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This graduate-level textbook on thermal physics covers classical thermodynamics,
statistical mechanics, and their applications. It describes theoretical methods to
calculate thermodynamic properties, such as the equation of state, specific heat,
Helmholtz potential, magnetic susceptibility, and phase transitions of macroscopic
systems.

In addition to the more standard material covered, this book also describes more
powerful techniques, which are not found elsewhere, to determine the correlation
effects on which the thermodynamic properties are based. Particular emphasis is
given to the cluster variation method, and a novel formulation is developed for its
expression in terms of correlation functions. Applications of this method to topics
such as the three-dimensional Ising model, BCS superconductivity, the Heisenberg
ferromagnet, the ground state energy of the Anderson model, antiferromagnetism
within the Hubbard model, and propagation of short range order, are extensively
discussed. Important identities relating different correlation functions of the Ising
model are also derived.

Although a basic knowledge of quantum mechanics is required, the mathe-
matical formulation is accessible, and the correlation functions can be evaluated
either numerically or analytically in the form of infinite series. Based on courses
in statistical mechanics and condensed matter theory taught by the author in the
United States and Japan, this book is entirely self-contained and all essential math-
ematical details are included. It will constitute an ideal companion text for graduate
students studying courses on the theory of complex analysis, classical mechanics,
classical electrodynamics, and quantum mechanics. Supplementary material is
also available on the internet at http://uk.cambridge.org/resources/0521580560/
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of metal hydrides. Professor Tanaka has also worked extensively on developing the
cluster variation method for calculating various many-body correlation functions.
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Preface

This book may be used as a textbook for the first or second year graduate student
who is studying concurrently such topics as theory of complex analysis, classical
mechanics, classical electrodynamics, and quantum mechanics.

In a textbook on statistical mechanics, it is common practice to deal with two im-
portant areas of the subject: mathematical formulation of the distribution laws of sta-
tistical mechanics, and demonstrations of the applicability of statistical mechanics.

The first area is more mathematical, and even philosophical, especially if we
attempt to lay out the theoretical foundation of the approach to a thermodynamic
equilibrium through a succession of irreversible processes. In this book, however,
this area is treated rather routinely, just enough to make the book self-contained.†

The second area covers the applications of statistical mechanics to many ther-
modynamic systems of interest in physics. Historically, statistical mechanics was
regarded as the only method of theoretical physics which is capable of analyzing
the thermodynamic behaviors of dilute gases; this system has a disordered structure
and statistical analysis was regarded almost as a necessity.

Emphasis had been gradually shifted to the imperfect gases, to the gas–liquid
condensation phenomenon, and then to the liquid state, the motivation being to
be able to deal with correlation effects. Theories concerning rubber elasticity and
high polymer physics were natural extensions of the trend. Along a somewhat sep-
arate track, starting with the free electron theory of metals, energy band theories of
both metals and semiconductors, the Heisenberg–Ising theories of ferromagnetism,
the Bloch–Bethe–Dyson theories of ferromagnetic spin waves, and eventually the
Bardeen–Cooper–Schrieffer theory of super-conductivity, the so-called solid state
physics, has made remarkable progress. Many new and powerful theories, such as

† The reader is referred to the following books for extensive discussions of the subject: R. C. Tolman, The
Principles of Statistical Mechanics, Oxford, 1938, and D. ter Haar, Elements of Statistical Mechanics, Rinehart
and Co., New York, 1956; and for a more careful derivation of the distribution laws, E. Schrödinger, Statistical
Thermodynamics, Cambridge, 1952.

xi
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xii Preface

the diagrammatic methods and the methods of the Green’s functions, have been de-
veloped as applications of statistical mechanics. One of the most important themes
of interest in present day applications of statistical mechanics would be to find the
strong correlation effects among various modes of excitations.

In this book the main emphasis will be placed on the various methods of ac-
curately calculating the correlation effects, i.e., the thermodynamical average of a
product of many dynamical operators, if possible to successively higher orders of
accuracy. Fortunately a highly developed method which is capable of accomplish-
ing this goal is available. The method is called the cluster variation method and
was invented by Ryoichi Kikuchi (1951) and substantially reformulated by Tohru
Morita (1957), who has established an entirely rigorous statistical mechanics foun-
dation upon which the method is based. The method has since been developed
and expanded to include quantum mechanical systems, mainly by three groups;
the Kikuchi group, the Morita group, and the group led by the present author, and
more recently by many other individual investigators, of course. The method was a
theme of special research in 1951; however, after a commemorative publication,†

the method is now regarded as one of the more standardized and even rather effec-
tive methods of actually calculating various many-body correlation functions, and
hence it is thought of as textbook material of graduate level.

Chapter 6, entitled ‘The cluster variation method’, will constitute the centerpiece
of the book in which the basic variational principle is stated and proved. An exact cu-
mulant expansion is introduced which enables us to evaluate the Helmholtz potential
at any degree of accuracy by increasing the number of cumulant functions retained
in the variational Helmholtz potential. The mathematical formulation employed in
this method is tractable and quite adaptable to numerical evaluation by computer
once the cumulant expansion is truncated at some point. In Sec. 6.10 a four-site
approximation and in Appendix 3 a tetrahedron-plus-octahedron approximation are
presented in which up to six-body correlation functions are evaluated by the cluster
variation method. The number of variational parameters in the calculation is only
ten in this case, so that the numerical analysis by any computer is not very time
consuming (Aggarwal and Tanaka, 1977). In the advent of much faster computers
in recent years, much higher approximations can be carried out with relative ease
and a shorter cpu time.

