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CHAPTER 1

Introduction

This chapter is a prelude to this book. It first describes in general terms what the
discipline of dynamical systems is about. The following sections contain a large
number of examples. Some of the problems treated later in the book appear here
for the first time.

1.1 DYNAMICS

What is a dynamical system? It is dynamical, something happens, something
changes over time. How do things change in nature? Galileo Galilei and Isaac Newton
were key players in a revolution whose central tenet is Nature obeys unchanging
laws that mathematics can describe. Things behave and evolve in a way determined
by fixed rules. The prehistory of dynamics as we know it is the development of
the laws of mechanics, the pursuit of exact science, and the full development of
classical and celestial mechanics. The Newtonian revolution lies in the fact that
the principles of nature can be expressed in terms of mathematics, and physical
events can be predicted and designed with mathematical certainty. After mechanics,
electricity, magnetism, and thermodynamics, other natural sciences followed suit,
and in the social sciences quantitative deterministic descriptions also have taken a
hold.

1.1.1 Determinism Versus Predictability
The key word is determinism: Nature obeys unchanging laws. The regularity of
celestial motions has been the primary example of order in nature forever:

God said, let there be lights in the firmament of the heavens to divide the day from the
night and let them be for signs and for seasons and for days and years.

The successes of classical and especially celestial mechanics in the eighteenth and
nineteenth centuries were seemingly unlimited, and Pierre Simon de Laplace felt
justified in saying (in the opening passage he added to his 1812 Philosophical Essay
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2 1. Introduction

on Probabilities):

We ought then to consider the present state of the universe as the effects of its pre-
vious state and as the cause of that which is to follow. An intelligence that, at a given
instant, could comprehend all the forces by which nature is animated and the respec-
tive situation of the beings that make it up, if moreover it were vast enough to submit
these data to analysis, would encompass in the same formula the movements of the
greatest bodies of the universe and those of the lightest atoms. For such an intelli-
gence nothing would be uncertain, and the future, like the past, would be open to its
eyes.1

The enthusiasm in this 1812 overture is understandable, and this forceful descrip-
tion of determinism is a good anchor for an understanding of one of the ba-
sic aspects of dynamical systems. Moreover, the titanic life’s work of Laplace in
celestial mechanics earned him the right to make such bold pronouncements.
There are some problems with this statement, however, and a central mission
of dynamical systems and of this book is to explore the relation between de-
terminism and predictability, which Laplace’s statement misses. The history of
the modern theory of dynamical systems begins with Henri Jules Poincaré in
the late nineteenth century. Almost 100 years after Laplace he wrote a summary
rejoinder:

If we could know exactly the laws of nature and the situation of the universe at the
initial instant, we should be able to predict exactly the situation of this same universe
at a subsequent instant. But even when the natural laws should have no further secret
for us, we could know the initial situation only approximately. If that permits us to
foresee the subsequent situation with the same degree of approximation, this is all we
require, we say the phenomenon has been predicted, that it is ruled by laws. But this
is not always the case; it may happen that slight differences in the initial conditions
produce very great differences in the final phenomena; a slight error in the former
would make an enormous error in the latter. Prediction becomes impossible and we
have the fortuitous phenomenon.2

His insights led to the point of view that underlies the study of dynamics as it is
practiced now and as we present it in this book: The study of long-term asymptotic
behavior, and especially that of its qualitative aspects, requires direct methods that
do not rely on prior explicit calculation of solutions. And in addition to the qual-
itative (geometric) study of a dynamical system, probabilistic phenomena play a
role.

A major motivation for the study of dynamical systems is their pervasive im-
portance in dealing with the world around us. Many systems evolve continuously
in time, such as those in mechanics, but there are also systems that naturally
evolve in discrete steps. We presently describe models of, for example, butterfly
populations, that are clocked by natural cycles. Butterflies live in the summer, and

1 Pierre Simon marquis de Laplace, Philosophical Essay on Probabilities, translated from the fifth
French edition of 1925 by Andrew I. Dale, Springer-Verlag, New York, 1995, p. 2.

2 Henri Jules Poincaré, Science et méthode, Section IV.II., Flammarion 1908; see The Foundations of
Science; Science and Hypothesis, The Value of science, Science and Method, translated by George Bruce
Halsted, The Science Press, Lancaster, PA, 1946, pp. 397f; The Value of Science: Essential Writings of
Henri Poincaré, edited by Stephen Jay Gould, Modern Library, 2001.



1.1 Dynamics 3

we discuss laws describing how next summer’s population size is determined by
that of this summer. There are also ways of studying a continuous-time system
by making it look like a discrete-time system. For example, one might check on
the moon’s position precisely every 24 hours. Or one could keep track of where
it rises any given day. Therefore we allow dynamical systems to evolve in dis-
crete steps, where the same rule is applied repeatedly to the result of the previous
step.

This is important for another reason. Such stepwise processes do not only oc-
cur in the world around us, but also in our minds. This happens whenever we go
through repeated steps on our way to the elusive perfect solution. Applied to such
procedures, dynamics provides insights and methods that are useful in analysis. We
show in this book that important facts in analysis are consequences of dynamical
facts, even of some rather simple ones: The Contraction Principle (Proposition 2.2.8,
Proposition 2.2.10, Proposition 2.6.10) gives the Inverse-Function Theorem 9.2.2
and the Implicit-Function Theorem 9.2.3. The power of dynamics in situations of
this kind has to do with the fact that various problems can be approached with an
iterative procedure of successive approximation by improved guesses at an answer.
Dynamics naturally provides the means to understand where such a procedure
leads.

