All of us are drug users, in the broadest sense of the word. Drugs can be medicines, they can be used for pleasure, and they can also be used to protect our long-term health. It is important that we are well informed about the drugs we use — how they work, their benefits, and their risks. This book is a unique guide for the general science reader to the drugs of everyday life — from the main types of medicine through to recreational drugs and food supplements. It looks at how drugs interact with their targets in the body, where they come from, how they are developed and what drugs to expect in the future. All the major pharmaceutical medicines are reviewed – painkillers, antibiotics, anti-cancer drugs, anti-depressants, heart drugs, tranquillisers and hormones. However this book is much more than a consumer handbook – it also conveys the fascinating science of drug discovery in an easily accessible way.

Susan Aldridge is a professional science writer and medical editor for Focus magazine, having been a research scientist. She is a Fellow of the Royal Society of Medicine.
SUSAN ALDRIDGE

Magic Molecules
how drugs work
Contents

List of illustrations vii
Acknowledgements ix
Introduction xi

1 How drugs work 1
 Many drugs work by homing in on molecular targets 5
 Right dose, right place, right time 11
 Hitting the wrong targets: the problem of side effects 15

2 From penicillin to Prozac: introducing pharmaceutical drugs 23
 Most drugs are carbon-based and mimic body chemicals 27
 From test tubes to humans – the story of pre-clinical development 40
 Human testing times – clinical trials 45

3 Fighting infection 53
 The continuing world war 53
 How microbes make you ill 57
 The antibiotic revolution 69
 Antibiotics act as molecular weapons 73
 Antimalarial drugs 82
 Antiviral drugs 83
 Vaccines protect the body against infection 86

4 The hormonal revolution 91
 How hormones work on their targets 94
 Hormone drugs 99

5 Cardiovascular drugs: protecting the heart and brain 115
 Atherosclerosis sets the scene for cardiovascular disease 115
 Assessing the risk factors in cardiovascular disease 121
 Drugs to treat cardiovascular disease 129
Contents

6 The problem of pain 143
 Understanding pain 143
 Killing pain – how analgesics work 148

7 The cancer challenge 159
 Cancer starts in the genes 160
 Killing cancer – chemotherapy today 167
 New ways of combating cancer 171

8 Drugs for the mind 177
 The chemical brain 179
 Mending the mind? Drugs and mental illness 181
 When the brain dies before the body – the challenge of Alzheimer’s disease 197
 Sharpening mental faculties – the potential of cognitive enhancers 200

9 Drugs of recreation and addiction 203
 Speeding up the body and brain: the science of stimulants 204
 Alcohol – simple molecule, complex drug 211
 Expanding the mind – the experience of psychedelic drugs 213
 The other face of opiates 219
 A survey of recreational drug use 219

10 Natural alternatives: vitamins, minerals and herbs 227
 Vitamins and minerals: the case for supplementation 228
 Herbal medicines enter the mainstream 233
 Melatonin, the darkness hormone 236
 Herbal hazards 238

11 In the pipeline: gene-based medicine 241
 Genetic engineering for new pharmaceuticals 246
 The promise of gene therapy 254
 Genes, pharmaceuticals and the individual 257

Bibliography 259
Index 262
Illustrations

Fig. 1.1. From pills to pain relief – the journey of an aspirin molecule
Fig. 1.2. The structure of acetylsalicylic acid (aspirin)
Fig. 1.3. Enzyme inhibitors
Fig. 1.4. Cyclooxygenase and the action of aspirin
Fig. 1.5. Receptor agonists and antagonists
Fig. 2.1 Discovery and development of a new medicine
Fig. 2.2. Combinatorial chemistry – simple array
Fig. 2.3. Combinatorial chemistry – using libraries
Fig. 2.4. Combinatorial chemistry – solid phase synthesis
Fig. 2.5. Combinatorial chemistry – ‘split and mix’ solid phase synthesis
Fig. 3.1. How antibiotics inhibit transcription
Fig. 3.2. How antibiotics block translation
Fig. 4.1. The endocrine system
Fig. 4.2. How negative feedback works
Fig. 4.3. How the second messenger mechanism of hormone action works
Fig. 4.4. How the direct gene mechanism of hormone action works
Fig. 4.5. Hormonal variations during the menstrual cycle
Fig. 5.1. Death rates from coronary heart disease in different countries
Fig. 7.1. How gene mutations can cause cancer
Fig. 7.2. The route to cancer
Fig. 8.1. Transmission across a synapse
viii

Illustrations

Fig. 11.1. The structure of DNA
Fig. 11.2. Transcription of DNA
Fig. 11.3. Translation of mRNA into protein
Fig. 11.4. Production of human insulin by genetic engineering
Fig. 11.5. How antisense oligos work
Acknowledgements

I am grateful to the following people for the help they have given me with the preparation of this book: Nick Henderson and Dr Gordon Fryers of the European Aspirin Foundation, Dr Mike Stillings of Reckitt and Colman, Bill Kirkness from the Association of the British Pharmaceutical Industry, Shaida Dorabjee of the Centre for Medicines Research, Katy Griggs of the British Diabetic Association, Philip Connolly and Corinne Gordon of Glaxo Wellcome, and library staff at the Institute for the Study of Drug Dependence.

