Dynamic Earth

Plates, Plumes and Mantle Convection

GEOFFREY F. DAVIES Australian National University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain

© Cambridge University Press 1999

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1999

Printed in the United Kingdom at the University Press, Cambridge

Typeset in Times $10\frac{1}{2}/13$ pt, in 3B2 [KW]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Davies, Geoffrey F. (Geoffrey Frederick)
Dynamic earth : plates, plumes, and mantle convection/ Geoffrey F. Davies.
p. cm.
Includes bibliographical references.
ISBN 0 521 59067 1 (hbk.). – ISBN 0 521 59933 4 (pbk.)
1. Earth–Mantle. 2. Geodynamics. I. Title.
QE509.4.D38 1999
551.1'16–dc21 98–51722 CIP

ISBN 0 521 59067 1 hardback ISBN 0 521 59933 4 paperback

Contents

Part 1	Origins	1
1 Introduction		
	Objectives	3 3
	Scope	6
	Audience	6
1.4	Reference	7
2 Eme	ergence	8
2.1	Time	8
2.2	Catastrophes and increments	12
2.3	Heat	15
2.4	Cooling age of earth	16
2.5	Flowing rocks	19
2.6	References	20
3 Mol	bility	22
3.1	Drifting continents	23
3.2	Creeping mantle	27
3.3	A mobile surface – re-emergence of the concept	33
3.4	Wilson's plates	38
3.5	Strong evidence for plates in motion	43
	3.5.1 Magnetism	43
	3.5.2 Seismology	47
	3.5.3 Sediments	49
3.6	Completing the picture – poles and trenches	49
	3.6.1 Euler rotations	50
	3.6.2 Subduction zones	53
	Plumes	55
	Mantle convection	58
	Afterthoughts	63
3.10	References	65

Pa	rt 2	Foundations	71
4	Surf	ace	73
		Plates	73
	4.2	Topography	77
		4.2.1 Continents	77
		4.2.2 Sea floor	78
		4.2.3 Seafloor depth versus age	80
	4.3	Heat flow	80
		4.3.1 Sea floor	80
		4.3.2 Continents	83
	4.4	Gravity	85
	4.5	References	87
5	Inter	rior	89
	5.1	Primary structure	90
		5.1.1 Main layers	90
		5.1.2 Internal structure of the mantle	92
		5.1.3 Layer names	93
		5.1.4 Pressure, gravity, bulk sound speed	95
	5.2	Layer compositions and nature of the transition zone	97
		5.2.1 Peridotite zone	97
	5 2	5.2.2 Transition zone and perovskite zone	98
	5.3	Phase transformations and dynamical implications	105
		5.3.1 Pressure-induced phase transformations 5.3.2 Dynamical implications of phase transformations	105 106
		5.3.3 Thermal deflections of phase boundaries	100
		5.3.4 Compositional deflections and effects on density	107
	5.4	Three-dimensional seismic structure	112
	5.1	5.4.1 Seismic detection of subducted lithosphere	112
		5.4.2 Global deep structure	115
		5.4.3 Spatial variations in the lithosphere	116
	5.5	References	118
6	Flow	7	122
	6.1	Simple viscous flow	124
	6.2	Stress [Intermediate]	121
	0.2	Box 6.B1 Subscript notation and summation convention	131
		6.2.1 Hydrostatic pressure and deviatoric stress	133
	6.3	Strain [Intermediate]	134
	6.4	Strain rate [Intermediate]	137
	6.5	Viscosity [Intermediate]	138
	6.6	Equations governing viscous fluid flow [Intermediate]	
	0.0	6.6.1 Conservation of mass	140
		6.6.2 Force balance	140
		6.6.3 Stream function (incompressible, two-dimensional	
		flow)	142

