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1

Some models

1.1 Gas dynamics in eulerian variables

Let us consider a homogeneous gas (all the molecules are identical withmhass
in aregion$2, whose coordinates = (X1, ..., Xq) are our ‘independent’ variables.
From a macroscopic point of view, it is described by its mass depsitis mo-
mentum per unit volumg and its total energy per unit volunt& In a sub-domain

w containing at an instarll molecules$ of velocitiesv?, . .., v respectively, we
have

N
/,odx:Nm, /ddx:mZﬁj
) w j:l

from which it follows that = pv, v being the mean velocity of the molecufes.
Likewise, the total energy is the sum of the kinetic energy and of the rotational and
vibrational energies of the molecules:

1 N . N ) )
/wde=§ij=1nv2n+jZ=1(ed+eé)

wheree) ande,‘q are positive. Foramonatomic gas, such as He, the energy of rotation
is null. The energy of vibration is a quantum phenomenon, of sufficiently weak
intensity to be negligible at first glance. Applying the Cauchy—Schwarz inequality,
we find that

N

Z

—mZqun > =

1 N is a very large number, for example of the order o3l the volume ofw is of the order of a unit, but the
productm N is of the order of this volume.
2 This can be suitably modified if there are several kinds of molecules of different masses.
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which gives

(o)

This being true for every sub-domain, we can deduce that the quéantity- % 1912
is positive. It is called the specifiaternal energy(that is per unit mass) and we
denote it bye; we thus have

1 =02
E= Epllvll + pe,

where the first term is (quite improperly) called tiaetic energyf the fluid. For

the sequel it should be remembered that the internal energy can be decomposed
into two termse, + & wheree is kinetic in origin andg is due to other degrees of
freedom of the molecules.

The law of a perfect gas
A perfect gabeys three hypotheses:

the vibration energy is null,
the velocities at a poinix( t) satisfy a gaussian distribution law

aexp(b| - —7|1?)

wherea, b andv are functions of X, t) (of course,v is the mean velocity
introduced above),

the specific internal energy is made up among its different compopentata
with the degrees of freedom.

Commentq1) The gaussian distribution comes from the theorem of Laplace that
considers the molecular velocities as identically distributed random variables when
N tends to infinity. Itis also the equilibrium distribution (when itis called ‘maxwell-
ian’) in the Boltzmann equation, when it takes into account the perfectly elastic
binary collisions.

(2) Several reasons characterise the gaussian as being the appropriate law. On the
one hand, its set is stable by composition with a similit@ef RY(x — x o O)
and by multiplication by a scalal(— A x). On the other, the components of the
velocity are independent identically distributed random variables.
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(3) The hypothesis of the equi-partition of energy is pretty well verified when
there are a few degrees of freedom, for example for monatomic molecules (He),
diatomic molecules (b O», N») or rigid molecules (HO, CO,, CoH», CoHy). The
more complex molecules are less rigid; they thus have more degrees of freedom,
which are not equivalent from the energetic point of view.

(4) The equi-partition takes place also among the translational degrees of free-
dom. If the choice is made of an orthonormal frame of reference, each component
vl — v, of the relative velocity is responsible for the same fractgn= g/d in
the energy of kinetic origin.

Let 8 be the number of non-translational degrees of freedom. The hypothesis of
equi-partition gives the following formula for each type of internal energy:
1 p
e«l="'=exd=aek, eR=aeK

and thuse = (d + B)&a.

The pressur@ is the force exerted per unit area on a surface, by the gas situated
on one side of it Take as surface the hyperplarg= 0, the fluid being at rest
(v = 0, aandb constants). Lef be a domain of unit area of this hyperplane. The
force exerted o\ by the gas situated to the left is proportional to the nunNdeaf
particles hittingA per unit time, multiplied by the first componehtof the mean
impulse of thesé.0n the one hanady! is proportional to the numbe\ of particles
multiplied by the mean absolute speed (the meap$i in the directionx;. On
the other hand\ll; is proportional thw%, that is toperk. Nothing in this argument
involves explicitly the dimensiod and we therefore have = koeix, wherek is
an absolute constant. A direct calculation in the one-dimensional case yields the
resultk = 2. Introducing theadiabatic exponent

_d+b+2
~ d+b

there results thiaw of perfect gases

p=(y —1pe

The most current adiabatic exponents af8 &nd 75 if d = 3, 2 and 33 if
d = 2and 3ifd = 1. In applications air is considered to be a perfect gas for which
y =17/5.