1.1.2 Dynamics in Analysis
Whenever you use a systematic procedure to improve a guess at a solution you are
likely to have found a way of using dynamics to solve your problem exactly. To begin
to appreciate the power of this approach it is important to understand that the iter-
ative processes dynamics can handle are not at all required to operate on numbers
only. They may manipulate quite complex classes of objects: numbers, points in
Euclidean space, curves, functions, sequences, mappings, and so on. The possibil-
ities are endless, and dynamics can handle them all. We use iteration schemes on
functions in Section 9.4, mappings in Section 9.2.1 and sequences in Section 9.5.
The beauty of these applications lies in the elegance, power, and simplicity of the
solutions and insights they provide.

1.1.3 Dynamics in Mathematics
The preceding list touches only on a portion of the utility of dynamical systems
in understanding mathematical structures. There are others, where insights into
certain patterns in some branches of mathematics are most easily obtained by
perceiving that underlying the structure in question is something of a dynamical
nature that can readily be analyzed or, sometimes, has been analyzed already. This
is a range of applications of dynamical ideas that is exciting because it often involves
phenomena of a rich subtlety and variety. Here the beauty of applying dynamical
systems lies in the variety of behaviors, the surprising discovery of order in bewil-
dering complexity, and in the coherence between different areas of mathematics
that one may discover. A little later in this introductory chapter we give some simple
examples of such situations.
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� EXERCISES
In these exercises you are asked to use a calculator to play with some simple iterative
procedures. These are not random samples, and we return to several of these in
due course. In each exercise you are given a function f as well as a number x0. The
assignment is to consider the sequence defined recursively by the given initial value
and the rule xn+1 = f (xn). Compute enough terms to describe what happens in the
long run. If the sequence converges, note the limit and endeavor to determine a
closed expression for it. Note the number of steps you needed to compute to see
the pattern or to get a good approximation of the limit.

� Exercise 1.1.1 f (x) = √2+ x, x0 = 1.

� Exercise 1.1.2 f (x) = sin x, x0 = 1. Use the degree setting on your calculator –
this means that (in radians) we actually compute f (x) = sin(πx/180).

� Exercise 1.1.3 f (x) = sin x, x0 = 1. Use the radian setting here and forever after.

� Exercise 1.1.4 f (x) = cos x, x0 = 1.

� Exercise 1.1.5

f (x) = x sin x + cos x
1+ sin x

, x0 = 3/4.

� Exercise 1.1.6 f (x) = {10x} = 10x − �10x	 (fractional part), x0 =
√

1/2.

� Exercise 1.1.7 f (x) = {2x}, x0 =
√

1/2.

� Exercise 1.1.8

f (x) = 5+ x2

2x
, x0 = 2.

� Exercise 1.1.9 f (x) = x − tan x, x0 = 1.

� Exercise 1.1.10 f (x) = kx(1− x), x0 = 1/2, k = 1/2, 1, 2, 3.1, 3.5, 3.83, 3.99, 4.

� Exercise 1.1.11 f (x) = x + e−x, x0 = 1.

1.2 DYNAMICS IN NATURE

1.2.1 Antipodal Rabbits
Rabbits are not indigenous to Australia, but 24 wild European rabbits were intro-
duced by one Thomas Austin near Geelong in Southern Victoria around 1860, with
unfortunate consequences. Within a decade they were rampant across Victoria,
and within 20 years millions had devastated the land, and a prize of £25,000 was
advertized for a solution. By 1910 their descendants had spread across most of the
continent. The ecological impact is deep and widespread and has been called a
national tragedy. The annual cost to agriculture is estimated at AU$600 million.
The unchecked growth of their population makes an interesting example of a
dynamical system.

In modeling the development of this population we make a few choices. Its
large size suggests to count it in millions, and when the number of rabbits is
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expressed as x million then x is not necessarily an integer. After all, the initial value
is 0.000024 million rabbits. Therefore we measure the population by a real number
x. As for time, in a mild climate rabbits – famously – reproduce continuously.
(This is different for butterflies, say, whose existence and reproduction are strictly
seasonal; see Section 1.2.9.) Therefore we are best served by taking the time variable
to be a real number as well, t, say. Thus we are looking for ways of describing the
number of rabbits as a function x(t) of time.

To understand the dependence on time we look at what rabbits do: They eat
and reproduce. Australia is large, so they can eat all they want, and during any given
time period �t a fixed percentage of the (female) population will give birth and a
(smaller) percentage will die of old age (there are no natural enemies). Therefore
the increment x(t +�t)− x(t) is proportional to x(t)�t (via the difference of birth
and death rates). Taking a limit as �t → 0 we find that

dx
dt
= kx,(1.2.1)

where k represents the (fixed) relative growth rate of the population. Alternatively,
we sometimes write ẋ = kx, where the dot denotes differentiation with respect to
t. By now you should recognize this model from your calculus class.

