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5

The Postulates of Quantum Mechanics

In this chapter the basic concepts of quantum theory are formulated via a self-consistent
set of six postulates. These six postulates deal with the following: operator images of
physical observables; properties of state vectors and wave functions; the connection with
experimental measurements; coordinate-space forms of those operators having classical
analogs; the primary dynamical equation of quantum mechanics; and the completeness of
the eigenvectors of observables. The postulates are the framework on which the edifice of
quantum mechanics is constructed. A separate section is devoted to the statement of each
postulate and to a few examples chosen to illustrate or apply it. A comprehensive set of
applications is presented in Chapters 6 and 7, where various 1-D systems are used as the
vehicles for illustrating the postulates. The basic theory of this chapter is extended and
developed in Chapters 8 and 9. Since probability is a key interpretational concept, a brief
introduction to this topic is given in an appendix.

We emphasize that our formulation of quantum theory (in this chapter and throughout
this book) is restricted to the case of pure states. This is not a major restriction. It means
that, when we consider ensembles of individual quantum systems (e.g., single particles,
atoms, nuclei, etc.), all of the systems in the ensemble are assumed to be in the same
quantum state, not necessarily an eigenstate of a quantal operator. Ensembles for which
this assumption does not hold are described by a density operator or density matrix rather
than by a pure state; treatments of such cases can be found in references cited later.

5.1. Observables

The first postulate deals with the mathematical imaging of observables by Hermitian
operators.

POSTULATE I.

To every physical observable, e.g., position, energy, linear and angular momentum,
intrinsic spin, there corresponds a Hermitian linear operator (also denoted an
observable) acting on vectors in a separable Hilbert space H. Let A be such an
observable for some physical system. Its eigenvalues a, and eigenvectors |a,) play a
special role: the only values of A which can be obtained in an ideal measurement are
its eigenvalues {a,}, while |a,) is the quantum state of the system when the value of
the observable has been measured to be a,,.

129



130 The postulates of quantum mechanics

Table 5.1 Physical observables and the mathematical
symbols corresponding to their Hilbert-space

operators
Observable Hilbert-space symbol
Energy A H .
Position Oy (in 1-D) or Q (in 3-D)
Linear Momentum P, (in 1-D) orP (in 3-D)
(Orbital) Angular Momentum L=QXP
Intrinsic Spin S
Kinetic Energy?® K=P-P/2m)

# Kinetic energy is not an observable classically, but,
because it is an operator in quantum mechanics, it is
included in this list in order to display its connection to P.

This first postulate states that the possible values one can measure for an observable 4
are the eigenvalues of the equation

/i|an> :anlan>' (5.1

Furthermore, if a, is the measured value of the observable, then |a,) is the state of that
system following the measurement which has yielded a,. This statement is made under
the assumption that only the quantum number a, is needed to specify the state. We shall
see in Chapter 9 how this part of Postulate I is modified when more than one quantum
number is needed to specify the state.

Table 5.1 lists both the observables of classical mechanics that have quantal counter-
parts and the symbols of the Hilbert-space operators that are their mathematical images.
Operators such as spin, for which there is no classical equivalent, will be introduced in
later chapters. As noted previously, operators are represented by capital letters overlaid
with a carat: "; their eigenvalues are generally indicated by the same symbols in lower
case, one exception being the energy, the operator for which is A whereas the eigenvalue
is E, possibly enhanced by sub- or superscripts.

Examples of the operators that image observables and their corresponding eigenvalues
and eigenvectors have been encountered in the preceding chapters. The 1-D position
operator Qx and its eigenvalue equation (4.47) were introduced in Chapter 4; this led
directly to the Dirac delta function, the coordinate representation, and the concept of
locality. In Chapter 3 the Hamiltonian operator A and the coordinate-space form of the
time-independent Schrédinger equation H () Yu(x) = E,¥,(x) for the particle in a 1-D
box were explored in detail. The box energy E, = n*h?n?/(2mL*) and normalized
eigenfunction ,(x) = (2/ L)'/2 sin (nrx/ L) correspond, respectively, to a, and to the
coordinate-space form of |a,) in Eq. (5.1).

Measurement (detection) implies that the system undergoes an interaction of some
kind. Until the system is altered by a subsequent interaction (which may occur as part of
a subsequent measurement), it remains in the state |a,) when a,, is the measured value of
the observable A.

This forcing of the system into state |a,) via measurement is, however, not always
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possible. It will occur only if the detection (or production) apparatus is capable of
sufficient discrimination that it selects just the eigenvalue a,. For example, a, will be
selected if the resolution of the apparatus is finer (smaller) than the separation between
a, and a,s,. Suppose that we have N systems for which 4 is to be measured. If the
resolution is fine enough, then the value of A for every one of the N systems can be a,,
and in this case each system will be in state |a,).

Let us next assume that the resolution of the apparatus remains fine enough to isolate
each of the eigenvalues, but that the experiment measuring A allows each of the N
systems to end up with any one of the three values a,_1, a,, and a,; in such a way that
for each system the state |a) is

n+1

) = > wilay). (5.2)

Jj=n—1

In order for |a) of (5.2) to be a pure state, both the magnitude and the phase (or relative
phase) of each w; must be known. An example of (5.2) is Eq. (3.94) with the values
a =ay = % that led to Eq. (3.99). We emphasize that, whenever a superposition like
(5.2) is used to represent a pure state, each w; is assumed to be known.

Finally, suppose that the apparatus cannot or is not set to discriminate between, say, a,
and a,+; (but can distinguish the other g; from them). In this case, the relative
populations of the three eigenvalues among the N systems might be known, but not the
relative phase relations between the states |a,) and |a,+). Without knowledge of these
phase relations, i.e., if |w;| but not arg w; is known, then (5.2) cannot be used to describe
each system. The ensemble is then in a mixed state and the appropriate tool for describing
this situation is the density operator or density matrix. Discussions of mixed states can be
found, e.g., in Baym (1976), Cohen-Tannoudji, Diu, and Lalo€ (1977), Gottfried (1966),
and Sakurai (1994). In Section 6.1, as an application of the 1-D quantum-box eigenvalue
problem, we discuss a specific instance wherein a Gedanken measurement leads to non-
fully-determined w;’s, and we also indicate how full knowledge of the w;’s can be
attained.