3 In this argument, the surface in question is not a boundary, since it would introduce a reflexion and would
eventually distort the gaussian distribution.

4 This mean is not null as it is calculated solely from the set of molecules for vwrlﬁich 0.



4 Some models

The Euler equations
The conservation laws of mass, of momentum and of energy can be written

dp + divg(pv) =0,
d
(pvi) + dive(pvit) + i p= > 9;Tj, 1=<i=<d,
=

d
O E + divk((E + p)v) = 9j (vi Tij) — divyq
j=1

i
whereT — plq is the stress tensor armdthe heat flux. In the last equation, two
terms represent the power of the forces of stress. The conservation of the kinetic
momentpv A X implies thatT is symmetric. We have seen thiais null for a fluid
at rest and also when it is in uniform motion of translation. The simplest case is
that in whichT is a linear expression of the first derivativégv, the coefficients
being possibly functions ofy, €). The principle of frame indifference implies the
existence of two functiong andg such that
Ty = alp, e)(j—'x"j +5L) 4 o, e, D (L)

which clearly introduces second derivatives into the above equations. TheTensor
represents the effects of viscosity and the linear correspondence is Newton'’s law. If
a andp are null the conservation laws are callegler’'s equationsin the contrary
case they are called tidavier—Stokes equations

Likewise, the heat flux is null if the temperatuiegdefined later as a thermo-
dynamic potential) is constant. The simplest law is that of Fourier, which can be
written

q = _k(p’ e)vxev
with k > 0.
Foraregular flow, alinear combination of the equations yields the reduced system
dp + div(pv) = 0,
otvi + v - Vg + ,0_18i p= p_ldiV(Ti 2,
he+7-Vee+p tpdivi=pt (ZT”- djvi — divﬁ) :
i
Let us linearise this system in a constant solution, in a reference frame in which the
velocity is null:

%R+ pdivV =0,
*Vi + p~(P,di R+ Pedix) = p YAV + (« + B)d; div V),
dx +p tpdivV = p kA6, R + bex).
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The last equation can be transformed to
.= ke

A necessary condition for the Cauchy problem for this linear system to be well-
posed is the (weak) ellipticity of the operator

(R,V, &) > (0,0 AV + (a + B)V divV, keAE)
which results in the inequalities

kée > 0O, a >0, 200+ B > 0. (1.2)

The entropy

In the absence of second order terms, the flow satisfies
pdp + V- Vp) = p*(de+ D - Ve)
which suggests the introduction of a functi§(p, €), without critical point, such
that
39S N 208
Poe TP % =

Such a function is defined up to composition on the left by a numerical function:
if h: R — R and if Sworks, therh o Sdoes too, provided thdt does not vanish.
Such a function satisfies the equation

0.

(3 +v-V)S=0,

as long as the flow is regular, this signifies tBas constant along the trajectorfes
of the particles. On taking account of the viscosity and of the thermal conductivity,
it becomes

PO+ - V)S=S Y (Tijdjvi) + div(kVe),
i
that is to say
i =Y 1 . )2 WY i
h(pS) +div(pSv) = S 5% Z(a vj + 0jvi)° + B(divv)* | + Sdiv(kVe).
i

Free to change& to —S, we can suppose th& is strictly positive. The hame
specific entropys given toS. The effect of the viscosity is to increase the integral

5 We refer to the mean trajectory.
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of pS. The second law of thermodynamics states that the thermal diffusion behaves
in the same sense, that is that

/ S.div(kve)dx > 0

if there is no exchange of heat acrads (Neumann conditiordf/dv = 0).
Otherwise, this integral is compensated by these exchanges. In other terms, after
integration by parts, we must have

/ kv - VS dx <0,

without restriction orw. ThusVé -V & must be negative at every point and naturally
for every configuration. Itis then deducted thas a decreasing function &. Free

to compos® on the left with an increasing functidtthere is no loss of generality
if we assume that = 1/S,, which gives the thermodynamic relation

0dS=de+ pd(l), 0 >0,
ol

in which 1/6 appears as an integrating factor of the differential foen-gpd(1/p).
For a perfect gas are chosen as ugualeandS = loge — (y — 1)logp.

