Cambridge University Press & Assessment 978-0-521-58445-6 — Imaginal Discs Lewis I. Held Jr Table of Contents <u>More Information</u>

Contents

CHAPTER ONE. CELL LINEAGE VS. INTERCELLULAR SIGNALING 1 Discs are not clones 1 No part of a disc is a clone, except claws and tiny sense organs 4 Cells belong to lineage "compartments" 4 CHAPTER TWO. THE BRISTLE 5 Numb segregates asymmetrically and dictates bristle cell fates 5 Delta needs to activate Notch, but not as a signal per se 9
Discs are not clones1No part of a disc is a clone, except claws and tiny sense organs4Cells belong to lineage "compartments"4CHAPTER TWO. THE BRISTLE5Numb segregates asymmetrically and dictates bristle cell fates5Delta needs to activate Notch, but not as a signal per se9
No part of a disc is a clone, except claws and tiny sense organs 4 Cells belong to lineage "compartments" 4 CHAPTER TWO. THE BRISTLE 5 Numb segregates asymmetrically and dictates bristle cell fates 5 Delta needs to activate Notch, but not as a signal per se 9
AG part of a disc is a clone, except claws and tilly sense organs 4 Cells belong to lineage "compartments" 4 CHAPTER TWO. THE BRISTLE 5 Numb segregates asymmetrically and dictates bristle cell fates 5 Delta needs to activate Notch, but not as a signal per se 9
CHAPTER TWO. THE BRISTLE 5 Numb segregates asymmetrically and dictates bristle cell fates 5 Delta needs to activate Notch, but not as a signal per se 9
CHAPTER TWO. THE BRISTLE5Numb segregates asymmetrically and dictates bristle cell fates5Delta needs to activate Notch, but not as a signal per se9
Numb segregates asymmetrically and dictates bristle cell fates5Delta needs to activate Notch, but not as a signal per se9
Delta needs to activate Notch, but not as a signal per se9
Amnesic cells can use sequential gating to simulate a binary code 10
Notch must go to the nucleus to function 12
E(spl)-C genes are Su(H) targets but play no role in the SOP lineage 15
The transcription factor Tramtrack implements some cell identities 18
Hairless titrates Su(H) 20
Several other genes help determine the 5 cell fates 23
Pox neuro and Cut specify bristle type 27
Bract cells are induced by bristle cells 28
Macrochaetes and microchaetes differ in size but not in kind 29
CHAPTER THREE BRISTI E PATTERNS 31
Summisingly different megreeheets sites use different signals
Surprisingly, unreferring hidden "singularities"
Here Achaete and Soute control brieflog was deheted for decades
In 1090 Achieves and Soute wave found to mark "propagate lousters"
In 1965, Achieve and Scute were round to mark proneutial clusters 45
Dronouvrol "onoto" obvink to SOD "doto"
The SOP uses a feedback loop to raise its Ac and Sc levels
Two other bHI H genes (asense and daughterless) assist SOPs

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-58445-6 — Imaginal Discs Lewis I. Held Jr Table of Contents <u>More Information</u>

viii

CONTENTS

"Lateral" or "mutual" inhibition ensures one SOP per PNC	49
Notch-pathway and proneural genes are functionally coupled	50
Doses of Notch-pathway genes can bias the SOP decision	52
Extra SOPs could be inhibited by contact or diffusion (or both)	52
Scabrous may be the diffusible SOP inhibitor	53
Inhibitory fields dictate the spacing intervals of microchaetes	55
Microchaetes come from proneural stripes, not spots	57
Hairy paints "antineural" stripes on the legs	61
Leg bristles use extra fine-tuning tricks	62
Chemosensory leg bristles are patterned like notal macrochaetes	67
Extramacrochaetae superimposes an uneven antineural "mask"	68
Dose dependency implies that HLH proteins "compute" bristles	71
Robustness of patterning may be due to a tolerant time window	73
Atonal and Amos are proneural agents for other types of sensilla	74
Other (upstream) pathways govern bristle patterning	75
· ···· (······························	
CHAPTER FOUR. ORIGIN AND GROWTH OF DISCS	76
Segmentation genes set the stage for disc initiation	76
Prenatterns and gradients clashed in trying to explain homeosis	80
Homeotic genes implement regional identities	84
Wing and haltere discs "grow out" from 2nd- and 3rd-leg discs	85
Thoracic discs arise at Wingless/Engrailed boundaries	87
Cell lineage within compartments is indeterminate	91
The Polar Coordinate Model linked regeneration to development	92
But regeneration has neculiarities that set it apart	96
But regeneration has peculiarities that set it apart	50
CHAPTER FIVE. THE LEG DISC	97
The Molecular Epoch of disc research was launched in 1991	97
Bateson's Rule (1894) governs symmetry planes in branched legs	99
Meinhardt's Boundary Model deftly explained Bateson's Rule	100
The Boundary and PC Models jousted in a "Paradigm War"	100
Hh. Dnn, and Wg are the chief intercellular signaling molecules	105
P-type cells use Hh to "talk" to A-type cells nearby	103
Hh elicits expression of Dpp and Wg along the A/P houndary	109
Dnn dorsalizes and Wg ventralizes, or do they?	111
Dpp and Wg are mutually antagonistic	114
Dpp and Wg iointly initiate distal outgrowth	115
But Dnn seems more crucial than Wg as a growth factor	118
The A/P boundary can migrate when its "jailors" are "asleep"	119
Regeneration is due to a Hh spot in the peripodial membrane	122
The Polar Coordinate Model died in 1999	123
How Hh. Dpp. and Wg move is not known, nor is their range	124
Whether Dpp and Wg travel along curved paths is not known	125
Hairy links global to local patterning	128
Ouestions remain about the Hh-Dnn-Wg circuitry	128
Distal-less is necessary and sufficient for distalization	129
· · · · · · · · · · · · · · · · · · ·	

