

= −S(T) using Eq. (1.8). (1.29)
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1.4 Equilibrium as Minimum of Free Energy 5

Thus we see that while U was a function of S, with T as the derivative, F is a function of

T , with −S as its derivative. Equation (1.26), which brings about this exchange of roles, is

an example of a Legendre transformation.

Let us manipulate Eq. (1.26) to derive a result that will be invoked soon:

F = U − ST (1.30)

U = F + ST (1.31)

= F − T
dF

dT
using Eq. (1.29). (1.32)

If we bring back V , which was held fixed so far, and repeat the analysis, we will find

that

F = F(T ,V), (1.33)

−S =
∂F

∂T

∣

∣

∣

∣

V

, (1.34)

−P =
∂F

∂V

∣

∣

∣

∣

T

, (1.35)

dF = −SdT − PdV . (1.36)

The following recommended exercise invites you to find F(T ,V) for an ideal gas by

carrying out the Legendre transform.

Exercise 1.3.1 For an ideal gas, start with Eq. (1.14) and show that

T(S,V) =
∂U

∂S
=

2

3nR
U (1.37)

to obtain U as a function of T. Next, construct F(T ,V) = U(T)− S(T ,V)T; to get S(T ,V),

go back to Eq. (1.14), write S in terms of U, and then U in terms of T, and show that

F(T ,V) =
3nRT

2

[

(1 + lnC)− ln
3nRT

2
−

2

3
lnV

]

. (1.38)

Verify that the partial derivatives with respect to T and V give the expected results for the

entropy and pressure of an ideal gas.

1.4 Equilibrium as Minimum of Free Energy

Knowledge of F(T ,V) is as complete as the knowledge of U(S,V). Often F(T) is preferred,

since it is easier to control its independent variable T than the entropy S which enters U(S).

What does it mean to say that F(V ,T) has the same information as U(V ,S)?

Start with the principle defining the equilibrium of an isolated system as the maximum

of S at fixed U (when a constraint is removed). It can equally well be stated as the minimum

of U at fixed S. After the Legendre transformation from U to F, is there an equivalent

principle that determines equilibrium? If so, what is it?
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6 Thermodynamics and Statistical Mechanics Review

It is that when a constraint is removed in a system in equilibrium with a reservoir at

fixed T , it will find a new equilibrium state that minimizes F.

Let us try this out for a simple case. Imagine the same box of gas as before with an

immovable piston that divides the volume into V1 = αV and V2 = (1 −α)V , but in contact

with a reservoir at T . The two parts of the box are at the same temperature by virtue of

being in contact with the reservoir, but at possibly different pressures. If we now remove

the constraint, the pin holding the piston in place, where will the piston come to rest? The

claim above is that the piston will come to rest at a position where the free energy F(α) is

maximized. Let us repeat the arguments leading to Eq. (1.21) with S replaced by F:

0 = dF = dF1 + dF2 (1.39)

=
∂F1

∂V1
dV1 +

∂F2

∂V2
dV2 (1.40)

0 =
(

−P1 + P2

T

)

dα (1.41)

P1 = P2, (1.42)

which is the correct answer.

This completes our review of thermodynamics. We now turn to statistical mechanics.

1.5 The Microcanonical Distribution

Statistical mechanics provides the rational, microscopic foundations of thermodynamics in

terms of the underlying atoms (and molecules). There are many equivalent formulations,

depending on what is held fixed: the energy, the temperature, the number of particles, and

so forth.

Consider an isolated system in equilibrium. It can be in any one of its possible

microstates – states in which it is described in maximum possible detail. In the classical

case this would be done by specifying the coordinate x and momentum p of every particle

in it, while in the quantum case it would be the energy eigenstate of the entire system

(energy being the only conserved quantity).

In statistical mechanics one abandons a microscopic description in favor of a statistical

one, being content to give the probabilities for measuring various values of macroscopic

quantities like pressure. One usually computes the average, and sometimes the fluctuations

around the average.