It is the unchanging environment (and biology) that gives rise to this unchang-
ing evolution law and makes this a dynamical system of the kind we study. The
differential equation (1.2.1), which relates x and its rate of change, is easy to solve:
Separate variables (all x on the left, all t on the right) to get (1/x)dx = k dt and
integrate this with respect to t using substitution:

log |x| =
∫

1
x

dx =
∫

k dt = kt + C,

where log is the natural logarithm. Therefore, |x(t)| = eC ekt with eC = |x(0)| and we
find that

x(t) = x(0)ekt.(1.2.2)

� Exercise 1.2.1 Justify the disappearance of the absolute value signs above.

� Exercise 1.2.2 If x(0) = 3 and x(4) = 6, find x(2), x(6), and x(8).

1.2.2 The Leaning Rabbits of Pisa
In the year 1202, Leonardo of Pisa considered a more moderate question regarding
rabbits, which we explore in Example 2.2.9 and Section 3.1.9. The main differences
to the large-scale Australian model above are that the size of his urban yard limited
him to small numbers of rabbits and that with such a small number the population
growth does not happen continuously, but in relatively substantial discrete steps.
Here is the problem as he posed it:3

How many pairs of rabbits can be bred from one pair in one year?

3 Leonardo of Pisa: Liber abaci (1202), published in Scritti di Leonardo Pisano, Rome, B. Boncompagni,
1857; see p. 3 of Dirk J. Struik, A Source Book in Mathematics 1200–1800, Princeton, NJ, Princeton
University Press, 1986.
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A man has one pair of rabbits at a certain place entirely surrounded by a wall. We
wish to know how many pairs can be bred from it in one year, if the nature of these
rabbits is such that they breed every month one other pair and begin to breed in the
second month after their birth. Let the first pair breed a pair in the first month, then
duplicate it and there will be 2 pairs in a month. From these pairs one, namely the first,
breeds a pair in the second month, and thus there are 3 pairs in the second month.
From these in one month two will become pregnant, so that in the third month 2 pairs
of rabbits will be born. Thus there are 5 pairs in this month. From these in the same
month 3 will be pregnant, so that in the fourth month there will be 8 pairs . . . [We
have done this] by combining the first number with the second, hence 1 and 2, and the
second with the third, and the third with the fourth . . .

In other words, he came up with a sequence of numbers (of pairs of rabbits)
governed by the recursion bn+1 = bn+ bn−1 and chose starting values b0 = b1 = 1,
so the sequence goes 1, 1, 2, 3, 5, 8, 13, . . . . Does this look familiar? (Hint: As the son
of Bonaccio, Leonardo of Pisa was known as filius Bonacci or “son of good nature”;
Fibonacci for short.) Here is a question that can be answered easily with a little bit of
dynamics: How does his model compare with the continuous exponential-growth
model above?

According to exponential growth one should expect that once the terms get
large we always have bn+1 ≈ abn for some constant a independent of n. If we pretend
that we have actual equality, then the recursion formula gives

a2bn = abn+1 = bn+2 = bn+1 + bn = (a+ 1)bn,

so we must have a2 = a+ 1. The quadratic formula then gives us the value of the
growth constant a.

� Exercise 1.2.3 Calculate a.

Note, however, that we have only shown that if the growth is eventually
exponential, then the growth constant is this a, not that the growth is eventually
exponential. (If we assume the recursion bn+1 = 1 leads to exponential growth, we
could come up with a growth parameter if we are quick enough to do it before get-
ting a contradiction.) Dynamics provides us with tools that enable us to verify this
property easily in various different ways (Example 2.2.9 and Section 3.1.9). In Propo-
sition 3.1.11 we even convert this recursively defined sequence into closed form.

The value of this asymptotic ratio was known to Johannes Kepler. It is the
golden mean or the divine proportion. In his 1619 book Harmonices Mundi he
wrote (on page 273):

there is the ratio which is never fully expressed in numbers and cannot be demon-
strated by numbers in any other way, except by a long series of numbers gradually
approaching it: this ratio is called divine, when it is perfect, and it rules in various ways
throughout the dodecahedral wedding. Accordingly, the following consonances begin
to shadow forth that ratio: 1:2 and 2:3 and 3:5 and 5:8. For it exists most imperfectly
in 1:2, more perfectly in 5:8, and still more perfectly if we add 5 and 8 to make 13 and
take 8 as the numerator . . . .4

4 Johannes Kepler, Epitome of Copernican Astronomy & Harmonies of the World, Amherst, NY,
Prometheus Books, 1995.
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We note in Example 15.2.5 that these Fibonacci ratios are the optimal rational
approximations of the golden mean.

� Exercise 1.2.4 Express 1+ 1+ 2+ 3+ · · · + bn in terms of bn+2.

1.2.3 Fine Dining
Once upon a time lobsters were so abundant in New England waters that they
were poor man’s food. It even happened that prisoners in Maine rioted to demand
to be fed something other than lobsters for a change. Nowadays the haul is less
abundant and lobsters have become associated with fine dining. One (optimistic?)
model for the declining yields stipulates that the catch in any given year should
turn out to be the average of the previous two years’ catches.

