This timely volume provides the first comprehensive review and synthesis of the current understanding of the origin, evolution, and effects of magnetic fields in the Sun and other cool stars. Magnetic activity results in a wealth of phenomena— including starspots, nonradiatively heated outer atmospheres, activity cycles, deceleration of rotation rates, and even, in close binaries, stellar cannibalism— all of which are covered clearly and authoritatively.

This book brings together for the first time recent results in solar studies, with their wealth of observational detail, and stellar studies, which allow the study of how activity evolves and depends on the mass, age, and chemical composition of stars. The result is an illuminating and comprehensive view of stellar magnetic activity. Observational data are interpreted by using the latest models in convective simulations, dynamo theory, outer-atmospheric heating, stellar winds, and angular momentum loss.

Researchers are provided with a state-of-the-art review of this exciting field, and the pedagogical style and introductory material make the book an ideal and welcome introduction for graduate students.
SOLAR AND STELLAR MAGNETIC ACTIVITY
Cambridge astrophysics series

Series editors
Andrew King, Douglas Lin, Stephen Maran, Jim Pringle and Martin Ward

Titles available in this series

7. Spectroscopy of Astrophysical Plasmas
 by A. Dalgarno and D. Layzer

10. Quasar Astronomy
 by D. W. Weedman

17. Molecular Collisions in the Interstellar Medium
 by D. Flower

18. Plasma Loops in the Solar Corona
 by R. J. Bray, L. E. Cram, C. J. Durrant and R. E. Loughhead

19. Beams and Jets in Astrophysics
 edited by P. A. Hughes

20. The Observation and Analysis of Stellar Photospheres
 by David F. Gray

 by J. Frank, A. R. King and D. J. Raine

22. Gamma-ray Astronomy 2nd Edition
 by P. V. Ramana Murthy and A. W. Wolfendale

23. The Solar Transition Region
 by J. T. Mariska

24. Solar and Stellar Activity Cycles
 by Peter R. Wilson

25. 3K: The Cosmic Microwave Background Radiation
 by R. B. Partridge

26. X-ray Binaries
 by Walter H. G. Lewin, Jan van Paradijs and Edward P. J. van den Heuvel

27. RR Lyrae Stars
 by Horace A. Smith

28. Cataclysmic Variable Stars
 by Brian Warner

29. The Magellanic Clouds
 by Bengt E. Westerlund

30. Globular Cluster Systems
 by Keith M. Ashman and Stephen E. Zepf

31. Pulsar Astronomy 2nd Edition
 by Andrew G. Lyne and Francis Graham-Smith

32. Accretion Processes in Star Formation
 by Lee W. Hartmann

33. The Origin and Evolution of Planetary Nebulae
 by Sun Kwok

34. Solar and Stellar Magnetic Activity
 by Carolus J. Schrijver and Cornelis Zwaan
SOLAR AND STELLAR MAGNETIC ACTIVITY

C. J. SCHRIJVER
Stanford-Lockhead Institute for Space Research, Palo Alto

C. ZWAAN
Astronomical Institute, University of Utrecht
Die Sonne tönt nach alter Weise
In Brudersphären Wettgesang,
Und ihre vorgeschriebene Reise
Vollendet sie mit Donnergang.

Ihr Anblick gibt den Engeln Stärke,
Wenn Keiner Sie ergründen mag.
Die unbegreiflich hohen Werke
Sind herrlich wie am ersten Tag.