Many observables, of course, can be measured in such a way as to yield a unique a,
and |a,). However, in the case of a continuous spectrum, a linear superposition analogous
to (5.2) always occurs. The reason is simple. Let B be the observable and {b} its
continuous set of eigenvalues; the eigenvalue equation is

B|b) = b|b). (5.3)

In order to measure a single — or “sharp” — value b, itself a point in a continuum, the
apparatus must be capable of isolating a point, i.e., of distinguishing a value having no
extent or “width.” However, all detectors are of finite size and will therefore admit not a
single point-value b but a range of them. Corresponding to this measured range of b
values will be a linear superposition of the states |b). Suppose that the values of b lie in
the closed interval [b;, b,]. Then in this case the pure quantum state |5) will be given by

by
B) = J dbw(b)|b), (5.4)

by

where w(b) is a known weight function.
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Equation (5.4) may appear to be a trivial extension of (5.2). Its consequences, rather
than being trivial, are of the utmost importance. The reason is that (5.4) converts non-
normalizable, continuum states |b) into normalizable ones. That is, the relation (b'|b) =
O(b — b") — illustrated by the example of the states |x) of the 1-D position operator O
discussed in Section 4.4, where delta-function normalization was introduced — means
that |b) is not a Hilbert space vector: |b) ¢ H. The effect of the linear superposition (5.4),
on the other hand, will be to produce a normalizable state |) as long as the following
condition holds:

by
L |w(b)|* db = finite. (5.5)
1

Even when b, = —b; = 0o, the weight functions occurring in physics obey (5.5).
The end result is that, via (5.4), |8) € H, in contrast to |b). Thus, whereas a non-
normalizable |b) cannot be a quantum state (even though b is a value of the observable
B), a linear superposition of the |b) can be such a state. Despite this, one often works
directly with the non-normalizable or improper states |b), particularly in the case of
collisions, as described in Chapters 7 and 15.

5.2. States, wave functions, and probabilities

The state of a quantum system is a vector in H. As such, it is a highly abstract quantity.
Its realization as a wave function makes it easier to work with, and its interpretation in
terms of probabilities gives it meaning. These aspects are explored in the present section
via application of the second postulate to a system consisting of a single particle. The
extension to multi-particle systems is straightforward and is discussed later in this book.

Quantal probabilities are the absolute squares of various scalar products, themselves
often referred to as amplitudes. Two of these scalar products are so important that they
are given the special name of wave functions. Wave functions are the scalar product of a
Hilbert-space state with the eigenstates of the position operator Q or the momentum
operator P and, as such, define the position or momentum representation of the state, or,
equivalently, the position (or coordinate) and momentum wave functions (recall Section
4.4). The relevant eigenstates and eigenvalues obey

Qlr) =r|r) (5.6)
and

P|p) = p|p), (5.7)

where r(p) is the position (momentum) of the particle. Since r and p are continuous, |r)
and |p) are each normalized to a delta function:

(r'lr) =o@" —r) (5.8)
and
(p’lp) = o(p" — p)- (5.9)

To obtain the wave functions, and to formulate Postulate II, we introduce the generic
single-particle state, denoted |a). It is a Hilbert-space state, which is assumed to be
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normalized. The coordinate-space representative of |a) is the scalar product (r|a), which
we shall denote by the symbol v, (r):

Yu(r) = (r|a) (5.10)

is the coordinate-space wave function. Similarly, the momentum-space representative of
|at) is the scalar product (p|a), for which we use the special symbol ¢, (p):

Pa(p) = (pla) (5.11)

is the momentum-space wave function.

These definitions deliberately avoid the usage a(r) and a(p) because the functions
labeled by v, and ¢, are different, while calculus tells us that a(r) and a(p) are the same
functions of two different variables. That is, if s is an arbitrary vector variable,

Ya(8) # @uls),

a result that should be no surprise since (r| and (p| are eigenstates of two different
operators. The distinction is essential.

POSTULATE II.

The state of a quantum system is a (normalizable) vector in . It is labeled by the
eigenvalues of all operators for which it is a simultaneous eigenstate, and it may be a
linear combination of eigenvectors of quantal operators. Scalar products of a state
with other vectors (suitably normalized), in H or not, yield quantal probability
amplitudes, the absolute square of each being a probability or a probability density,
as follows.

(a) For a quantum system consisting of a single particle, the position- or
coordinate-space wave function 1, (r) = (r|a) is the probability amplitude that
the particle will be at position r. The probability P,(r) for finding the particle
between r and r + dr is

Pu(r) = |(r|a) Pd®r = |[pu(r)*d*r; (5.12)

hence, pu(r) = |y (r)]* is a standard probability density.! Corresponding
remarks hold for the momentum-space wave function ¢, (p). In the case of a
particle in 1-D, say x, the analogous quantities are ,(x) = (x|a),
Po(x) = [9u(x)|? dx, etc.

(b) If the system is in state |a), then the probability amplitude Cg, for finding it in
any other (normalized) quantal state |3) is

Cpa = (Bla); (5.13)
the corresponding (discrete) probability Pg,, is
Ppo = |(Bla) . (5.14)

Neither |3) nor |a) need be an eigenstate of a quantal operator.