	6.6.4 Stream function and force balance in cylindrical	
	coordinates [Advanced]	144
6.7	1	147
	6.7.1 Flow between plates	147
	6.7.2 Flow down a pipe	148
6.8	Rise of a buoyant sphere	149
	6.8.1 Simple dimensional estimate	150
	6.8.2 Flow solution [Advanced]	152
6.0	Box 6.B2 Stresses on a no-slip boundary	156
6.9	Viscosity of the mantle	156
	6.9.1 Simple rebound estimates	157
	6.9.2 Recent rebound estimates	161
	6.9.3 Subduction zone geoids	163
6.10	6.9.4 Rotation	166
6.10	65	166
	6.10.1 Brittle regime	167
	6.10.2 Ductile or plastic rheology	171
6.1.1	6.10.3 Brittle–ductile transition	173
	References	175
6.12	Exercises	176
7 Hea	t	178
7.1	Heat conduction and thermal diffusion	178
7.2	Thermal diffusion time scales	180
	7.2.1 Crude estimate of cooling time	181
	7.2.2 Spatially periodic temperature [Intermediate]	182
	7.2.3 Why is cooling time proportional to the square	
	of the length scale?	183
7.3	Heat loss through the sea floor	184
	7.3.1 Rough estimate of heat flux	185
	7.3.2 The cooling halfspace model [Intermediate]	186
	7.3.3 The error function solution [Advanced]	188
7.4	Seafloor subsidence and midocean rises	189
7.5	Radioactive heating	192
7.6	Continents	193
7.7	Heat transport by fluid flow (Advection)	198
7.8	Advection and diffusion of heat	199
	7.8.1 General equation for advection and diffusion of	
	heat	199
	7.8.2 An advective-diffusive thermal boundary layer	200
7.9	Thermal properties of materials and adiabatic	
	gradients	202
	7.9.1 Thermal properties and depth dependence	202
	7.9.2 Thermodynamic Grüneisen parameter	203
	7.9.3 Adiabatic temperature gradient	204
	7.9.4 The super-adiabatic approximation in convection	205

7.1	0 References	206
7.1	1 Exercises	207
Part	3 Essence	209
8 C	onvection	211
8.	1 Buoyancy	212
8.	1 1	214
	3 Scaling and the Rayleigh number	217
	4 Marginal stability	220
	5 Flow patterns	224
8.	6 Heating modes and thermal boundary layers	225
	8.6.1 Other Rayleigh numbers [Advanced]	228
8.	1 1 3	230
8.		233
8.		237
8.1	0 Exercises	237
9 P	9 Plates	
	1 The mechanical lithosphere	239
	2 Describing plate motions	241
9.	• •	242
	9.3.1 Three margins	242
	9.3.2 Relative velocity vectors	243
	9.3.3 Plate margin migration	245
	9.3.4 Plate evolution sequences	247
	9.3.5 Triple junctions	249
	4 Rules on a sphere	253
	5 The power of the rules of plate motion	255
	6 Sudden changes in the plate system	256
	7 Implications for mantle convection	257
9.		259
9.	9 Exercises	259
10 T	he plate mode	261
10.	1 The role of the lithosphere	262
10.	2 The plate-scale flow	264
	10.2.1 Influence of plates on mantle flow	264
	10.2.2 Influence of high viscosity in the lower mantle	268
	10.2.3 Influence of spherical, three-dimensional	270
	geometry	270 273
	10.2.4 Heat transported by plate-scale flow 10.2.5 Summary	275
10		275
10		273
10.	10.4.1 Topography from numerical models	278