Barotropic models

A model isbarotropicif the pressure is, because of an approximation, a function
of the density only. There are three possible reasons: the flow is isentropic or it is
isothermal, or again it is the shallow water approximation.

For a regular flow without either viscosity or conduction of heat (that makes up
many of the less realistic hypotheses), we hdyeHv - V)S = 0: Sis constant
along the trajectories. If, in addition, it is constant at the initial instant, we have
S=const. AsS > 0, we can invert the functio&(-, p): we havee = E(S, p),
with the result that als@ is a function of §, p). In the present contexp must be
a function ofp alone and similarly this is true of all the coefficients of the system,
for examplex and . The conservation of mass and that of momentum thus form
a closed system of partial differential equations (here again we have taken account
of the newtonian viscosify:

o p + div(pv) =0,
3t (ovi) + div(pviv) + 9 p(p) = div(a(Vvi + 3v)) + 9; (8 div v)-

6 This does not affect Fourier's law, &ss changed with the result that the prodlssts is not.
7 One more odd choice!
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The equation of the conservation of energy becomes a redundant edugion.
shall use it as the ‘entropy’ conservation law of the inviscid model. We call this the
isentropic model

dp + div(pv) = 0,
& (pvi) + div(pvi D) + 8 p(p) = 0.

Its mathematical entropy is the mechanical ene}gy(nﬁnz + e(p)), associated
with the ‘entropy flux’o(3 113112+ e(p))v + p(p)v. For a perfect gas, the hypothesis
S = const, states thag” —* = cp and furnishes thetate law p= xp”. This, then,
is called gpolytropic gas.

Theisothermalmodel is reasonable when the coefficient of thermal diffusion is
large relative to the scales of the time and space variables. For favourable boundary
conditions, the entropic balance gives

d Vo2
dt /Q"de - /Q OVRH fg 52

According to the conservation laws, we can adg®an affine function of the
variables p, pv, E) in the preceding inequality. Meanwhile, experience shows that
the mapping 6, pv, E) — pSis concave’. We can thus choose an affine function
no with the result thaty := p S+ ng is negative. If the domaif is the whole space
RY, the fluid being at rest at infinity, we can also taki® be null at infinity. Finally

V6|2
/Qk 72 dxg—/ﬂnt:odx-

The right-hand side is a datum of the problem, supposed finikaslfarge, we see
thatitis all right to approach by a constant; that it is a constant and not a function
of time is not clear but is currently assumed. Again, the pressure and the viscosity
become functions gb only, and the conservation of mass and that of momentum
form a closed system: the mechanical energy is taken as the mathematical entropy
of the system. For a perfect ga&ss= 6 is constant, with the result that the state law
is linear:p = «p.

The isothermal approximation is reasonable enough in ceggimes, because,
for a gas, for instance, the thermal effects are always more significant than the
viscous effects. A general criterion regarding these approximations is however that
the shocks of the barotropic models are not the same as those of the Euler equations:
the Rankine—Hugoniot condition is different.

dx.

8 Or rather incompatible, if we have included the newtonian viscosity.
9 In fact, this concavity is the condition for the Cauchy problem of the linearised Euler equations to be well-posed.
It no longer holds if we model a fluid with several phases.
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The third barotropic model describes the flow in a shallow basin, that is, in one
whose horizontal dimensions are great with respect to its depth. The dénigin
the horizontal projection of the basin: we thus have- 1 ord = 2. The fluid
is incompressiblavith densitypg. We do not take the vertical displacements into
account. The variables treated are the horizontal velocity (averaged over the height)
v(x, t) and the height of the fluid(x, t). The pressure is considered to be the integral
ofthe hydrostatic pressupggzwherezis the vertical coordinate. We therefore have
p = pogh?/2. The conservation of mass and that of momentum give the system

3t (poh) + div(pohv) = 0,

. 1 .
3 (pohvi) + div(poui T) + 590 (oh®>) =0, 1<i<d.

CommentsDividing by po, we recover the isentropic model of a perfect gas for
whichy = 2.