! See Appendix A for a brief treatment of probability theory. The assumption that |&) is normalized to unity,
i.e., that (a|a) = 1, means that the total probability is unity: [ |ye|* d®r = 1.
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(c) Inthe event that a quantal system can evolve to a state |a, #) at time ¢ by more
than one path, as, for example, in the case of the two-slit experiment with
electrons, then, as long as one employs no device that can determine which
path was actually followed, |a, f) is a linear combination of states |a;, f),
where j specifies the particular path:?

o, 1) =Y wila, 1); (5.15)
J

the constant w; is a known weight. The amplitude Cg.(f) = (B|a, t) now
becomes a sum of amplitudes Cg, (#) and the probability Pg,(7) contains
interference terms:

2
Ppa(t) = [{Bla, 1)|* =

> wilBla. 1)
J

2
. (5.16)

- ‘ Z W/'Cﬂ‘l,f(t)
J

On the other hand, the sum in (5.15) collapses to a single term® if a
determination of the path k that is actually followed is made, in which case
W; — Oj.

This postulate is a statement of the probabilistic interpretation of quantum mechanics
and each of its three portions has already been exemplified in Section 3.3 via the quantal-
box eigenvalue problem. Postion-space probability densities p,(x) (Eq. (3.92)) have been
plotted in Fig. 3.8. Parts (b) and (c) of Postulate II are illustrated for the box problem by
the superposition wave function (3.94). For instance, corresponding to Cg, of (5.13) are
either of the coefficients a, or a3 in Eq. (3.94): the amplitudes are ¢; = (¥;|¥), j =2 or
3, and the probability that W; is present in W is |@;|*. Furthermore, as noted in the
paragraph below Eq. (3.97), |aj|2 is also the probability that an energy measurement will
yield E;. Finally, since W of (3.94) is a superposition — a coordinate-space version of Eq.
(5.15) — the interference noted in connection with (5.16) shows up in the probability
density p(x, ¢) of (3.98) and (3.99).

Postulate II is a cornerstone of the theory, from which follows both the uncertainty
principle of Heisenberg and a limitation on the kinds of questions it is meaningful to ask
in a quantum context. It does nof mean, however, that quantum theory is imprecise — far
from it! Consider, e.g., the deuteron, a stable nucleus formed from a neutron (n) and a
proton (p). Although one cannot specify the distance between n and p in the ground state
of the deuteron — quantum mechanics yields only the probabilities of various separations
— it is possible using quantum theory to calculate the average separation, the binding
energy, the total angular-momentum eigenvalue, and the values of the magnetic moment

“Path” as used in this context need not refer to a physical path in coordinate space, although this is the typical
interpretation. Thus, some “path” which produced the linear superposition (3.94) of box eigenfunctions was
followed.

Equation (5.15) represents |a, ) as a “wave packet,” and this collapse or “reduction” of the wave packet has
long been a source of controversy and debate. The interested reader can find discussions in Wheeler and
Zurek (1983), Bell (1988), Cini and Levy-Leblond (1990), and Peierls (1991). See also Cushing (1994).

w
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and of the quadrupole moment, all to high accuracy. Thus, the inability to know the
values of some quantities that in classical physics are known to arbitrary accuracy does
not prevent us from using quantum theory to determine many observables with precision.
Furthermore, the agreement between quantum theory and experiment is usually so good
that discrepancies are attributed not to a failure of quantum theory itself but typically to
neglect of dynamical effects that were deemed for some reason to be negligible — and
occasionally to errors in measurement.

The ability to calculate certain observables with great accuracy coupled with the
inability to know precisely the values of other observables, e.g., exactly where the
electron in an H-atom is located relative to the proton, means that one can draw no
detailed picture to represent the spatial configuration of an atom or a nucleus. There is no
reliable answer to the question “What does a particular microscopic system really look
like?”

This inability to provide a picture or likeness of microscopic “reality” is often an
unsettling feature when quantum theory is first encountered. It can be discomforting to
realize that one must give up the pictures and/or models that one’s eyes and classical
physics supply for macroscopic systems. This inability to state in detail (to “describe”)
what is “out there” when one is discussing a microscopic system, for example the H-
atom, naturally leads a newcomer to quantum theory to ask what the phrase “a quantum
system is described by its state vector” is supposed to mean.

The answer is typically quantal, in that the ordinary meanings of “describe” and of
“description” are altered: a quantum description of a system is composed of quantum
numbers, probability amplitudes, expectation values of relevant operators, rates of
transition to various states, and possibly other quantum features, all derivable from the
state vector of the system. A pictorial representation is often used as well, although it is
never to be interpreted as “what is actually out there.” It is based on the probability of
finding the system in some spatial volume, or, in the case of a single particle, finding it at
a particular point. In the case of bound states, these probability distributions are usually
localized in such a way that the vast majority of the distribution is confined to a relatively
small spatial volume. (Recall the distributions for a particle in a box, Figs. 3.8 and 3.9.)
For an atom, this results in the electrons being localized as a “charge cloud,” as we
indicate shortly in the case of the ground state of hydrogen. In general, these charge-
cloud distributions for the H-atom provide a basis for understanding the structures of
atoms and many molecules; included in the latter case are angles and lengths of chemical
bonds (which are measurable quantities). Such visualizations are helpful in gaining a
“feel” for the results of often complex computations, i.e., an understanding of the
system, and we shall thus “pictorialize” the calculations arising in later chapters of this
book. It is in these pictorializations and the construction of quantal models for more
complex systems, as opposed to solving the equations, that the physics is often
apprehended.