	10.4.2 Geoids from numerical models	281
	10.4.3 Heat flow from numerical models	282
	10.4.4 General relationships	283
10.5	Comparisons with seismic tomography	285
	10.5.1 Global structure	285
	10.5.2 Subduction zones	287
10.6	The plate mode of mantle convection	290
10.7	References	291
11 The	plume mode	293
11.1	Volcanic hotspots and hotspot swells	293
11.2	Heat transported by plumes	296
11.3	Volume flow rates and eruption rates of plumes	299
11.4	The dynamics and form of mantle plumes	300
	11.4.1 Experimental forms	300
	11.4.2 Heads and tails	304
	11.4.3 Thermal entrainment into plumes	305
	11.4.4 Effects of a viscosity step and of phase changes	309
11.5	Flood basalt eruptions and the plume head model	311
11.6	Some alternative theories	314
	11.6.1 Rifting model of flood basalts	314
	11.6.2 Mantle wetspots	315
	11.6.3 Melt residue buoyancy under hotspot swells	316
11.7	Inevitability of mantle plumes	317
11.8	The plume mode of mantle convection	319
11.9	References	320
12 Syn	thesis	324
12.1	The mantle as a dynamical system	324
	12.1.1 Heat transport and heat generation	325
	12.1.2 Role of the plates: a driving boundary layer	326
	12.1.3 Passive upwelling at ridges	326
	12.1.4 Plate shapes and kinematics	328
	12.1.5 Forces on plates	328
	12.1.6 A decoupling layer?	330
	12.1.7 Plume driving forces?	330
12.2		331
	12.2.1 Superswells and Cretaceous volcanism	331
	12.2.2 Plume head topography	335
12.3	Layered mantle convection	337
	12.3.1 Review of evidence	338
	12.3.2 The topographic constraint	339
	12.3.3 A numerical test	341
12.4	Some alternative interpretations	343
	12.4.1 'Flattening' of the old sea floor	343
	12.4.2 Small-scale convection	345
12.5	A stocktaking	347

12.6	References	348	
Part 4	Implications	353	
13 Che	13 Chemistry		
13.1	Overview – a current picture of the mantle	356	
13.2	Some important concepts and terms	358	
	13.2.1 Major elements and trace elements	358	
	13.2.2 Incompatibility and related concepts	358	
	13.2.3 Isotopic tracers and isotopic dating	360	
	13.2.4 MORB and other acronyms	361	
13.3	Observations	361	
	13.3.1 Trace elements	362	
	13.3.2 Refractory element isotopes	364	
	13.3.3 Noble gas isotopes	368	
13.4	Direct inferences from observations	374	
	13.4.1 Depths and geometry of the MORB and		
	OIB sources	374	
	13.4.2 Ages of heterogeneities	375	
	13.4.3 Primitive mantle?	376	
	13.4.4 The mantle–oceanic lithosphere system	379	
	13.4.5 Mass balances	379	
	Generation of mantle heterogeneity	386	
13.6	6 61	388	
	13.6.1 Stirring and mixing	389	
	13.6.2 Sampling – magma flow and preferential	200	
	melting	390	
	13.6.3 Stirring in viscous flows	391	
	13.6.4 Sensitivity of stirring to flow details	394 396	
	13.6.5 Separation of denser components	390	
	13.6.6 Summary of influences on stirring and heterogeneity	397	
13.7		398	
13.7	· · ·	402	
13.0	Kelefences	402	
14 Evol		407	
14.1	Tectonics and heat	407	
14.2	Review of heat budget, radioactivity and the age of		
	earth	408	
14.3	Convective heat transport	411	
	14.3.1 Plate mode	411	
	14.3.2 Effect of temperature dependence of viscosity	412	
	14.3.3 Plume mode [Intermediate]	413	
14.4	-	415	
14.5	Smooth thermal evolution models	416	
14.6	Age distribution of the continental crust	418	

14.7	Episodic thermal evolution models	419
14.8	Compositional effects on buoyancy and convection	425
	14.8.1 Buoyancy of continental crust	426
	14.8.2 Interaction of oceanic crust with the transition	
	zone	428
	14.8.3 The D" layer	428
	14.8.4 Buoyancy of oceanic crust	429
	14.8.5 Alternatives to plates	432
	14.8.6 Foundering melt residue	434
14.9	Heat transport by melt	436
14.10	Tectonic evolution	437
	14.10.1 Plumes	438
	14.10.2 Mantle overturns	439
	14.10.3 Alternatives to plates and consequences for	
	thermal evolution	440
	14.10.4 Possible role of the basalt-eclogite	
	transformation	443
	14.10.5 Discriminating among the possibilities	444
14.11	References	444
Appendi	ix 1 Units and multiples	448
Appendi	ix 2 Specifications of numerical models	450
Index		455