Consider a system that can be in one of many microstates. Let the state labeled by an

index i occur with probability pi, and in this state an observable O has a value O(i). The

average of O is

〈O〉 =
∑

i

piO(i). (1.43)
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1.5 The Microcanonical Distribution 7

One measure of fluctuations is the mean-squared deviation:

(�O)2 =
∑

i

(O(i)−〈O〉)2pi = 〈O2〉− 〈O〉2. (1.44)

To proceed, we need pi, the probability that the system will be found in a particular

microstate i. This is given by the fundamental postulate of statistical mechanics: A

macroscopic isolated system in thermal equilibrium is equally likely to be found in any

of its accessible microstates. This “equal weight” probability distribution is called the

microcanonical distribution.

A central result due to Boltzmann identifies the entropy of the isolated system to be

S = k ln�, (1.45)

where � is the number of different microscopic states or microstates of the system

compatible with its known macroscopic properties, such as its energy, volume, and so on.

Boltzmann’s constant k = 1.38×10−23 J K−1 is related to the macroscopically defined gas

constant R, which enters

PV = nRT , (1.46)

and Avogadro’s number NA ≃ 6 × 1023 as follows:

R = NAk. (1.47)

I will illustrate Eq. (1.45) by applying it to an ideal gas of non-interacting atoms, treated

classically. I will compute

S(U,V ,N) = k ln�(U,V ,N), (1.48)

where �(U,V ,N) is the number of states in which every atomic coordinate of the N atoms

lies inside the box of volume V and the momenta are such that the sum of the individual

kinetic energies adds up to U.

For pedagogical reasons the complete dependence of S on N will not be computed here.

We will find, however, that as long as N is fixed, the partial derivatives of S with respect

to U and V can be evaluated with no error, and these will confirm beyond any doubt that

Boltzmann’s S indeed corresponds to the one in thermodynamics, by reproducing PV =
NkT and U = 3

2
NkT .

First, consider the spatial coordinates. Because each atom is point-like in our

description, its position is a point. If we equate the number of possible positions to the

number of points inside the volume V , the answer will be infinite, no matter what V is!

So what one does is divide the box mentally into tiny cells of volume a3, where a is some

tiny number determined by our desired accuracy in specifying atomic positions in practice.

Let us say we choose a = 10−6 m. In a volume V , there will be V/a3 cells indexed by

i = 1,2, . . . ,V/a3. We label the atoms A, B, . . . , and say in which cell each one lies. If A is in

cell i = 20 and B in cell i = 98000, etc., that’s one microscopic arrangement or microstate.
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8 Thermodynamics and Statistical Mechanics Review

We can assign them to other cells, and if we permute them, say with A → B → C → D → A,

that is counted as another arrangement (except when two exchanged atoms are in the same

cell). Thus, when the gas is restricted to volume V , and each of the N atoms has V/a3

possible cell locations, the number of positional configurations is

�V =
[

V

a3

]N

, (1.49)

and the entropy associated with all possible positions is

SV = k ln

[

V

a3

]N

= Nk ln
V

a3
. (1.50)

Notice that SV depends on the cell size a. If we change a, we will change SV by a

constant, because of the lna3 term. This is unavoidable until quantum mechanics comes in

to specify a unique cell size. However, changes in SV , which alone are defined in classical

statistical mechanics, will be unaffected by the varying a.

But Eq. (1.50) is incomplete. The state of the atom is not given by just its location,

but also its momentum p. Thus, �V above should be multiplied by a factor �p(U) that

counts the number of momentum states open to the gas at a given value of U. Again, one

divides the possible atomic momenta into cells of some size b3. Whereas the atoms could

occupy any spatial cell in the box independently of the others, now they can only assume

momentum configurations in which the total kinetic energy of the gas adds up to a given

fixed U. Thus, the formula to use is

� =
[

V

a3

]N

×�p(U), (1.51)

S(U,V) = Nk ln
V

a3
+ k ln�p(U). (1.52)

Now for the computation of �p(U). The energy of an ideal gas is entirely kinetic and

independent of the particle positions. The internal energy is (for the allowed configuration

with every atom inside the box)

U =
N

∑

i=1

1

2
m|vi|2 =

N
∑

i=1

|pi|2

2m
=

N
∑

i=1

p2
ix + p2

iy + p2
iz

2m
, (1.53)

where p = mv is the momentum.