We have not taken into account the effects of viscosity and this is an error: they are
responsible for a boundary layer on the base of the basin which implies a resistance
to the motion. That resistance makes itself manifest in the model by a source term
in the second equation of the formf (h, |9|)v;, with f > 0.

One way of obtaining these equations from the Euler equations is to integrate the
latter with respect ta (but notx). We then make the hypothesis that certain means
of products are the products of means, that is that the vertical variatignando
are weak.

The relativistic models of a gas, though much more complicated than those which
have preceded, are also those of systems of conservation laws. We shall not give a
detailed presentation here. By way of an example, we shall consider the simplest
among those systems: a barotropic fluid, isentropic, one-dimensional and in special
relativity; the conversation of mass and that of momentum give

p+pc® o2 o U
81;( 2 C2—1)2+'0 + Ox (p+,0C)C2_v2 =0,

2
2y Y 2y Y
3t((p+:0c )Cz_v2)+ax<(p+pc )m‘i‘ p) =0.

For more general models the reader should consult Taub [102].

1.2 Gas dynamics in lagrangian variables

Writing the equations of gas dynamics in lagrangian coordinates is very complicated
if d > 2; in addition it furnishes a system which does not come into the spirit of
this book. This is why we limit ourselves to the one-dimensional cédse {). We
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shall make a change of variables {) — (y, t) which depends on the solution.
The conservation law of mass

pt+ (pv)x =0

is the only one which makes no appeal to any approximation. It expresses that
the differential forme: := p dx — pv dt is closed and therefore exd€tWe thus
introduce a functionx, t) — v, defined to within a constant by = dy. We have
dx = v dt +  dy, where we have denoted by= p~! the specific voluméwhich
is rather a specific length here).

Being given another conservation lau; + dxi = 0, which can be written
d (g dt — u; dx) = 0, we have that

d((@ — uiv)dt —ujrdy) =0,
that is
ot (uit) + dy(q — ujv) = 0.

The system, written in the variableg (), is thus formed of conservation laws. Let
us look at for example the momentum = pv. In the absence of viscosity, we
haveq, = pv? + p(p, €). From this comes

8’[1} + ayP(T, e) = 0,
whereP(z, €) := p(r~1, €). Similarly, for the energys = %,ov2 + peandgs =
(us+ p)v:

at(%vz + e) + 3y(P(t, &)v) = 0.

The conservation of mass gives nothing new since it was already used to construct
the change of variables. With = p andg: = pv, we only obtain the trivial equation

1; + 0y =0. To complete the system of equations for the unknowns, ) we

have to involve a trivial conservation law. For example with= 1 andqy = O,

we obtain

atf = ayv

We note that in lagrangian variables the perfect gas law is wriRten(y — 1)e/z.
If we take into account the thermal and viscous effects, thea pv?+ p(p, €) —
v(p, €)vx. AS Tvy = vy We obtain

oo+ 0yP(z. @) = dy (Syv).
T

10 These assertions are correct evengv) are no better than locally integrable.
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Similarly, gz = (uz + p)v — vvvx — Kby gives
1 k
at <§U2 + e) + 8y(PU) = 8y<¥(v8yv)) + 8y(;3y9>

Criticism of the change of variables

Although this change of variable is perfectly justified, evereifu) is bounded
without more regularity as well as™ (see D. Wagner [110]), it raises a major
difficulty if the vacuum is somewhere part of the space. In this case, the jacobian
o of (x,t) — (y, t) vanishes and it is no longer a change of variable. The specific
volume then reduces to a Dirac mass, with horm equal to the length of the interval
of the vacuum. It becomes critical to give sense to the equations (it is nothing other
than the conservation law of a mathematical difficulty). The equations in eulerian
coordinates are also ill-posed in the vacuum: the velocity cannot be defined and the
fluxesqy andgs are singular. Indeed, returning to the variahles (p, pv, E), we
haveg, = u3/u; + p, which makes no sense fpr= 0.