Introduction

1.1 Objectives

The purpose of this book is to present the principles of convection, to show how those principles apply in the peculiar conditions of the earth's mantle, and to present the most direct and robust inferences about mantle convection that can be drawn from observations. The main arguments are presented in as simple a form as possible, with a minimum of mathematics (though more mathematical versions are also included). Where there are controversies about mantle convection I give my own assessment, but I have tried to keep these assessments separate from the presentation of principles, main observations and direct inferences. My decision to write this book arose from my judgement that the broad picture of how mantle convection works was becoming reasonably settled. There are many secondary aspects that remain to be clarified.

There are many connections between mantle convection and geology, using the term 'geology' in the broadest sense: the study of the earth's crust and interior. The connections arise because mantle convection is the source of all tectonic motions, and because it controls the thermal regime in the mantle and through it the flow of heat into the crust. Some of these connections are noted along the way, but there are three aspects that are discussed more fully. The first is in Part 1, where the historical origins of the ideas that fed into the conception of mantle convection are described. Especially in Chapter 2 those historical connections are with geology. Another major connection is through Chapter 13, in which the relationship between mantle chemistry and mantle convection is considered. The third respect arises in the last chapter, where the broad tectonic implications of hypothetical past mantle regimes are discussed. A theory of mantle convection is a *dynamical* theory of geology, in that it describes the *forces* that give rise to the motions apparent in the deformation of the earth's crust and in earthquakes and to the magmatism and metamorphism that has repeatedly affected the crust. Such a dynamical theory is a more fundamental one than plate tectonics, which is a *kinematic* theory: it describes the *motions* of plates but not the forces that move them. Also plate tectonics does not encompass mantle plumes, which comprise a distinct mode of mantle convection. It is this fundamental dynamical theory that I wish to portray here.

This book is focused on those arguments that derive most directly from observations and the laws of physics, with a minimum of assumption and inference, and that weigh most strongly in telling us how the mantle works. These arguments are developed from a level of mathematics and physics that a first or second year undergraduate should be familiar with, and this should make them accessible not just to geophysicists, but to most others engaged in the study of geology, in the broad sense. To maximise their accessibility to all geologists, I have tried to present them in terms of simple physical concepts and in words, before moving to more mathematical versions.

For some time now there has been an imperative for geologists to become less specialised. This has been true especially since the advent of the theory of plate tectonics, which has already had a great unifying effect on geology. I hope my presentation here is sufficiently accessible that specialists in other branches of geology will be able to make their own informed judgements of the validity and implications of the main ideas.

Whether my judgement is correct, that the main ideas presented here will become and remain broadly accepted, is something that only the passage of time will reveal. Scientific consensus on major ideas only arises from a prolonged period of examination and testing. There can be no simple 'proof' of their correctness.

This point is worth elaborating a little. One often encounters the phrase 'scientifically proven'. This betrays a fundamental misconception about science. Mathematicians prove things. Scientists, on the other hand, develop models whose behaviour they compare with observations of the real world. If they do not correspond (and assuming the observations are accurate), the model is not a useful representation of the real world, and it is abandoned. If the model behaviour does correspond with observations, then we can say that it works, and we keep it and call it a theory. This does not preclude the possibility that another model will work as well or better (by corresponding with observations more accurately or in a broader context). In this case, we say that the new model is better, and usually we drop the old one.