To illustrate the foregoing comments, we consider a realistic example (as opposed to
the quantal box): the ground state of the H-atom. The proton, here assumed infinitely
massive, is taken as the origin of the coordinate system, so that H becomes a one-particle
(i.e., a one-electron) system. It is further assumed that effects due to the intrinsic spin of
the electron (discussed in Chapter 13) and to special relativity may be ignored. On
ignoring the latter two effects, the quantal energy spectrum of H becomes identical to
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that of the simple Bohr theory, viz., E, = —k.e?/(2agn*). The associated eigenstates are
labeled by three quantum numbers, one of which is n. The other two quantum numbers
are denoted ¢ and my (see Chapter 11 for details); for fixed », the allowed values of £ and
myare £=0,1,2,...,n—1 and, for each {, my=—¢, —0+1, —0+2, ..., 0—1, L
Hence, for this model of hydrogen, the label a in the generic state |a) is replaced by the
three integers némy:

|a) — |nlmy), non-relativistic hydrogen atom. (5.17)
Correspondingly, the coordinate-space wave function becomes
Ynem, (Y) = (r|n€mg>, (5.18)

where r is the position of the electron relative to the proton.
By assumption, |nfm,) is normalized, i.e.,

(nlmg|nlmy) = 1. (5.19)
This implies that

Jfl3r|1,vnzrm(r)l2 =1, (5.20)
a relation that follows from insertion into (5.19) of
I= Jd% |r)(r], (5.21)

one of several possible resolutions of the identity. Equation (5.20) states that

Pnlmy, (I’) = |1/)nlmg (l')|2 (522)

is a normalized probability distribution.

Before specializing to the ground state, we note from Appendix A that normalization
of Yyem,(r) means that the probability P, (V) of finding the electron somewhere in a
volume V¥ centered on the proton when its state is |nfm,) is

Pnlnu(V) = J d3r |1/Jn('mg(r)|2~ (523)
14

Furthermore, if V' is a sphere of radius g, then the probability P, (» < a) that the
electron’s radial coordinate is less than or equal to a is

a

Pngmf(l” = a) = J

| A im0, 9 (5.24)
0 sphere

where r, 0, and ¢ are the polar coordinates of r and dQ2 = sin 6 d6 d¢ is the differential
of solid angle. This expression for P, (r < a) is based on an important principle: if the
probability density depends on several variables and one (or more) of these is not
specified (or measured), then all allowed values of each such variable must be summed
on or integrated over in order to obtain the relevant probability. This rule means that, if
an observable is not measured, then the probability associated with it will be unity since
one of its values must occur. In the present case, any angles 6 and ¢ may occur but none
is specified, so we sum (integrate) over all of them to get the angle-independent result
Pn[m[(r = a).
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Let us now consider the ground state, for which E, takes on its smallest value. This
occurs for n = 1, which means that £ = 0 = m,. Thus the ground state is [100). It is
shown in Chapter 11 that the coordinate-space wave function (r6¢|100) is

1 \1/2
wloo<re¢):(—3> el (5.25)
way

a result independent of the polar angles. The Bohr radius ay is equal to %% /(mck.e?) (Eq.
(1.22)), and the factor [1/ (nag)]l/ 2 ensures normalization.

Thus, the ground-state wave function is normalized and spherically symmetric (no 6 or
¢ dependence). It gives rise to a probability density proportional to exp(—2r/ay), whose
maximum is at » = 0 and that falls to 1/e of its » = 0 value at r = a/2 = 0.25 A, as
shown in Fig. 5.1. Since the factor 72 occurs in the volume integral, one often introduces
the radial probability amplitude ri,;m, (), from which one obtains the radial probability
distribution p™d (r), which in the case of the ground state is

nlmy
Pl () = [rproo(r). (5.26)

Figure 5.2 shows the radial probability density |ri100(7)[*> plotted as a function of 7. In
contrast to [1100(7)[?, it is zero at » = 0 and its maximum 7y, is larger than zero. An

¥ 1000
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Fig. 5.1 The probability density |1100(r)|? for the ground state of the H-atom.

P2l 0(r)?

I I I I
a 3ay

Fig. 5.2 The radial probability distribution pq(r) = 72[1p100(r)|* for the ground state
of the H-atom.
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easy calculation leads to rm.x = ap, the radius of the lowest orbit in Bohr’s model of
hydrogen. Of course, this is not the distance of the electron from the proton, but only the
radius at which p'd (r) is maximal. As shown in Fig. 5.2, the radial probability density
72 |[y100(r)[? is concentrated in a spherical shell lying between r 22 0.5ay and r 2 3aj.
This shell is the electronic charge cloud noted earlier; it underlies the picture in which
the electron in the H-atom is localized in the vicinity of ay even though it is not at the
radius ay. Indeed, a¢ is not even equal to the average or the expected value of r: that
quantity, which we denote 7, is larger than ay; its value will later be shown to be
7 = 3a0/2. This is a further argument against accepting a planetary-orbit picture for the
structure of hydrogen (as noted before, the Bohr model is simply not valid). Nevertheless,
the values r, of the nth Bohr orbits play much the same role for n > 1 as that in the case
n = 1: when n> 1, then for those states |n, £ = n — 1, my = 0), the radial probability
distribution |r(rO¢|n, £ = n —1, my = 0)]> has its maximum at rp. = 7, = n’ag.
Furthermore, for such states the average value 7 will also be greater than r,, and pffm[(r)
will continue to be concentrated in a small shell, though not necessarily a spherical one.
These points will be established in Chapter 11.

Other probability amplitudes and densities will be evaluated in subsequent sections of
this book. In the case of bound states, the probability distributions are usually localized
in such a way that the vast majority of the distribution is confined to a relatively small
spatial volume. For an atom, this results in the electrons being characterized as a charge
cloud. In general, the charge-cloud distributions for the H-atom provide the basis for
understanding the structure of heavier atoms and many molecules. Aspects of this are
discussed in Chapter 18.

5.3. Measurements/connection with experimental data

Postulates I and II have dealt with some theoretical aspects of observables: their abstract
operator images, states of quantum systems as the eigenvectors of quantal operators, and
the probabilistic interpretation of states. Postulate III is concerned with experimental
aspects of observables: their measurement and the relation of measured values to
theoretical predictions. Ideal measurements of eigenvalues play but a limited role here,
since measurements are generally not ideal, while the states of quantum systems are not
always eigenvectors of the operator whose eigenvalues one might wish to measure.
Furthermore, we may wish to compare a measurement with a theoretical prediction, often
arising from an approximate calculation. How to connect theory and experiment in these
more general situations is the subject of the present section.