Using again an for the number of lobsters caught in the year n, we can express
this model by a simple recursion relation:

an+1 = an−1/2+ an/2.(1.2.3)

As initial values one can take the Maine harvests of 1996 and 1997, which were
16,435 and 20,871 (metric) tons, respectively. This recursion is similar to the one for
the Fibonacci numbers, but in this case no exponential growth is to be expected.
One can see from the recursion that all future yields should be between the two
initial data. Indeed, 1997 was a record year. In Proposition 3.1.13 we find a way of
giving explicit formulas for future yields, that is, we give the yield in an arbitrary
year n in a closed form as a function of n.

This situation as well as the Fibonacci rabbit problem are examples where time
is measured in discrete steps. There are many other examples where this is natural.
Such a scenario from population biology is discussed in Section 1.2.9. Other biolog-
ical examples arise in genetics (gene frequency) or epidemiology. Social scientists
use discrete-time models as well (commodity prices, rate of spread of a rumor,
theories of learning that model the amount of information retained for a given
time).

1.2.4 Turning Over a New Leaf
The word phyllotaxis comes from the words phyllo=leaf and taxis=order or arrange-
ment. It refers to the way leaves are arranged on twigs, or other plant components
on the next larger one. The seeds of a sunflower and of a pine cone are further
examples. A beautiful description is given by Harold Scott Macdonald Coxeter in
his Introduction to Geometry. That regular patterns often occur is familiar from
sunflowers and pineapples.

In some species of trees the leaves on twigs are also arranged in regular patterns.
The pattern varies by species. The simplest pattern is that of leaves alternating
on opposite sides of the twig. It is called (1, 2)-phyllotaxis: Successive leaves are
separated by a half-turn around the twig. The leaves of elms exhibit this pattern, as
do hazel leaves.5 Adjacent leaves may also have a (2/3) turn between them, which
would be referred to as (2, 3)-phyllotaxis. Such is the case with beeches. Oak trees

5 On which the first author of this book should be an expert!
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show a (3, 5)-pattern, poplars a (5, 8), and willows, (8, 13)-phyllotaxis. Of course,
the pattern may not always be attained to full precision, and in some plants there
are transitions between different patterns as they grow.

The diamond-shaped seeds of a sunflower are packed densely and regularly.
One may perceive a spiral pattern in their arrangement, and, in fact, there are
always two such patterns in opposite directions. The numbers of spirals in the two
patterns are successive Fibonacci numbers. The seeds of a fir cone exhibit spirals
as well, but on a cone rather than flat ones. These come in two families, whose
numbers are again successive Fibonacci numbers.

Pineapples, too, exhibit spiral patterns, and, because their surface is composed
of approximately hexagonal pieces, there are three possible directions in which
one can perceive spirals. Accordingly, one may find 5, 8, and 13 spirals: 5 sloping
up gently to the right, say, 8 sloping up to the left, and 13 sloping quite steeply
right.

The observation and enjoyment of these beautiful patterns is not new. They
were noticed systematically in the nineteenth century. But an explanation for why
there are such patterns did not emerge particularly soon. In fact, the case is not
entirely closed yet.

Here is a model that leads to an explanation of how phyllotaxis occurs. The basic
growth process of this type consists of buds (primordia) of leaves or seeds growing
out of a center and then moving away from it according to three rules proposed in
1868 by the self-taught botanist Wilhelm Friedrich Benedikt Hofmeister, while he
was professor and director of the botanical garden in Heidelberg:

(1) New buds form at regular intervals, far from the old ones.
(2) Buds move radially from the center.
(3) The growth rate decreases as one moves outward.

A physical experiment designed to mimic these three Hofmeister rules produces
spiral patterns of this Fibonacci type, so from these rules one should be able to
infer that spiral patterns must occur. This has been done recently with methods of
the kind that this book describes.6

Here is a description of how dynamics may help. To implement the Hofmeister
rules we model the situation by a family of N + 1 concentric circles of radius
rk (k = 0, . . . , N ), where r stands for growth rate, and we put a bud on each circle.
The angle (with respect to the origin) between one bud and the next is θk. Possible
patterns are now parametrized by angles (θ0, . . . , θN). This means that the “space
of plants” is a torus; see Section 2.6.4. When a new bud appears on the unit circle,
all other buds move outward one circle. The angle of the new bud depends on all
previous angles, so we get a map sending old angles θk to new angles �k by

�0 = f (θ0, . . . , θN), �1 = θ0, . . . , �N = θN−1.

Now f has to be designed to reflect the first Hofmeister rule. One way to do this is to
define a natural potential energy to reflect “repulsion” between buds and choosing

6 Pau Atela, Christophe Golé, and Scott Hotton: A dynamical system for plant pattern formation:
A rigorous analysis, Journal of Nonlinear Science 12 (2002), no. 6, pp. 641–676.
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f (θ0, . . . , θN) to be the minimum. A natural potential is

W(�) =
N∑

k=0

U(‖rkeiθk − ei�‖),

where U(x) = 1/xs for some s > 0. A simpler potential that gives the same qual-
itative behavior is W(�) = max0≤k≤N U(‖rkeiθk − ei�‖). With either choice one
can show that regular spirals (that is, θ0 = · · · = θN) are attracting fixed points
(Section 2.2.7) of this map. This means that spirals will appear naturally. A result of
the analysis is furthermore that the Fibonacci numbers also must appear.