Johann Wolfgang von Goethe
Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction: solar features and terminology</td>
<td>1</td>
</tr>
<tr>
<td>2 Stellar structure</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Global stellar structure</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Convective envelopes: classical concepts</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Radiative transfer and diagnostics</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Stellar classification and evolution</td>
<td>38</td>
</tr>
<tr>
<td>2.5 Convection in stellar envelopes</td>
<td>45</td>
</tr>
<tr>
<td>2.6 Acoustic waves in stars</td>
<td>60</td>
</tr>
<tr>
<td>2.7 Basal radiative losses</td>
<td>65</td>
</tr>
<tr>
<td>2.8 Atmospheric structure not affected by magnetic fields</td>
<td>70</td>
</tr>
<tr>
<td>3 Solar differential rotation and meridional flow</td>
<td>73</td>
</tr>
<tr>
<td>3.1 Surface rotation and torsional patterns</td>
<td>74</td>
</tr>
<tr>
<td>3.2 Meridional and other large-scale flows</td>
<td>77</td>
</tr>
<tr>
<td>3.3 Rotation with depth</td>
<td>79</td>
</tr>
<tr>
<td>4 Solar magnetic structure</td>
<td>82</td>
</tr>
<tr>
<td>4.1 Magnetohydrodynamics in convective envelopes</td>
<td>83</td>
</tr>
<tr>
<td>4.2 Concentrations of strong magnetic field</td>
<td>92</td>
</tr>
<tr>
<td>4.3 Magnetohydrostatic models</td>
<td>98</td>
</tr>
<tr>
<td>4.4 Emergence of magnetic field and convective collapse</td>
<td>105</td>
</tr>
<tr>
<td>4.5 Omega loops and toroidal flux bundles</td>
<td>108</td>
</tr>
<tr>
<td>4.6 Weak field and the magnetic dichotomy</td>
<td>110</td>
</tr>
<tr>
<td>5 Solar magnetic configurations</td>
<td>115</td>
</tr>
<tr>
<td>5.1 Active regions</td>
<td>115</td>
</tr>
<tr>
<td>5.2 The sequence of magnetoconvective configurations</td>
<td>126</td>
</tr>
<tr>
<td>5.3 Flux positioning and dynamics on small scales</td>
<td>126</td>
</tr>
<tr>
<td>5.4 The plage state</td>
<td>132</td>
</tr>
<tr>
<td>5.5 Heat transfer and magnetic concentrations</td>
<td>137</td>
</tr>
</tbody>
</table>
Contents

6 Global properties of the solar magnetic field 138
6.1 The solar activity cycle 138
6.2 Large-scale patterns in flux emergence 143
6.3 Distribution of surface magnetic field 155
6.4 Removal of magnetic flux from the photosphere 167

7 The solar dynamo 173
7.1 Mean-field dynamo theory 174
7.2 Conceptual models of the solar cycle 178
7.3 Small-scale magnetic fields 182
7.4 Dynamos in deep convective envelopes 184

8 The solar outer atmosphere 186
8.1 Topology of the solar outer atmosphere 186
8.2 The filament-prominence configuration 197
8.3 Transients 199
8.4 Radiative and magnetic flux densities 209
8.5 Chromospheric modeling 217
8.6 Solar coronal structure 220
8.7 Coronal holes 227
8.8 The chromosphere–corona transition region 229
8.9 The solar wind and the magnetic brake 231

9 Stellar outer atmospheres 238
9.1 Historical sketch of the study of stellar activity 238
9.2 Stellar magnetic fields 238
9.3 The Mt. Wilson Ca II HK project 242
9.4 Relationships between stellar activity diagnostics 246
9.5 The power-law nature of stellar flux–flux relationships 252
9.6 Stellar coronal structure 258

10 Mechanisms of atmospheric heating 266

11 Activity and stellar properties 277
11.1 Activity throughout the H–R diagram 277
11.2 Measures of atmospheric activity 281
11.3 Dynamo, rotation rate, and stellar parameters 283
11.4 Activity in stars with shallow convective envelopes 291
11.5 Activity in very cool main-sequence stars 294
11.6 Magnetic activity in T Tauri objects 296
11.7 Long-term variability of stellar activity 299

12 Stellar magnetic phenomena 303
12.1 Outer-atmospheric imaging 303
12.2 Stellar plages, starspots, and prominences 305
Contents

12.3 The extent of stellar coronae 310
12.4 Stellar flares 312
12.5 Direct evidence for stellar winds 314
12.6 Large-scale patterns in surface activity 318
12.7 Stellar differential rotation 319

13 Activity and rotation on evolutionary time scales 324
13.1 The evolution of the stellar moment of inertia 324
13.2 Observed rotational evolution of stars 326
13.3 Magnetic braking and stellar evolution 329

14 Activity in binary stars 336
14.1 Tidal interaction and magnetic braking 336
14.2 Properties of active binaries 340
14.3 Types of particularly active stars and binary systems 342