1.3 The equation of road traffic

Let us consider a highway (a unique sense of circulation will be sufficient for our
purpose), in which we take no account of entries or exits. We represent the vehicle
traffic as the motion of a one-dimensional continuous medium, which is reasonable
if the physical domain which we consider is very great in length in comparison
with the length of the cars. In normal conditions, we have a conservation law of
‘mass’

atp + axq = 07

whereqg = pv is the flux, or flow, and is the mean velocity. Unlike the case of a
fluid there is no conservation law of momentum or of energy. The drivers choose
their velocities according to the traffic conditions. It results in a relatienV (p)
whereV is the speed limit ifp is small. The functiorp — V is decreasing and
vanishes for a saturation valpg, for which neighbouring vehicles are bumper-to-
bumper. The space of the states is theretare- [0, gm].

This model is a typical example of a scalar conservation law. The state law
q(p) = pV(p) has the form indicated in Fig. 1.1. We notice that each possible value
of the flow corresponds to two possible densities, of different velocities, with the
exception of the maximal flow.
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g g =130p

O Pm e

Fig. 1.1: Road traffic: flux vs density (in France).

A more precise model is obtained by taking the drivers’ anticipation into account.
If they observe an upstream increase in the density (respectively a diminution),
they show a tendency to brake (respectively to accelerate) slightly. In other terms,
v — V(p) is of the opposite sign to that @. The simplest state law which takes
account of this phenomenomnis= V (p) — gpx, With 0 < ¢ « 1, which leads to the
weakly parabolic equation

pt +d(p)x = e(pox)x-

1.4 Electromagnetism

Electromagnetism is a typically three-dimensional phenomedead), which
brings vector fields into play: the electric intensiy the electric inductiorD, the
magnetic intensityH, the magnetic inductioB, the electric current and the heat
flux g. Denoting bye the internal energy per unit volume, the conservation laws
are
Faraday’s law
B+ curlE =0,

with which is associated the compatibility condition @v= 0 (absence of
magnetic charge),
Ampére’s law

0D —curlH + j =0,
conservation of energy

sE+div(EAH+Qq)=0.
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Maxwell’s equations

In the first instance let us neglect the current and the heat flux (which is correct for
example in the vacuum). Combining the three laws, we obtain

oe=H - B+ E-9;D.
If the system formed by the laws of Faraday and Asmepis closed by the state laws
H =H (B, D), E = E(B, D),
from the conservation of energy it is then deduced that
H(B,D)-dB+E(B,D)-dD

is an exact differential. Following Coleman and Dill [9], we can then postulate the
existence of a functiolV: R3 x R® — R such that
oW AW

Hj=—7 j= 9
0B; 0Dj

=123
We havee = W(B, D); the conservation laws are callsthxwell’s equations
oW oW
o B 4+ curl— =0, D — curl— = 0.
P T ‘ 9
These lead t®oynting’s formula
oW(B, D) + div(E A H) =0,

which shows thatV is an entropy of the system, generally convex. Some other
entropies of the system, not convex, are the componersoD.
Now, taking into account the charge and the heat, the complete model is the
following:
atB+curl%:O, atD—curI:—W:—j,
0:(W(B, D) + o) + div(E A H +q) =0,

whereeg is the purely calorific part of the internal energyFor a regular solution
we have

heo +divg = E - |,

where the right-hand side represents the work done by the electromagnetic force

11 we have made the hypothesis that the underlying material is fixed in the reference frame. For a material in
accelerated motion, see for example the following section.
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(the Joule effect). We notice that transfer between the two forms of energy is
possible. In the vacuum, the current is zero and there is neither temperature, nor
heat flux; next, following Feynman [21] (Chapter 12.7 of the first part of vol. Il),
the Maxwell equations are linear in a large range of the variables. The ehkigly
thus a quadratic form:

(. D)= (ianer 3||D||2> |
o €0

The constants of electric and magnetic permittivity have the values (in S.I. units)
g0 = (36 - 10°)~t and g = 4x - 107, Their product isc~?, the inverse of the
square of the velocity of light.

In material medium, conducting and isotropic, the state law has the same form
but with constants > 0 andu > 0 of greater value. The number)~Y? is again
equal to the velocity of propagation of plane waves in the medium. In media which
are poor conductors (dielectrics) the state law is no longer linear. The isotropy
manifests itself by the condition

W(RB, RD) = W(B,D), VR e O3(R).
This implies the existence of a functianof three variables, such that
W(B, D) = w(lIBI, DI, B - D).