1.2.5 Variations on Exponential Growth
In the example of a rabbit population of Section 1.2.1 it is natural to expect a
positive growth parameter k in the equation ẋ = kx. This coefficient, however, is
the difference between rates of reproduction and death. For the people of some
western societies, the reproduction rate has declined so much as to be lower
than the death rate. The same model still applies, but with k < 0 the solution
x(t) = x(0)ekt describes an exponentially shrinking population.

The same differential equation ẋ = kx comes up in numerous simple models
because it is the simplest differential equation in one variable.

Radioactive decay is a popular example: It is an experimental fact that of a par-
ticular radioactive substance a specific percentage will decay in a fixed time period.
As before, this gives ẋ = kx with k < 0. In this setting the constant k is often
specified by the half-life, which is the time T such that x(t + T) = x(t)/2. Depend-
ing on the substance, this time period may be minute fractions of a second to
thousands of years. This is important in regard to the disposal of radioactive waste,
which often has a long half-life, or radioactive contamination. Biology laboratories
use radioactive phosphorus as a marker, which has a half-life of a moderate
number of days. A spill on the laboratory bench is usually covered with plexiglas
for some two weeks, after which the radiation has sufficiently diminished. On the
other hand, a positive effect of radioactive decay is the possibility of radioisotope
dating, which can be used to assess the age of organic or geologic samples. Unlike
in population biology, the exponential decay model of radioactivity needs no
refinements to account for real data. It is an exact law of nature.

� Exercise 1.2.5 Express the half-life in terms of k, and vice versa.

The importance of the simple differential equation ẋ = kx goes far beyond the
collection of models in which it appears, however many of these there may be.
It also comes up in the study of more complicated differential equations as an
approximation that can illuminate some of the behavior in the more complicated
setting. This approach of linearization is of great importance in dynamical systems.

1.2.6 The Doomsday Model
We now return to the problem of population growth. Actual population data show
that the world population has grown with increasing rapidity. Therefore we should
consider a modification of the basic model that takes into account the progress of
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civilization. Suppose that with the growth of the population the growing number
of researchers manages to progressively decrease the death rate and increase
fertility as well. Assuming, boldly, that these improvements make the relative rate
of increase in population a small positive power xε of the present size x (rather
than being constant k), we find that

dx
dt
= x1+ε .

As before, this is easy to solve by separating variables:

t + C =
∫

x−1−ε dx = −x−ε/ε

with C = −x(0)−ε/ε, so x(t) = (x(0)−ε − εt)−1/ε , which becomes infinite for
t = 1/(εx(0)ε). Population explosion indeed!

As far as biology is concerned, this suggests refining our model. Clearly, our
assumptions on the increasing growth rate were too generous (ultimately, resources
are limited). As an example in differential equations this is instructive, however:
There are reasonable-looking differential equations that have divergent solutions.

1.2.7 Predators
The reason rabbits have not over taken over the European continent is that there
have always been predators around to kill rabbits. This has interesting effects on the
population dynamics, because the populations of predators and their prey interact:
A small number of rabbits decreases the predator population by starvation, which
tends to increase the rabbit population. Thus one expects a stable equilibrium – or
possibly oscillations.

Many models of interacting populations of predator and prey were proposed
independently by Alfred Lotka and Vito Volterra. A simple one is the Lotka–Volterra
equation:

dx
dt
= a1x + c1xy

dy
dt
= a2x + c2xy,

where a1, c2 > 0 and a2, c1 < 0, that is, x is the prey population, which would grow
on its own (a1 > 0) but is diminished by the predator (c1 < 0), while y is the predator,
which would starve if alone (a2 < 0) and grows by feeding on its prey (c2 > 0).
Naturally, we take x and y positive. This model assumes that there is no delay
between causes and effects due to the time of gestation or egg incubation. This is
reasonable when the time scale of interest is not too short. Furthermore, choosing
time continuously is most appropriate when generations overlap substantially.
Populations with nonoverlapping generations will be treated shortly.

There is an equilibrium of species at (a2/c2,a1/c1). Any other initial set of
populations turns out to result in oscillations of the numbers of predator and prey.
To see this, use the chain rule to verify that

E(x, y) := x−a2 e−c2 x ya1 ec1 y

is constant along orbits, that is, (d/dt)E(x(t), y(t)) = 0. This means that the
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solutions of the Lotka–Volterra equation must lie on the curves E(x, y) = const.
These curves are closed.

1.2.8 Horror Vacui
The Lotka–Volterra equation invites a brief digression to a physical system that
shows a different kind of oscillatatory behavior. Its nonlinear oscillations have gen-
erated much interest, and the system has been important for some developments
in dynamics.

The Dutch engineer Balthasar van der Pol at the Science Laboratory of the
Philips Light Bulb Factory in Eindhoven modeled a vacuum tube circuit by the
differential equation

d2x
dt2

+ ε(x2 − 1)
dx
dt
+ x = 0,

which can be rewritten using y = dx/dt as

dx
dt
= y

dy
dt
= ε(1− x2)y − x.

If ε = 1, the origin is a repeller (Definition 2.3.6). However, solutions do not grow
indefinitely, because there is a periodic solution that circles around the origin.
Indeed, for ε = 0 there are only such solutions, and for ε = 1 one of these circles
persists in deformed shape, and all other solutions approach it ever more closely
as t →+∞. The numerically computed picture in Figure 1.2.1 shows this clearly.
The curve is called a limit cycle.