Measurements yield numbers. The implication of this seemingly trivial statement is
that the final results of a theoretical analysis on some quantum system should include
predictions of the numbers that have been or will be obtained in an experiment. These
numbers can include energies, lifetimes of decaying states, electric and magnetic
moments, etc. On the theoretical side, every such number involves the matrix element of
an operator. The simplest example of this is the eigenvalue a, of an observable A.
Starting with Eq. (5.1),

/i|an> = ayla,),

it follows from projecting both sides of this equation onto (a,| that
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a, = (an|/i|an>.

Thus, a, is a diagonal matrix element of the operator A.

More generally, one can always associate with every experimental measurement the
matrix element — not necessarily a diagonal one — of a quantal operator. That is, quantal
predictions will involve theoretical quantities of the form Bg, = (B|B|a), where |a) and
\B) are quantal states and B is a quantal operator, which may but need not be an
observable. Some predictions will be proportional to Bg,; others may involve |B/5a|2.

In order to relate theoretical predictions to experimental measurements in a relatively
simple way, our formulation of Postulate IIT will be in terms of measurements of an
observable 4 when the system is in quantal state |a). This assumption is not too
restrictive, since it allows us to deal with a variety of theoretical and experimental
possibilities. Furthermore, the basic concepts are readily extended to cases in which
measurements involve off-diagonal matrix elements and/or operators that are not
observables, as in the cases of 3-D scattering and electromagnetic radiation. We consider
experimental aspects first.

Two ingredients (among several) are essential to achieving accurate measurements.
First, the apparatus must have sufficient resolution to discriminate between adjacent
values of the observable.* This ingredient, essential to an ideal measurement, is discussed
in Section 5.1. Second, enough counts (observations) must be made that fluctuations away
from the desired value are small. That is, one must have good statistics. Our concern here
is only with the latter aspect. To achieve it means that N, the number of times the
observable is measured, must be large. In the ideal situation N — oo, just as in the case
of the a priori determination of the probability of achieving a particular outcome for
some event (see Appendix A). This analogy to probability holds in practice as well, since
neither in experimental measurements nor in a posteriori determinations of the prob-
ability of the occurrence of a particular outcome is an infinite number of observations
made.

We now assume good statistics, i.e., N large enough that /N < N. If the N measure-
ments of the observable 4 yield {a(-f)}j]yzl, then the “value” of the observable extracted

from these measurements is the average (4),, defined as
~ N -
(A)a = P, (5.27a)
=

where the subscript a on the LHS of (5.27a) signifies that all N of the systems measured
were each in the state |a) when the experiment was performed, while P; is the probability
that the value a") will occur. It is often the case that these probabilities are a priori equal,
ie., P, = N~',V j, in which case

. 1L .
_ 0
(A)q = N;:l a. (5.27b)

4 By “apparatus” is meant both the devices which generate the probe and those which detect the final systems,
including photons. Note also that control of resolution is meant to encompass items such as systematic errors,
finite-size effects, various biases, etc.
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The relation of the measured average value of (5.27) to that predicted theoretically is
given by Postulate II1.

POSTULATE III.

Assume that the physical system for which the observable A is to be measured is
initially prepared in quantum state |a). Then the theoretical prediction for the
average or expected value (A), of the observable A when the system is in state |c) is
given by the matrix element (a|A|a), i.c.,

(d)q = (ald|a). (5.28)

The relation of this quantity to the values a") observed in experiments is
~ ~ N -
(aldla) = () = > P;a?, (5.29)
j=1
where an “in-principle” limit of N — oo is implied but not observed in practice.

Note the difference between Postulates I and III: the former states that {a, } comprises
the entire set of values that an observable A can have (for simplicity here, all a, are
assumed discrete), whereas Postulate III, via Eq. (5.29), relates the average value
obtained in a measurement of 4 to that predicted by theory. Aspects of this are illustrated
in the following examples.

Eigenstates
Assume that at least a portion of the spectrum of A is discrete, i.e.,
A|am>:am|am>, m=1,2,....

Let the system on which 4 is to be measured be prepared in state |a,), i.e., |a) = |a,).
Then (a|A4|a) = a, and (5.29) becomes

N
ay=Y_ Pja". (5.30)
j=1

One expects not only that P; = 1/N, but also that the results of very accurate measure-
ments will yield a¥) = a, + 84, where 8a'” contains the effects of experimental error,
with 8a") /a, < 1.

As a specific example, let us consider a particle in the 1-D quantal box: it is not a
realistic physical system but displays many of the characteristics of one. Let |n, ¢) be the
Hilbert-space vector whose coordinate-space representation is W ,(x, ¢) of Eq. (3.91). If
the particle’s state is |n, f), then the theoretical value of the energy for that state is
E, = (n, t|H|n, 1), where H is the relevant Hamiltonian. Were it possible to have N
particles in the box, all in state |n, ), and also to measure the average energy of such a
system, then a, on the LHS of (5.30) would be replaced by E,, while the a” on the RHS
would be replaced by the measured values of the energy, EV).
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Next, suppose that the state in which the systems are prepared is a linear combination
of eigenstates of 4, say

@) =" Culan), (5.31)
n=1

with C, = (an|a). If there are N systems for which (5.31) is the state, it follows from
Postulate II that, of the N systems, N, = |C,|> N are in eigenstate |a,), while Postulate
III leads to the following theoretical prediction for (A4),:

no

<1‘I>a = Z |Cn|2an

n=1
1 &

==Y Naay (5.32)
N n=1

Equation (5.32) is itself a probabilistically weighted sum. By extending this type of
analysis to “preparation” of final states, we shall show below how |C,| can be extracted
— to within experimental error — from certain measurements.