I would also like to thank the editors at Cambridge University Press who have been involved in this book, in particular Tim Benton for his support at the outset of the project, and Barnaby Willitts for his comments on the manuscript.
Introduction

Drugs have an impact on all our lives. Many people rely on a daily dose of aspirin or insulin to maintain their long-term health. Others may hope for better drugs to treat challenging illnesses such as cancer or schizophrenia. Away from the realm of serious disease, casual use of painkillers or indigestion remedies relieves minor aches and pains. And most people use some form of recreational drug such as caffeine, alcohol, or nicotine to help them cope with the stresses and strains of everyday life – or just for pleasure.

New drugs are coming onto the market all the time. There are now effective treatments for stroke, AIDS, and multiple sclerosis – where none existed before. Prescribing habits change too – long-term use of tranquillisers and sleeping pills is now frowned on, and slimming drugs are, officially, off limits. The range of medicines available over the counter is continually changing too. Now you can buy the anti-ulcer drug Zantac without a prescription, but some hay-fever remedies and even paracetamol (in large quantities) have moved into the prescription only category. Walk into a health food shop and you will discover an alternative pharmacy – vitamins, minerals, phytochemicals and herbs – in a bewildering array of strengths and dosages.

But how well do we understand the drugs we are prescribed or choose to take? What informs our doctor’s choices, and our own? And is there really a ‘pill for every ill’? Where do you find out about the drugs you take?

By law, companies must insert an information leaflet into every packet of a prescription drug. While efforts have been made recently to make these more comprehensible and accessible, they say far more about side effects and contraindications than they do about whether, why, and how the drug might improve the consumer’s quality of life. And an information leaflet cannot even hint at the fascination of the science that lies behind the drug.

Turn to the media and there is certainly no lack of drama when it comes to discussing drugs. Television and newspapers tend to concentrate on new ‘wonder’ drugs (in reality, there is no such thing). For instance, it is true
that the recently launched protease inhibitors to treat HIV/AIDS are a remarkable breakthrough. They have opened up the possibility of AIDS becoming a chronic disease, which the patient lives with, rather than an inevitable death sentence. But you may not have heard the full story; the long-term effects of the drugs are unknown, they are unaffordable for the majority of AIDS patients, and treatment with them involves a complex dosing regime.

On the other hand, scare stories about the side effects of drugs are often taken out of context and, worse, people act upon the information they read. Remember those news reports, in 1995, about the increased risks of developing deep vein thrombosis with some brands of oral contraceptive. Thousands of women stopped taking their Pill immediately, terrified they would die of a stroke or heart attack. Many became pregnant as a result – thereby actually doubling their risk of a clot.

There is the same need for hard information and a balanced overview when it comes to discussing ‘illegal’ drugs and substance misuse. The arguments for and against the legalisation of cannabis, for instance, are often driven more by social, economic and political factors than by science.

In this book, I hope to give this broad and much-needed overview of the drugs we use – from medicines that save lives to drugs which enhance the quality of life. I have called it *Magic Molecules* because I have drawn quite heavily on the ‘magic bullet’ concept of Paul Ehrlich, the founding father of the modern pharmaceutical industry. Ehrlich’s dream was to create safe and effective drugs which would home in upon their target in the body – be it an infectious bacterium or a cancer cell – with the precision of a ‘magic bullet’.

Much of the discussion will be about pharmaceutical drugs. While I will celebrate some of the industry’s remarkable breakthroughs – such as antibiotics, painkillers and hormonal contraceptives – I hope this book will also give readers cause to reflect on how well pharmaceutical drugs actually serve people’s health needs.

In the West, heart disease and cancer are the leading causes of death and disability. So it is hardly surprising that many of the world’s top selling drugs are for heart disease – it is a huge market. It is slightly harder to explain, in purely clinical terms, why the world’s top selling drug is for ulcers – and not for cancer, or infection.

Worldwide, however, infectious disease remains the biggest killer, claiming the lives of 17 million people a year. We thought we had conquered infection with antibiotics – but these clinical weapons are fast losing their
power as microbes evolve resistance to them, leaving us with a major public health problem. This has been caused, in part at least, by lack of vision, and reluctance to invest, on the part of the pharmaceutical industry.

And we still do not devote sufficient pharmaceutical resources to tropical diseases. Malaria kills three million people a year, one million of them children. But research into malaria receives only $60 million a year, compared to $140 million for asthma, $300 million for Alzheimer’s disease and $950 million for AIDS. Is this fair?

But this book is not just about the pharmaceutical industry and its products. Drugs are molecules which have a biological effect. It really is not relevant whether the drug is legal or illegal, recreational or medicinal, synthetic or natural. The biology and chemistry of drugs crosses these boundaries. Therefore I have also looked at many of the drugs which are used for pleasure, and at the products of the health food industry; both are as important, in their way, as pharmaceutical drugs. In the end, this is a book about chemistry at its best – about how a ‘magic molecule’ finds a target within the body, and causes a biological response which may have a profound effect at many levels upon the individual.

Many drug names are mentioned in this book. Names whose first letters are lower case are generic names (the official medical names). Where appropriate I have also referred to UK brand names; these names begin with a capital letter.

Susan Aldridge