As an aside we mention that there is also the potential for horrifying complexity
in a vacuum tube circuit. In 1927, van der Pol and J. van der Mark reported on
experiments with a “relaxation oscillator” circuit built from a capacitor and a neon
lamp (this is the nonlinear element) and a periodic driving voltage. (A driving
voltage corresponds to putting a periodic term on the right-hand side of the van
der Pol equation above.) They were interested in the fact that, in contrast to a linear
oscillator (such as a violin string), which exhibits multiples of a base frequency,
these oscillations were at “submultiples” of the basic frequency, that is, half that
frequency, a third, and so on down to 1/40th, as the driving voltage increased. They

Figure 1.2.1. The van der Pol equation.
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obtained these frequencies by listening “with a telephone coupled loosely in some
way to the system” and reported that

Often an irregular noise is heard in the telephone receivers before the frequency
jumps to the next lower value. However, this is a subsidiary phenomenon, the main
effect being the regular frequency demultiplication.

This irregular noise was one of the first experimental encounters with what was to
become known as chaos, but the time was not ripe yet.7

1.2.9 The Other Butterfly Effect8

Population dynamics is naturally done in discrete-time steps when generations
do not overlap. This was imposed somewhat artificially in the problem posed by
Leonardo of Pisa (Section 1.2.2). For many populations this happens naturally,
especially insects in temperate zones, including many crop and orchard pests. A
pleasant example is a butterfly colony in an isolated location with a fairly constant
seasonal cycle (unchanging rules and no external influence). There is no overlap at
all between the current generation (this summer) and the next (next summer). We
would like to know how the size of the population varies from summer to summer.
There may be plenty of environmental factors that affect the population, but by
assuming unchanging rules we ensure that next summer’s population depends
only on this summer’s population, and this dependence is the same every year.
That means that the only parameter in this model that varies at all is the population
itself. Therefore, up to choosing some fixed constants, the evolution law will specify
the population size next summer as a function of this summer’s population only.
The specific evolution law will result from modeling this situation according to our
understanding of the biological processes involved.

1. Exponential growth. For instance, it is plausible that a larger population is likely
to lay more eggs and produce a yet larger population next year, proportional, in fact,
to the present population. Denoting the present population by x, we then find that
next year’s population is f (x) = kx for some positive constant k, which is the average
number of offspring per butterfly. If we denote the population in year i by xi , we
therefore find that xi+1 = f (xi) = kxi and in particular that x1 = kx0, x2 = kx1 = k2x0,
and so on, that is, xi = ki x0; the population grows exponentially. This looks much
like the exponential–growth problem as we analyzed it in continuous time.

2. Competition. A problem familiar from public debate is sustainability, and the
exponential growth model leads to large populations relatively rapidly. It is more
realistic to take into account that a large population will run into problems with
limited food supplies. This will, by way of malnutrition or starvation, reduce the

7 B. van der Pol, J. van der Mark, Frequency demultiplication, Nature 120 (1927), 363–364.
8 This is a reference to the statement of Edward Lorenz (see Section 13.3) that a butterfly may flutter

by in Rio and thereby cause a typhoon in Tokyo a week later. Or maybe to butterfly ballots in the
2000 Florida election?
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number of butterflies available for egg-laying when the time comes. A relatively
small number of butterflies next year is the result.

The simplest rule that incorporates such more sensible qualitative properties
is given by the formula f (x) = k(1− αx)x, where x is the present number of
butterflies. This rule is the simplest because we have only adduced a linear
correction to the growth rate k. In this correction α represents the rate at which
fertility is reduced through competition. Alternatively, one can say that 1/α is the
maximal possible number of butterflies; that is, if there are 1/α butterflies this year,
then they will eat up all available food before getting a chance to lay their eggs;
hence they will starve and there will be no butterflies next year. Thus, if again xi

denotes the butterfly population in the year i, starting with i = 0, then the evolution
is given by xi+1 = kxi(1− αxi)=: f (xi). This is a deterministic mathematical model
in which every future state (size of the butterfly colony) can be computed from
this year’s state. One drawback is that populations larger than 1/α appear to give
negative populations the next year, which could be avoided with a model such
as xi+1 = xiek(1−xi ). But tractability makes the simpler model more popular, and it
played a significant role in disseminating to scientists the important insight that
simple models can have complicated long-term behaviors.9

One feature reminiscent of the exponential-growth model is that, for popula-
tions much smaller than the limit population, growth is indeed essentially
exponential: If αx � 1, then 1− αx ≈ 1 and thus xi+1 ≈ kxi ; hence xn ≈ knx0 –
but only so long as the population stays small. This makes intuitive sense: The
population is too small to suffer from competition for food, as a large population
would.

Note that we made a slip in the previous paragraph: The sequence xn ≈ knx0

grows exponentially if k > 1. If this is not the case, then the butterfly colony
becomes extinct. An interesting interplay between reproduction rates and the
carrying capacity influences the possibilities here.

3. Change of variable. To simplify the analysis of this system it is convenient to
make a simple change of variable that eliminates the parameter α. We describe it
with some care here, because changing variables is an important tool in dynamics.