Cambridge University Press & Assessment 978-0-521-58445-6 — Imaginal Discs Lewis I. Held Jr Table of Contents <u>More Information</u>

CONTENTS

Proximal and distal cells have different affinities	132
Dachshund is induced at the Homothorax/Distal-less interface	132
Homothorax and Extradenticle govern the proximal disc region	133
Fasciclin II is induced at the BarH1/Aristaless interface	134
BarH1 and Bric à brac affect P-D identity, joints, and folds	135
Leg segmentation requires Notch signaling	135
CHAPTER SIX. THE WING DISC	137
The A-P axis is governed by Hh and Dpp but not by Wg	137
Dpp turns on <i>omb</i> and <i>spalt</i> at different thresholds	140
Dpp regulates <i>omb</i> and <i>spalt</i> similarly despite clues to the contrary	143
Dpp does not regulate <i>tkv</i> in 3rd instar despite clues to the contrary	143
A vs. P identities might explain how a straight A/P line emerges	148
But the A/P line appears to straighten via a signaling mechanism	149
Intercalation is due to a tendency of Dpp gradients to rise	153
The variable height of Dpp gradients makes them appear seamless	155
A Wg gradient specifies cell fates along the wing's D-V axis	156
Perpendicular (Dpp \times Wg) gradients suggest Cartesian coordinates	157
But cells do not seem to record positional values per se	158
Wg's repression of Dfz2 is inconsequential	158
Apterous's role along the D-V axis resembles Engrailed's A-P role	158
Chip cooperates with Apterous, and "Dorsal wing" acts downstream	160
Serrate and Delta prod Notch to evoke Wg at the D/V line	161
Fringe prevents Notch from responding to Serrate	164
The core D-V circuit plugs into a complex network	165
The wing-notum duality is established by Wg and Vein	167
But Vestigial and Scalloped dictate "wingness" per se	171
Straightening of the D/V border requires Notch signaling and Ap	173
Straightening of veins may rely on similar tricks	173
Two cell types predominate in the wing blade: vein and intervein	174
Veins come from proveins that look like proneural fields	175
But the resemblance is only superficial	175
All veins use the EGFR pathway	177
But interveins also use the EGFR pathway (at a later time)	184
Veins 3 and 4 are positioned by the Hh pathway	185
Veins 2 and 5 are positioned by the Dpp pathway	186
The Dpp pathway later implements the vein state	188
A cousin of Dpp (Gbb) fosters the A and P cross-veins	188
Vein 1 uses a combination of Dpp and Wg signals	189
Macrochaetes are sited by various "prepattern" inputs	190
How bristle axons get wired into the CNS is not known	191
CHADTED SEVEN THE EVE DISC	107
	197
Compound eyes have \sim 750 facets, with 8 photoreceptors per facet	197

Compound eyes have \sim 750 facets, with 8 photoreceptors per facet	197
Unlike the bristle, the ommatidium is not a clone	201
The eye has D and V compartments (despite doubts to the contrary)	202

ix

CAMBRIDGE

х

Cambridge University Press & Assessment 978-0-521-58445-6 — Imaginal Discs Lewis I. Held Jr Table of Contents <u>More Information</u>

CONTENTS

The Iroquois Complex controls D-V polarity via Fringe and Notch	203
A morphogenetic wave creates the ommatidial lattice	208
D-V polarity depends on a rivalry between R3 and R4 precursors	209
R1–R8 cells arise sequentially, implying a cascade of inductions	211
But the final cell (R7) is induced by the first one (R8)	213
Various restraints prevent more than one cell from becoming R7	213
The information content of the inductive signals may be only 1 bit	216
No transcription factor "code" has yet been found for R cells	218
The lattice is created by inhibitory fields around R8 precursors	224
The lattice is tightened when excess cells die	227
Eye bristles arise independently of ommatidia	228
The MF operates like a moving A/P boundary	229
Dpp and Wg control the rate of MF progress	234
The MF originates via different circuitry	234
CHAPTER EIGHT. HOMEOSIS	237
BX-C and ANT-C specify gross metameric identities along the body	237
Ubx enables T3 discs to develop differently from T2 discs	243
But Ubx does so by directly managing target genes in multiple echelons	244
Pc-G and Trx-G "memory" proteins keep homeotic genes on or OFF	247
Homothorax. Distal-less, and Spineless specify leg vs. antennal fates	249
If a "master gene" exists for the eve, then it is also a micromanager	252
The manifold "enhanceosome" is a wondrous Gordian Knot	254
The deepest enigma is how evolution rewired the circuit elements	254
	-01
EPILOGUE	256
APPENDIX ONE. Glossary of Protein Domains	257
APPENDIX TWO. Inventory of Models, Mysteries, Devices, and Epiphanies	266
APPENDIX THREE. Genes That Can Alter Cell Fates Within the (5-Cell)	
Mechanosensory Bristle Organ	271
APPENDIX FOUR. Genes That Can Transform One Type of Bristle Into	
Another or Into a Different Type of Sense Organ	276
APPENDIX FIVE. Genes That Can Alter Bristle Number by Directly Affecting	
SOP Equivalence Groups or Inhibitory Fields	278
APPENDIX SIX. Signal Transduction Pathways: Hedgehog,	
Decapentaplegic, and Wingless	285
APPENDIX SEVEN. Commentaries on the Pithier Figures	207
6	297
	297
References	307
References Index	297 307 441