The particle in a quantal box again provides an illustration of the foregoing.
Corresponding to |a) of (5.31) is the superposition wave function (3.94), so that the C,
of (5.31) take on the values C; = C4 =C; = --- =0, C; = a, and C3 = a3. Let us
assume that an energy measurement were to be made, with all N particles being in the
state |a) of (5.31). Corresponding to (A), is (H), = (a|H|a); a straightforward cal-
culation yields (H)q = E = |ay|*E; + |a3|*E3. Choosing a; = a3 = \/& we get E =
(E2 + E3)/2 = 137%h% /(4mL?).

Finally, let us suppose that the prepared state |a) of the system is |b,,), an eigenstate of
a second observable B that does not commute with A, whose spectrum is assumed
discrete. Since [/i, f?] #0, |b,) is not an eigenstate of A and therefore the value
<bm|/i|b,,,> now predicted for </I>a can no longer be expressed as a finite sum of a,’s, as
in Eq. (5.32). Indeed, using

1
2°

1= |ay)(a,l (5.33)
n=1

as a resolution of the identity (see Postulate VI) and employing (5.33) in (b,|A|b,), we
find that

</I>a = Z |<bm|a,,>|2a,,, (5.34)

n=1

which is an infinite sum on the a,’s. In general, none of the coefficients (b,,|a,) can be
expected to be zero, leaving an awkward infinite sum to evaluate. This suggests
attempting to determine (b,,|4|b,,) directly. A possible means for doing so is to convert
(b|A|b,,) into an integral by introducing a representation. Let us assume that A4 is local
in the coordinate representation. Its use leads to

(e = (bulAlby) = Jd3rw21,(r)fi(r)whm(r),
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where A and |b,) are presupposed to refer to a single-particle system. The preceding
integral may well be easier to evaluate than the infinite sum in (5.34): for example, the
integral might accurately be approximated numerically.

Further examples of the foregoing, for the quantal box and other systems, are discussed
in the next chapter.

With these remarks concerning the connection with theoretical predictions, we turn to
experimental aspects of Postulate III, in particular to measurements involving binding
energies, decaying states, and collision phenomena.

Example: binding energy

Some experiments lead to the determination of more than one observable, others are
unique in this regard. As an example of the latter, we consider the determination of the
energy of a photon just sufficient to dissociate a deuteron — the stable nucleus consisting
of a neutron and a proton bound together by the strong nuclear interaction — into a free
(unbound) neutron and a free proton, each having zero kinetic energy in their center-of-
mass coordinate system. To achieve this, the energy E, of the photon must be equal to
the binding energy By of the deuteron. The goal of the measurement is to determine By.

The experiment may be thought of as the shining of photons of variable energy E,
onto deuterium gas at room temperature; owing to the Boltzmann factor, the average
kinetic energy of the deuterons is about 0.025 eV, a quantity small enough for our
purposes to ignore.

When E, < By, no protons and neutrons are produced, but when the threshold value
E, = By is reached, the photon can be absorbed, dissociate the deuteron, and detectors
that distinguish protons can then record their presence. The jth measurement of the
threshold energy produces a value BY; their totality is the set {ng ) }?/:1

The value for By that is extracted from the measured ones is, from (5.27a), the average
or expected value, viz.,

N
Ba=)_ PY BV, (5.35)
=1
where ng) is the probability that Bfij) is the outcome. In such experiments, it is assumed
that each Bf{ ) is equally likely to occur, so that P; = 1/N, with the result that®

ISR o)
By :N; BY. (5.36)

The experimental value of By is 2.2245 MeV; (5.36) might yield By = 2.23 MeV.

The same kind of analysis would apply to the determination of, say, the minimum
energy B. needed to ionize an atom initially in its ground state, i.e., to remove one of its
electrons from a state having negative energy to a state with zero energy.

Among the common ingredients in the preceding processes, viz.,

Y+d—n+p

5> We need not address the question of assigning errors, determining a dispersion, etc.
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and
vY+A— AT +e,

where AT represents the singly ionized atom, is the fact that in all measurements for both
cases, the target is always in its ground state. Hence, the measurement will always yield a
value of By or B.. That is, in order for the experiment to be repeatable, the systems on
which the measurements are being carried out must each be in the same initial state, so
that the measurement determines an energy relevant to the desired state. This condition is
essential, and we henceforth assume it to hold even if no statement to that effect is made.

As a final point, we call the reader’s attention to the fact that the LHS of (5.36) is a
“call to arms”: By, and eigenvalues in general, are not known in advance and need to be
calculated. Very few physical systems are simple enough that the states |a,) and/or their
associated wave functions can be obtained exactly, textbook examples notwithstanding.
Indeed, the soluble systems treated in textbooks tend to be the only ones for which exact
solutions are available. Models and/or approximation methods, both of which will be
considered in this book, are thus essential ingredients in analyses of real systems.
Furthermore, the inability to solve dynamical equations exactly is often mirrored by an
ignorance of some of the operators needed to describe one or another physical system, so
that models and approximations occur here as well.