Let us now form a vector P with 3N components,

P = (p1x,p1y,p1z,p2x, . . . ,pNz), (1.54)

which is simply the collection of the 3 components of the N momentum vectors pi. If we

renumber the components of P with an index j = 1, . . . ,3N,

P = (P1,P2, . . . ,P3N), (1.55)
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1.5 The Microcanonical Distribution 9

that is to say,

P1 = p1x,P2 = p1y,P3 = p1z,P4 = p2x, . . . ,P3N = pNz, (1.56)

we may write

U =
3N
∑

j=1

P2
j

2m
. (1.57)

Regardless of their position, the atoms can have any momentum as long as the

components satisfy Eq. (1.57). So we must see how many possible momenta exist obeying

this condition. The condition may be rewritten as

3N
∑

j=1

P2
j = 2mU. (1.58)

This is the equation for a hypersphere of radius R =
√

2mU in 3N dimensions. By

dimensional analysis, a sphere of radius R in d dimensions has an area that goes as Rd−1.

In our problem, R=
[√

2mU
]

and d = 3N − 1 ≃ 3N. If we divide the individual momenta

into cells of size b3, which, like a3, is small but arbitrary, the total number of states allowed

to the gas behaves as

�(V ,U) = VNU3N/2f (m,N,a,b), (1.59)

where we have focused on the dependence on U and V and lumped the rest of the

dependence on m, a, b, and N in the unknown function f (m,N,a,b). We do not need f

because we just want to take

S = k ln� = k

[

N lnV +
3N

2
lnU

]

+ k ln f (m,N,a,b) (1.60)

and find its V and U partial derivatives, to which f makes no contribution. These derivatives

are

∂S

∂V

∣

∣

∣

∣

U

=
kN

V
, (1.61)

∂S

∂U

∣

∣

∣

∣

V

=
3kN

2U
. (1.62)

If S = k ln� were indeed the S of thermodynamics, it should obey

∂S

∂V

∣

∣

∣

∣

U

=
P

T
, (1.63)

∂S

∂U

∣

∣

∣

∣

V

=
1

T
. (1.64)

www.cambridge.org/9780521592109
www.cambridge.org


Cambridge University Press
978-0-521-59210-9 — Quantum Field Theory and Condensed Matter
Ramamurti Shankar 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Thermodynamics and Statistical Mechanics Review

We will see that assuming this indeed gives us the correct ideal gas equation:

kN

V
=

P

T
which is just PV = NkT; (1.65)

3kN

2U
=

1

T
which is just U = 3

2
NkT . (1.66)

Thus we are able derive these equations of state of the ideal gas from the Boltzmann

definition of entropy. Going forward, remember that the (inverse) temperature is the

derivative of Boltzmann’s entropy with respect to energy, exactly as in thermodynamics:

∂S

∂U

∣

∣

∣

∣

V

=
1

T
. (1.67)

Dividing both sides by k, we obtain another important variable, β:

β =
∂ ln�(U)

∂U

∣

∣

∣

∣

V

=
1

kT
. (1.68)

With more work we could get the full N-dependence of � as well. It has interesting

consequences, but I will not go there, leaving it to you to pursue the topic on your own.

While

S = k ln� (1.69)

is valid for any thermodynamic system, computing � is generally impossible except for

some idealized models, like the ideal gas.

Finally, consider two systems that are independent. Then

� = �1 ×�2, (1.70)

i.e., the number of options open to the two systems is the product of the numbers open to

each. This ensures that the total entropy, S, is additive:

S = S1 + S2. (1.71)

1.6 Gibbs’s Approach: The Canonical Distribution

In contrast to Boltzmann, who gave a statistical description of isolated systems with a

definite energy U, Gibbs wanted to describe systems at a definite temperature by virtue of

being in thermal equilibrium with a heat reservoir at a fixed T . For example, the system

could be a gas, confined to a heat-conducting box, placed inside a gigantic oven at that

T . By definition, the temperature of the reservoir remains fixed no matter what the system

does.

What is the probability pi that the system will be in microstate i? We do not need a new

postulate for this. The system and reservoir may exchange heat but the two of them are

isolated from everything else and have a total conserved energy U0. So, together, they obey
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