Write the evolution law as x′ = kx(1− αx), where x is the population in one year
and x′ the population in the next year. If we rescale our units by writing y = αx,
then we must set

y′ = αx′ = αkx(1− αx) = ky(1− y).

In other words, we now iterate the map g(y) = ky(1− y). The relationship between
the maps f and g is given by g(y) = h−1( f (h(y))), where h(y) = y/α = x. This can
be read as “go from new variable to old, apply the old map, and then go to the new
variable again.”

9 As its title shows, getting this message across was the aim of an influential article by Robert M. May,
Simple Mathematical Models with Very Complicated Dynamics, Nature 261 (1976), 459–467. This
article also established the quadratic model as the one to be studied. A good impression of the effects
on various branches of biology is given by James Gleick, Chaos, Making a New Science, Viking Press,
New York, 1987, pp. 78ff.
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The effect of this change of variable is to normalize the competition factor α to
1. Since we never chose specific units to begin with, let’s rename the variables and
maps back to x and f .

4. The logistic equation. We have arrived at a model of this system that is
represented by iterations of

f (x) = kx(1− x).

This map f is called the logistic map (or logistic family, because there is a pa-
rameter), and the equation x′ = kx(1− x) is called the logistic equation. The term
logistic comes from the French logistique, which in turn derived from logement, the
lodgment of soldiers. We also refer to this family of maps as the quadratic family. It
was introduced in 1845 by the Belgian sociologist and mathematician Verhulst.10

From the brief discussion before the preceding subsection it appears that the
case k ≤ 1 results in inevitable extinction. This is indeed the case. For k < 1, this is
clear because kx(1− x) < kx, and for k = 1 it is not hard to verify either, although
the population decay is not exponential in this case. By contrast, large values of
k should be good for achieving a large population. Or maybe not. The problem is
that too large a population will be succeeded by a less numerous generation. One
would hope that the population settles to an agreeable size in due time, at which
there is a balance between fertility and competition.

� Exercise 1.2.6 Prove that the case k = 1 results in extinction.

Note that, unlike in the simpler exponential growth model, we now refrained
from writing down an explicit formula for xn in terms of x0. This formula is given
by polynomials of order 2n. Even if one were to manage to write them down for a
reasonable n, the formulas would not be informative. We will, in due course, be able
to say quite a bit about the behavior of this model. At the moment it makes sense to
explore it a little to see what kind of behavior occurs. Whether the initial size of the
population matters, we have not seen yet. But changing the parameter k certainly is
likely to make a difference, or so one would hope, because it would be a sad model
indeed that predicts certain extinction all the time. The reasonable range for k is
from 0 to 4. [For k > 4, it predicts that a population size of 1/2 is followed two years
later by a negative population, which makes little biological sense. This suggests that
a slightly more sophisticated (nonlinear) correction rule would be a good idea.]

5. Experiments. Increasing kshould produce the possibility of a stable population,
that is, to allow the species to avoid extinction. So let’s start working out the model
for some k > 1. A simpleminded choice would be k = 2, halfway between 0 and 4.

� Exercise 1.2.7 Starting with x = 0.01, iterate 2x(1− x) until you discern a clear
pattern.

10 Pierre-François Verhulst, Récherches mathématiques sur la loi d’accroissement de la population,
Nouvelles Mémoires de l’Academie Royale des Sciences et Belles-Lettres de Bruxelles 18 (1845), 1–38.
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Starting from a small population, one obtains steady growth and eventually the
population levels off at 1/2. This is precisely the behavior one should expect from
a decent model. Note that steady states satisfy x = 2x(1− x), of which 0 and 1/2
are the only solutions.

� Exercise 1.2.8 Starting with x = 0.01 iterate 1.9x(1− x) and 2.1x(1− x) until
you discern a clear pattern.

If k is a little less than 2, the phenomenon is rather the same, for k a little bigger
it also goes that way, except for slightly overshooting the steady-state population.

� Exercise 1.2.9 Starting with x = 0.01, iterate 3x(1− x) and 2.9x(1− x) until you
discern a clear pattern.

For k = 3, the ultimate behavior is about the same, but the way the population
settles down is a little different. There are fairly substantial oscillations of too large
and too small population that die out slowly, whereas for k near 2 there was only a
hint of this behavior, and it died down fast. Nevertheless, an ultimate steady state
still prevails.

� Exercise 1.2.10 Starting with x = 0.01, iterate 3.1x(1− x) until you discern a
clear pattern.

For k = 3.1, there are oscillations of too large and too small as before. They do
get a little smaller, but this time they do not die down all the way. With a simple
program one can iterate this for quite a while and see that no steady state is attained.

� Exercise 1.2.11 Starting with x = 0.66, iterate 3.1x(1− x) until you discern a
clear pattern.

In the previous experiment, there is the possibility that the oscillations die down
so slowly that the numerics fail to notice. Therefore, as a control, we start the same
iteration at the average of the two values. This should settle down if our diagnosis
is correct. But it does not. We see oscillations that grow until their size is as it was
before.

These oscillations are stable! This is our first population model that displays
persistent behavior that is not monotonic. No matter at which size you start, the
species with fertility 3.1 is just a little too fertile for its own good and keeps running
into overpopulation every other year. Not by much, but forever.