15 Propositions on stellar dynamos 344

Appendix I: Unit conversions 351
Bibliography 353
Index 375
Image taken with TRACE in its 171-Å passband on 26 July 1998, at 15:50:23 UT of Active Region 8,272 at the southwest limb, rotated over −90°. High-arching loops are filled with plasma at ∼1 MK up to the top. Most of the material is concentrated near the lower ends under the influence of gravity. Hotter 3–5 MK loops, at which the bulk of the radiative losses from the corona occur, do not show up at this wavelength. Their existence can be inferred from the emission from the top of the conductively heated transition region, however, where the temperature transits the 1-MK range, as seen in the low-lying bright patches of “moss.” A filament-prominence configuration causes extinction of the extreme-ultraviolet radiation.
Preface

This book is the first comprehensive review and synthesis of our understanding of the origin, evolution, and effects of magnetic fields in stars that, like the Sun, have convective envelopes immediately below their photospheres. The resulting magnetic activity includes a variety of phenomena that include starspots, nonradiatively heated outer atmospheres, activity cycles, the deceleration of rotation rates, and – in close binaries – even stellar cannibalism. Our aim is to relate the magnetohydrodynamic processes in the various domains of stellar atmospheres to processes in the interior. We do so by exploiting the complementarity of solar studies, with their wealth of observational detail, and stellar studies, which allow us to study the evolutionary history of activity and the dependence of activity on fundamental parameters such as stellar mass, age, and chemical composition. We focus on observational studies and their immediate interpretation, in which results from theoretical studies and numerical simulations are included. We do not dwell on instrumentation and details in the data analysis, although we do try to bring out the scope and limitations of key observational methods.

This book is intended for astrophysicists who are seeking an introduction to the physics of magnetic activity of the Sun and of other cool stars, and for students at the graduate level. The topics include a variety of specialties, such as radiative transfer, convective simulations, dynamo theory, outer-atmospheric heating, stellar winds, and angular momentum loss, which are all discussed in the context of observational data on the Sun and on cool stars throughout the cool part of the Hertzsprung–Russell diagram. Although we do assume a graduate level of knowledge of physics, we do not expect specialized knowledge of either solar physics or of stellar physics. Basic notions of astrophysical terms and processes are introduced, ranging from the elementary fundamentals of radiative transfer and of magnetohydrodynamics to stellar evolution theory and dynamo theory.

The study of the magnetic activity of stars remains inspired by the phenomena of solar magnetic activity. Consequently, we begin in Chapter 1 with a brief introduction of the main observational features of the Sun. The solar terminology is used throughout this book, as it is in stellar astrophysics in general.

Chapter 2 summarizes the internal and atmospheric structure of stars with convective envelopes, as if magnetic fields were absent. It also summarizes standard stellar terminology and aspects of stellar evolution as far as needed in the context of this monograph.

The Sun forms the paradigm, touchstone, and source of inspiration for much of stellar astrophysics, particularly in the field of stellar magnetic activity. Thus, having
introduced the basics of nonmagnetic solar and stellar “classical” astrophysics in the first two chapters, we discuss solar properties in Chapters 3–8. This monograph is based on the premise that the phenomena of magnetic activity and outer-atmospheric heating are governed by processes in the convective envelope below the atmosphere and its interface with the atmosphere. Consequently, in the discussion of solar phenomena, much attention is given to the deepest part of the atmosphere, the photosphere, where the magnetic structure dominating the outer atmosphere is rooted. There we see the emergence of magnetic flux, its transport across the photospheric surface, and its ultimate removal from the atmosphere. We concentrate on the systematic patterns in the dynamics of magnetic structure, at the expense of very local phenomena (such as the dynamics in sunspot penumbrae) or transient phenomena (such as solar flares), however fascinating these are.

Page limitations do not permit a discussion of heliospheric physics and solar–terrestrial relationships.

Chapter 3 discusses the solar rotation and large-scale flows in the Sun. Chapters 4–8 cover solar magnetic structure and activity. Chapter 4 deals with fundamental aspects of magnetic structure in the solar envelope, which forms the foundation for our studies of fields in stellar envelopes in general. Chapter 5 discusses time-dependent configurations in magnetic structure, namely the active regions and the magnetic networks. Chapter 6 addresses the global properties of the solar magnetic field, and Chapter 7 deals with the solar dynamo and starts the discussion of dynamos in other stars. Chapter 8 discusses the solar outer atmosphere.