However, the old model is not 'wrong'. It is merely less useful, but it may be simpler to use and sufficient in some situations. Thus Newton's theory of gravitation works very well in the earth's vicinity, even though Einstein's theory is better. For that matter, the old Greek two-sphere model of the universe (terrestrial and celestial) is still quite adequate for navigation (strictly, the celestial sphere works but the non-spherical shape of the earth needs to be considered). Scientists do not 'prove' things. Instead, they develop more useful models of the world. I believe the model of mantle dynamics presented here is the most useful available at present.

Mantle convection has a fundamental place in geology. There are two sources of energy that drive geological processes. The sun's energy drives the weather and ocean circulation and through them the physical and chemical weathering and transport processes that are responsible for erosion and the deposition of sediments. The sun's energy also supports life, which affects these processes.

The other energy source is the earth's internal heat. It is widely believed, and it will be so argued here, that this energy drives the dynamics of the mantle, and thus it is the fundamental energy source for all the non-surficial geological processes. In considering mantle dynamics, we are thus concerned with the fundamental mechanism of all of those geological processes. Inevitably the implications flow into many geological disciplines and the evidence for the theory that we develop is to be found widely scattered through those disciplines.

Inevitably too the present ideas connect with many ideas and great debates that have resonated through the history of our subject: the rates and mechanisms of upheavals, the ages of rocks and of the earth, the sources of heat, the means by which it escapes from the interior, the motions of continents. These connections will be related in Part 1. The historical origins of ideas are often neglected in science, but I think it is important to include them, for several reasons. First, to acknowledge the great thinkers of the past, however briefly. Second, to understand the context of ideas and theories. They do not pop out of a vacuum, but emerge from real people embedded in their own culture and history, as was portrayed so vividly by Jacob Bronowski in his television series and book *The Ascent of Man* [1]. Third, it is not uncommon for alternative possibilities to be neglected once a particular interpretation becomes established. If we returned more often to the context in

1 INTRODUCTION

which choices were made, we might be less channelled in our thinking.

1.2 Scope

The book has four parts. Part 3, Essence, presents the essential arguments that lead most directly to a broad outline of how mantle dynamics works. Part 2, Foundations, lays the foundations for Part 3, including key surface observations, the structure and physical properties of the interior, and principles and examples of viscous fluid flow and heat flow.

Parts 1 and 4 connect the core subject of mantle convection to the broader subject of geology. Part 1 looks at the origin and development of key ideas. Part 4 discusses possible implications for the chemical and thermal evolution of the mantle, the tectonic evolution and history of the continental crust. Many aspects of the latter topics are necessarily conjectural.

1.3 Audience

The book is intended for a broad geological audience as well as for more specialised audiences, including graduate students studying more general aspects of geophysics or mantle convection in particular. For the latter it should function as an introductory text and as a summary of the present state of the main arguments. I do not attempt to summarise the many types of numerical model currently being explored, nor to present the technicalities of numerical methods; these are likely to progress rapidly and it is not appropriate to try to summarise them in a book. My expectation is that the broad outlines of mantle convection given here will not change as more detailed understanding is acquired.

In order to accommodate this range of readership, the material is presented as a main narrative with more advanced or specialised items interspersed. Each point is first developed as simply as possible. Virtually all the key arguments can be appreciated through some basic physics and simple quantitative estimates. Where more advanced treatments are appropriate, they are clearly identified and separated from the main narrative. Important conclusions from the advanced sections are also included in the main narrative.

It is always preferable to understand first the qualitative arguments and simple estimates, before a more elaborate analysis or model is attempted. Otherwise a great deal of effort can be wasted on a point that turns out to be unimportant. Worse, it is sometimes true that the relevance and significance of numerical results cannot be properly evaluated because scaling behaviour and dependence on parameter values are incompletely presented. Therefore the mode of presentation used here is a model for the way theoretical models can be developed, as well as a useful way of reaching an audience with a range of levels of interest and mathematical proficiency.

1.4 Reference

1. J. Bronowski, *The Ascent of Man*, 448 pp., Little, Brown, Boston, 1973.