Chapter 7 deals with the infinite series representations of the correlation func-
tions. During the history of the development of statistical mechanics there was
a certain period of time during which a great deal of effort was devoted to the calcu-
lation of the exact infinite series for some physical properties, such as the partition
function, the high temperature paramagnetic susceptibility, the low temperature

† Progress in Theoretical Physics Supplement no. 115 ‘Foundation and applications of cluster variation method
and path probability method’ (1994).
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Preface xiii

spontaneous magnetization, and both the high and low temperature specific heat
for the ferromagnetic Ising model in the three-dimensional lattices by fitting differ-
ent diagrams to a given lattice structure. The method was called the combinatorial
formulation. It was hoped that these exact infinite series might lead to an under-
standing of the nature of mathematical singularities of the physical properties near
the second-order phase transition. G. Baker, Jr. and his collaborators (1961 and
in the following years) found a rather effective method called Padé approximants,
and succeeded in locating the second-order phase transition point as well as the na-
ture of the mathematical singularities in the physical properties near the transition
temperature.

Contrary to the prevailing belief that the cluster variation type formulations
would give only undesirable classical critical-point exponents at the second-order
phase transition, it is demonstrated in Sec. 7.5 and in the rest of Chapter 7 that
the infinite series solutions obtained by the cluster variation method (Aggarwal &
Tanaka, 1977) yield exactly the same series expansions as obtained by much more
elaborate combinatorial formulations available in the literature. This means that the
most accurate critical-point exponents can be reproduced by the cluster variation
method; a fact which is not widely known. The cluster variation method in this
approximation yielded exact infinite series expansions for ten correlation functions
simultaneously.

Chapter 8, entitled ‘The extended mean-field approximation’, is also rather
unique. One of the most remarkable accomplishments in the history of statisti-
cal mechanics is the theory of superconductivity by Bardeen, Cooper, & Schrieffer
(1957). The degree of approximation of the BCS theory, however, is equivalent to
the mean-field approximation. Another more striking example in which the mean-
field theory yields an exact result is the famous Dyson (1956) theory of spin-wave
interaction which led to the T 4 term of the low temperature series expansion of
the spontaneous magnetization. The difficult part of the formulation is not in its
statistical formulation, but rather in the solution of a two-spin-wave eigenvalue
problem. Even in Dyson’s papers the separation between the statistical formulation
and the solution of the two-spin-wave eigenvalue problem was not clarified, hence
there were some misconceptions for some time. The Wentzel theorem (Wentzel,
1960) gave crystal-clear criteria for a certain type of Hamiltonian for which the
mean-field approximation yields an exact result. It is shown in Chapter 8 that both
the BCS reduced Hamiltonian and the spin-wave Hamiltonian for the Heisenberg
ferromagnet satisfy the Wentzel criteria, and hence the mean-field approximation
gives exact results for those Hamiltonians. For this reason the content of Chapter 8
is pedagogical.

Chapter 9 deals with some of the exact identities for different correlation func-
tions of the two-dimensional Ising model. Almost 100 Ising spin correlation
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xiv Preface

functions may be calculated exactly if two or three known correlation functions
are fed into these identities. It is shown that the method is applicable to the three-
dimensional Ising model, and some 18 exact identities are developed for the di-
amond lattice (Appendix 5). When a large number of correlation functions are
introduced there arises a problem of naming them such that there is no confusion
in assigning two different numbers to the same correlation function appearing at
two different locations in the lattice. The so-called vertex number representation
is introduced in order to identify a given cluster figure on a given two-dimensional
lattice.

In Chapter 10 an example of oscillatory behavior of the radial distribution (or
pair correlation) function, up to the seventh-neighbor distance, which shows at least
the first three peaks of oscillation, is found by means of the cluster variation method
in which up to five-body correlation effects are taken into account. The formulation
is applied to the order–disorder phase transition in the super-ionic conductor AgI. It
is shown that the entropy change of the first-order phase transition thus calculated
agrees rather well with the observed latent heat of phase transition. Historically,
the radial distribution function in a classical monatomic liquid, within the frame-
work of a continuum theory, is calculated only in the three-body (super-position)
approximation, and only the first peak of the oscillatory behavior is found. The
model demonstrated in this chapter suggests that the theory of the radial distribu-
tion function could be substantially improved if the lattice gas model is employed
and with applications of the cluster variation method.

Chapter 11 gives a brief introduction of the Pfaffian formulation applied to the re-
formulation of the famous Onsager partition function for the two-dimensional Ising
model. The subject matter is rather profound, and detailed treatments of the subject
in excellent book form have been published (Green & Hurst, 1964; McCoy &
Wu, 1973).

Not included are the diagrammatic method of many-body problem, the Green’s
function theories, and the linear response theory of transport coefficients. There are
many excellent textbooks available on those topics.

The book starts with an elementary and rather brief introduction of classical
thermodynamics and the ensemble theories of statistical mechanics in order to make
the text self-contained. The book is not intended as a philosophical or fundamental
principles approach, but rather serves more as a recipe book for statistical mechanics
practitioners as well as research motivated graduate students.

Tomoyasu Tanaka
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