Chapters 9 and 11–14 deal with magnetic activity in stars and binary systems. This set of chapters is self-contained, although there are many references to the chapters on solar activity. Chapter 9 discusses observational magnetic-field parameters and various radiative activity diagnostics, and their relationships; stellar and solar data are compared. Chapter 11 relates magnetic activity with other stellar properties. Chapter 12 reviews spatial and temporal patterns in the magnetic structure on stars and Chapter 13 discusses the dependence of magnetic activity on stellar age through the evolution of the stellar rotation rate. Chapter 14 addresses the magnetic activity of components in binary systems with tidal interaction, and effects of magnetic activity on the evolution of such interacting binaries.

Two integrating chapters, 10 and 15, are dedicated to the two great problems in magnetic activity that still require concerted observational and theoretical studies of the Sun and the stars: the heating of stellar outer atmospheres, and the dynamo action in stars with convective envelopes.

We use Gaussian cgs units because these are (still) commonly used in astrophysics. Relevant conversions between cgs and SI units are given in Appendix I.

We limited the number of references in order not to overwhelm the reader seeking an introduction to the field. Consequently, we tried to restrict ourselves to both historical, pioneering papers and recent reviews. In some domains this is not yet possible, so there we refer to sets of recent research papers.

We would appreciate your comments on and corrections for this text, which we intend to collect and eventually post on a web site. Domain and computer names are, however,
Preface

Notoriously unstable. Hence, instead of listing such a URL here, we ask that you send e-mail to kschrijver at solar.stanford.edu with either your remarks or a request to let you know where corrections, notes, and additions will be posted.

In the process of selecting, describing, and integrating the data and notions presented in this book, we have greatly profited from lively interactions with many colleagues by reading, correspondence, and discussions, from our student years, through collaboration with then-Ph.D. students in Utrecht, until the present day. It is impossible to do justice to these experiences here. We can explicitly thank the colleagues who critically commented on specific chapters: V. Gaizauskas (Chapters 1, 3, 5, 6, and 8), H. C. Spruit (Chapters 2 and 4), R. J. Rutten (Chapter 2), F. Moreno-Insertis (Chapters 4 and 5), J. W. Harvey (Chapter 5), A. M. Title (Chapters 5 and 6), N. R. Sheeley (Chapters 5 and 6), P. Hoyng (Chapters 7 and 15), B. R. Durney (Chapters 7 and 15), G. H. J. van den Oord (Chapters 8 and 9), P. Charbonneau (Chapters 8 and 13), J. L. Linsky (Chapter 9), R. B. Noyes (Chapter 11), R. G. M. Rutten (Chapter 11), A. A. van Ballegooijen (Chapter 10), K. G. Strassmeier (Chapter 12), and F. Verbunt (Chapters 2 and 14). These reviewers have provided many comments and asked thought-provoking questions, which have greatly helped to improve the text. We also thank L. Strous and R. Nightingale for their help in proof reading the manuscript. It should be clear, however, that any remaining errors and omissions are the responsibility of the authors.

The origin of the figures is acknowledged in the captions; special thanks are given to T. E. Berger, L. Golub and K. L. Harvey for their efforts in providing some key figures. C. Zwaan thanks E. Landré and S. J. Hogeveen for their help with figure production and with LaTeX problems.

Kees Zwaan died of cancer on 16 June 1999, shortly after the manuscript of this book had been finalized. Despite his illness in the final year of writing this book, he continued to work on this topic that was so dear to him. Kees’ research initially focused on the Sun, but he reached out towards the stars already in 1977. During the past two decades he investigated solar as well as stellar magnetic activity, by exploiting the complementarity of the two fields. His interests ranged from sunspot models to stellar dynamos, and from intrinsically weak magnetic fields in the solar photosphere to the merging of binary systems caused by magnetic braking. His very careful observations, analyses, solar studies, and extrapolations of solar phenomena to stars have greatly advanced our understanding of the sun and of other cool stars: he was directly involved in the development of the flux-tube model for the solar magnetic field, he stimulated discussions of flux storage and emergence in a boundary-layer dynamo, lead the study of sunspot nests, and stimulated the study of stellar chromospheric activity. And Kees always loved to teach. That was one of the main reasons for him to undertake the writing of this book.
Kees Zwaan (24 July 1928–16 June 1999)