Example: decaying states/branching ratios

When the first excited state of an atom or particle-stable nucleus decays, only one final
state in the atom or nucleus can be reached, viz., the ground state, in which case a photon
of unique energy is emitted. However, for higher excited states, there is often a variety of
final states that can be reached by photon emission. Figure 5.3 illustrates this situation
using a Grotrian diagram and wavy lines for the photons. It shows a state of energy FE.
that can decay via photon emission to one of three final states E;, j =1, 2, 3. The
normalized probabilities P; for the decay to occur via the “branch” E. — E;,
j=1,2,3, obey Zij = 1. The ratio P;/Py is denoted the “branching” ratio for the
decays E. — E; and E. — E;. If N measurements are made on the decays from level
E., then the number of decays N; that proceed via branch j is N; = NP;. Hence,
measurement of the relative numbers of photons corresponding to levels E; and Ey, viz.,
N; and Ny, yields the relative probabilities:

Fig. 5.3 An illustration of the different “branches” by which a hypothetical excited
state of energy E. can decay via photon emission to any one of three final states with
energies E| < E; < E3. The wavy lines represent the photons; the symbol y; denotes
the photon in the transition E, — E;, while P; is the probability that the decay will
occur via branch j, j =1, 2, 3.
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Nj P

=L 5.37
N, Py (5:37)

Each P;, j =1, 2, 3, is the absolute square of a quantal amplitude C; and the task of
theory is to determine these amplitudes, usually via models and approximation, and then
to use the calculated values of P;/P; to compare with the LHS of (5.37) in an attempt to
determine whether the model/approximation can be considered valid.

Branching ratios are not limited to photon emission: they occur when any unstable
state can decay in more than one way. Examples are found in almost all areas of micro-
physics. One such concerns the short-lived, neutral K meson, denoted K2. Its lifetime is
0.89 X 107'% s and its primary decay modes are

KS —at+a (5.38)
and
KS — 7 +a°, (5.39)

where 7° and 7t are the neutral, and the positively and negatively charged pi mesons or
“pions.” The branching ratio for the decays (5.38) and (5.39) is

K —at+a 69

- 2 5.40
K =m0 +a0 31 (5-40)

where the RHS of (5.40), the relative number of decays into the two branches, is
experimentally determined. Note that the sum of the numerator plus the denominator in
(5.40) adds up to 100, suggesting that only the two branches (5.38) and (5.39) can occur.
In fact, other decay modes have been observed, but their occurrence is down by a factor
of 103, so that, to an accuracy of better than within 1%, the ratio in (5.40) is valid.
Correct prediction of the lifetime and the branching ratio (5.40) is a requirement of any
theory of elementary particles claiming to be valid.

There is a long-lived partner to K2, the symbol for which is K?; its lifetime is
5.2 X 107% 5. The K¢ and K{ can be thought of as two manifestations of a single particle
that can exist in one of only two states, denoted |[KQ) and |K?). We shall examine this
situation in detail in the exercises to Chapter 13 (two-state systems).

Example: collision processes

A further instance in which a variety of final states can arise from a single initial state is
afforded by collisions between a single-particle projectile and a structured target.
Included here are electron—atom and electron—molecule scattering, and proton—nucleus
collisions involving both scattering and reactions. If the energy E of the projectile is high
enough for inelastic scattering to occur, assuming that the target has particle-stable
excited states (with energies Ej'.", j=1,2,...), then inelastically scattered projectiles
with final energies £ — E;" can be observed.

An inelastically scattered projectile with final energy £ — E;X corresponds to the target
having been excited to a level with energy Ej".6 An analogous statement holds for a

6 We assume for simplicity that negligible recoil energy is imparted to the target during the collision and that
non-relativistic kinematics may be used. In addition, conservation of energy is taken for granted.
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reaction, the only change being that £ — Ej." is replaced by E — E§, the energy of the
ejectile, where E§ is the energy of the jth excited state of the residual system f (e.g., a
molecule or nucleus) reached via the reaction. Note that, in each case, the collision has
“prepared” the final system in an excited state, the probability for which can be extracted
from experiment, as described in the following.

After the collision — inelastic scattering or a reaction — the ejectile can be observed at
an angle 0 relative to the initial direction of the projectile and also with some final energy
E¢ (equal to E — Ej." in the case of inelastic scattering or to £ — Eg in the case of a
reaction). Either the final energy is fixed and the number N(6) of ejectiles emitted at
angle 0 is measured, or 6 is fixed and the number N(E;) of ejectiles emitted that leave
the target or residual system in the jth excited level is measured.

An example of the latter situation is given by the proton-in, neutron-out nuclear
reaction

p+ “C— "N+4n, (5.41)

where C (N) is the chemical symbol for carbon (nitrogen) and the left-hand superscript
14 refers to the total number of neutrons plus protons in the nucleus. Once again, p (n)
refers to the incident proton (ejected neutron). Shown in Fig. 5.4 is the number of ejected
neutrons N(Er) observed at a scattering angle of 40° having energies Ef in the range of
26 MeV < Ef < 34 MeV. The neutrons are produced by protons of incident energy
E = 35 MeV bombarding the '“C target. Ten pronounced peaks are seen in this energy

2] .
14C(P . N) 14N ’
| 3SMEV
| 40DEG. 3012MC o
RUN243, 252, 253
8 B
P4
2
o
[&]

2.0 20.00 3.0 32.00 34.09
NEUTRON ENERGY

Fig. 5.4 A portion of the energy spectrum or “excitation function” of neutrons
emerging from the reaction p 4 “C — N 4 n. The energy of the incident protons
was 35 MeV and the neutrons were detected at a scattering angle of 40° relative to the
direction of incidence of the proton beam. (From Orihara et al. (1983).)
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range. They correspond to the states in '“N which the outgoing neutrons leave behind.
That is, for each peak, '#N is left in a discrete excited state whose energy is determined
by conservation of energy. Since the neutron energy Er increases to the right on the
abscissa of Fig. 5.4, the excited-state energies increase to the left. Seven peaks are
labeled by the value of the angular momentum and the value of a new quantum number
denoted parity, which can be + or —, and is discussed in Chapter 9.

The height 4; of the jth peak in Fig. 5.4 is proportional to the probability that this state
is populated in the reaction when O = 40°. Thus, the 1% level corresponding to
Er =2 29.5 MeV has the greatest probability of being excited, while the 17, the 0, and
the other 17 levels have the least probability of being populated. Again, the aim of theory
is to predict these results.