Judging from the previous increments of k there seems only about k = 4 left,
but to be safe let’s first try something closer to 3 first. At least it is interesting to see
whether these oscillations get bigger with increasing k. They should. And how big?

� Exercise 1.2.12 Starting with x = 0.66, iterate 3.45x(1− x) and 3.5x(1− x) until
you discern a clear pattern.
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The behavior is becoming more complicated around k = 3.45. Instead of the
simple oscillation between two values, there is now a secondary dance around each
of these values. The oscillations now involve four population sizes: “Big, small, big,
Small” repeated in a 4-cycle. The period of oscillation has doubled.

� Exercise 1.2.13 Experiment in a manner as before with parameters slightly
larger than 3.5.

A good numerical experimenter will see some pattern here for a while: After
a rather slight parameter increase the period doubles again; there are now eight
population sizes through which the model cycles relentlessly. A much more minute
increment brings us to period 16, and it keeps getting more complicated by powers
of two. This cascade of period doublings is complementary to what one sees in a
linear oscillator such as a violin string or the column of air in wind instruments or
organ pipes: There it is the frequency that has higher harmonics of double, triple,
and quadruple the base frequency. Here the frequency is halved successively to
give subharmonics, an inherently nonlinear phenomenon.

Does this period doubling continue until k = 4?

� Exercise 1.2.14 Starting with x = .5, iterate 3.83x(1− x) until you discern a clear
pattern.

When we look into k = 3.83 we find something rather different: There is a
periodic pattern again, which we seem to have gotten used to. But the period is 3,
not a power of 2. So this pattern appeared in an entirely different way. And we don’t
see the powers of 2, so these must have run their course somewhat earlier.

� Exercise 1.2.15 Try k = 3.828.

No obvious pattern here.

� Exercise 1.2.16 Try k = 4.

There is not much tranquility here either.

6. Outlook. In trying out a few parameter values in the simplest possible nonlinear
population model we have encountered behavior that differs widely for different
parameter values. Where the behavior is somewhat straightforward we do not have
the means to explain how it evolves to such patterns: Why do periods double for
a while? Where did the period-3 oscillation come from? And at the end, and in
experiments with countless other values of the parameter you may choose to try,
we see behavior we cannot even describe effectively for lack of words. At this stage
there is little more we can say than that in those cases the numbers are all over the
place.

We return to this model later (Section 2.5, Section 7.1.2, Section 7.4.3 and
Chapter 11) to explain some of the basic mechanisms that cause these diverse
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behaviors in the quadratic family fk(x) = kx(1− x). We do not provide an exhaus-
tive analysis that covers all parameter values, but the dynamics of these maps is
quite well understood. In this book we develop important concepts that are needed
to describe the complex types of behavior one can see in this situation, and in many
other important ones.

Already this purely numerical exploration carries several lessons. The first one
is that simple systems can exhibit complex long-term behavior. Again, we arrived at
this example from the linear one by making the most benign change possible. And
immediately we ran into behavior so complex as to defy description. Therefore
such complex behavior is likely to be rather more common than one would have
thought.

The other lesson is that it is worth learning about ways of understanding,
describing, and explaining such rich and complicated behavior. Indeed, the impor-
tant insights we introduce in this book are centered on the study of systems where
explicit computation is not feasible or useful. We see that even in the absence of
perfectly calculated results for all time one can make precise and useful qualitative
and quantitative statements about such dynamical systems. Part of the work is to
develop concepts adequate for a description of phenomena of such complexity
as we have begun to glimpse in this example. Our study of this particular example
begins in Section 2.5, where we study the simple behaviors that occur for small pa-
rameter values. In Section 7.1.2 and Section 7.4.3 we look at large parameter values.
For these the asymptotic behavior is most chaotic. In Chapter 11 we present some
of the ideas used in understanding the intermediate parameter regime, where the
transitions to maximal complexity occur.

As an interesting footnote we mention that the analogous population with
continuous time (which is quite reasonable for other species) has none of this
complexity (see Section 2.4.2).

1.2.10 A Flash of Inspiration
As another example of dynamics in nature we can take the flashing of fireflies.
Possibly the earliest report of a remarkable phenomenon is from Sir Francis Drake’s
1577 expedition:

[o]ur general . . . sailed to a certaine little island to the southwards of Celebes, . . .
throughly growen with wood of a large and high growth. . . .Among these trees night
by night, through the whole land, did shew themselves an infinite swarme of fiery
wormes flying in the ayre, whose bodies beeing no bigger than our common English
flies, make such a shew of light, as if every twigge or tree had been a burning candle.11

A clearer description of what is so remarkable about these fireflies was given by
Engelbert Kämpfer, a doctor from eastern Westphalia who made a 10-year voyage
through Russia, Persia, southeast Asia, and Japan. On July 6, 1690, he traveled down
the Chao Phraya (Meinam) River from Bangkok and observed:

The glowworms (Cicindelae) represent another shew, which settle on some trees,
like a fiery cloud, with this surprising circumstance, that a whole swarm of these

11 Richard Hakluyt (pronounced Hack-loot), A Selection of the Principal Voyages, Traffiques and
Discoveries of the English Nation, edited by Laurence Irving, Knopf, New York, 1926.