5.4. The coordinate representation for observables

Operators, along with states and their associated wave functions, are the means by which
one can calculate the quantities that are measured in experiments. The determination of
states/wave functions is thus a primary goal of quantum theory. To do this requires
solving the relevant dynamical equations, viz., eigenvalue equations of the form (5.1) or
the time-dependent Schrédinger equation, which is discussed in the next section.

These dynamical equations involve the operators that image physical observables.
Since the operators are formulated as abstract entities in Hilbert space, some means for
working directly with them is required. One procedure is to employ the commutation
relations obeyed by the operators. This is relatively straightforward to do for simple
systems like the harmonic oscillator and for the simplest model of the H-atom. It leads to
the eigenstate representation, in which the operators are represented as infinite and, often,
discrete matrices. We shall later treat the 1-D harmonic oscillator in this way.

While the commutation relation approach is useful, it tends to be limited to the simpler
systems. Furthermore, if one needs the probability amplitudes that the system is at
particular spatial points, then a coordinate representation must be introduced as well, in
order to convert state vectors into wave functions. Coordinate-space wave functions are
often utilized to help provide a physical feeling for the behavior and interpretation of
quantal systems, an aspect of special importance when many degrees of freedom are
involved.

Coordinate-space wave functions are usually obtained as the solutions of the coordi-
nate-space forms of dynamical equations. Such equations must obviously contain quantal
operators expressed in the coordinate representation. Examples are the momentum and
energy (Hamiltonian) operators, which were informally introduced in Chapter 3 in
connection with the quantal-box problem. Postulate IV formalizes and generalizes these
definitions by stating the coordinate form of a number of (single-particle) quantal
operators. From these one can then derive both the commutation relations obeyed by the
operators and the momentum representation for the operators.

The single-particle operators whose coordinate representations are stated in Postulate
IV are all local. Locality is discussed in Section 4.4, in particular via Egs. (4.158)—
(4.160). As an example of a relation involving local operators, consider the eigenvalue
equation (5.1),
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Table 5.2 Some quantal operators and their (local) coordinate
representations for a particle of mass m

Operator Coordinate representation
Position, Q r

Classical potential energy, Ve (Q) Va(r)

Linear momentum, P P(r) = —ikV

(Orbital) angular momentum, L L(r)= —ifir XV

Kinetic energy, K K(r) = P*/2m) = —[#?*/(2m)] V2
Energy, H = K+ V, V = Va(Q) H(r) = —[#*/@m)] V* + Va(r)

A’Ai|an> = an|an>s

where A and |a,) now refer to a single particle in three dimensions. Locality of A means
that the coordinate-space form of (5.1) becomes, in analogy to (4.159),

AM@a(r) = aypa(v), (5.42)

where r is the position of the particle and v,(r) = (r|a,). In Eq. (5.42), A(r) stands for
any of the operators in Tables 5.1 and 5.2, the latter of which is introduced in connection
with Postulate V.

In addition to their being local, operators discussed in this section are the quantum
versions of classical quantities. The quantum operators such as spin and parity do not
have coordinate representations, and are not included with those of Table 5.2.

POSTULATE IV.

The operators which are the quantal analogs of classical quantities are all local in the
coordinate representation.

(a) The coordinate representation of the position operator Q and of the operator
V(Q) corresponding to any classical potential energy or electromagnetic
potential V(r) are

Qr)=r (5.43)
and
7(Q) = Va(r), (5.44)

1e., Q becomes r, and, for a classical potential, V(Q) becomes V().
Examples are given below.
(b)  The coordinate representation of the linear momentum operator P is

P(r) = —ih V, (5.45)

where the derivatives in the gradient operator are taken with respect to the
components of r.
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(c) The coordinate representations of the (orbital) angular-momentum operator
L = Q X P and kinetic-energy operator K = P-P/(2m) are

L(r) = —ihr X V (5.46)
and

X o,
K(r) = -5V (5.47)

(d) The Hamiltonian or energy operator, H, is defined non-relativistically” as the
sum of the kinetic- and potential-energy operators, K and V, respectively:

H=K+V. (5.48)

For the case of a particle of mass m acted on by a classical potential V(r), the
coordinate representation of H is

H(r) = K(r) + Ve(r) (5.49)
— _ﬁ_zv2 + V(). (5.49b)
2m

These statements are summarized in Table 5.2. Probably the most remarkable aspect of
Postulate IV is given by Eq. (5.45), since it defines the coordinate representation of the
momentum operator as being mass-independent. It is an unexpected contrast to the
classical-physics situation, a contrast that would be maintained if one were to introduce
P /m as a velocity operator, since the coordinate representation of this operator, unlike
the classical-physics analog, is mass-dependent.

The preceding statements concern a single particle in 3-D. If a 1-D situation is
envisaged, then, e.g., r — x, Q(r) — O.(x) = x, P(r) — Py(x) = —ifid/dx, L(r) — 0,
and K(r) — K,(x) = —[#%/(2m)] d* /dx?, with corresponding changes in ¥ (r) and H(r).
Furthermore, in a system containing N particles labeled 1, 2, ..., N, with coordinates
ri, ry ..., ry and masses mp, my, ..., my, one can introduce operators for position,
potential, linear and angular momentum, kinetic energy, and total energy for each particle
J, viz.,

Q). V), Py, Ly, K, Hj,
whose coordinate representations are as given in Postulate IV, the only change being the
addition of the subscript j wherever an unsubscripted r, V, or m appears. We shall
consider these operators in the later sections of this book dealing with N-particle
systems, N = 2.

Each of the coordinate representations of parts (b), (¢), and (d) of Postulate IV allow
one (at least in principle) to solve the eigenvalue problem typified by Eq. (5.1), thus

yielding both eigenvalues and eigenfunctions. Much of this text is concerned with
solution of the stationary-state equation

Hy = Ey, (5.50)

where the coordinate-dependence is suppressed to allow for the possibility of this

7 Only non-relativistic quantum mechanics is considered in this book.