Finally, paramagnetic bodies present phenomena of memory twilteresiy
which do not come into the body of systems with conservation laws.

Plane waves

Henceforth, let us neglect the thermodynamic effects as well as the electric current.
For a plane wave which is propagating in thedirection we have), = 33 = 0,

with the result thad;B; = d;D; = 0. There remain four equations, in which we
write X = X3, the unique space variable:

oW oW
otBy — 0y—— =0, 0:B dx—— =0,
t B2 an3 i B3 + anZ

AW oW
oD d =0, 0tD3—0 =0.
i Do + xaBS t 3 xaBZ

Let us look at the simple case in whittt is a function ofp := (|| B||? + ||D||?)Y/?
only. Introducing the functiony := B, + D3 + i(Bs — D), z .= B, — D3 +
i(Bs + D2), we havey; — (¢(p)Y)x = 0, z + (¢(p)2)x = 0. The polar coordinates
(r,s, a, B), defined byy = r expie andz = sexpif, enable us to simplify the
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system into

ar — @(p)ax =0, ro — (e(p)r)x =0,
Bt + ¢(p)Bx =0, s + (¢(p)s)x =0,

with the connection 22 = r? + 2.

1.5 Magneto-hydrodynamics

Magneto-hydrodynamics (abbreviated as M.H.D.) studies the motion of a fluid in
the presence of an electromagnetic field. As it is a moving medium, the field acts
on the acceleration of the particles, while the motion of the charges contributes to
the evolution of the field. This coupling is negligible in a great number of situations
but comes into action in a Tokamak, a furnace with induction, or in the interior of
a star.

The fluid is described by its density, its specific internal energy, its pressure,
and its velocity. If no account is taken of the diffusion processes, we write the
conservation laws of mass, of momentum, of energy and Faraday’s law as
follows:

pt + div(pv) =0,

. ] 1 . .
(pvi) + div(pviv) + &(p-l— §||B||2) —div(Bi-B)=0, 1<i <3

1 1 . 1
ol Zlvl2+¢) + ZIBI2) + div[ o vl +¢)+ pv+ EAB) =0,
2 2 . 2
B: + curlE = 0.

We see from these equations that the magnetic field exerts a force on the fluid
particles and contributes to the internal energy of the system. The fact that the
electric field does not is the result of an approximation, the same as we made in
disregarding Ampre’s law.

There are two state laws: on the one hand p(p, €), which always has the form
P = (y — 1)pefor a perfect gas; on the other haritl= B A v. This expresses a
local equilibrium: the acceleration of the particles taken individually is of the form
f + (E + v A B)/mwherem is the mass of a particle of unit charge ahds the
force due to the binary interactions. As<« 1 and since the velocity of the fluid
remains moderat® E + v A B is very small.

12 Under this hypothesis, the fluid is seen as a dielectric.
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For a sharper description, we take account of the processes of diffusion: the
viscosity, Fourier’s law certainly, even Ohm'’s law:

E=BAv+nj+x(j AB).

Finally we take Ampte’s law into account, but we neglect in it the derivative
considering thak varies slowly in time:

j = curl B.

Each of the phenomena which we come to take into account is studied by adding
one or several of the second order terms in the laws of conservation. Whether the
factors such as, x, k, « andg can be considered as small or not depends on the
scale of the problems studied.

Plane waves in M.H.D.

Again, we consider the solutions for whiéh = d3 = 0 andg := B; is constant.
This behaviour is established when the initial condition satisfies it. In the sequel
we write

Z.= v, w = (v2, v3), b := (B, Bg), X = Xi.

In Faraday’s lawB; + curl E = 0, the component in the direction &f and the
compatibility condition divB = 0 are trivial. There remain seven equations in place
of eight, which is correct sincB; is no longer an unknown:

1
d(p2) + dx (pz2 + p(p, € + Eubnz) =0,

d(ow) + dx(pzw — pb) =0,

1 1 1 1 1
) “Z2+ ZwlP+e) + 2 bl?) + ol pzl =2+ Z|w|? +e
t(,0<2 +2||w|| + )+2|| I >+ x(,O (2 +2||w|| +

+(p+ b))z pb. w) o
dtb + ax(zb— Bw) = 0.

The system is simpler in lagrangian coordinatgst), defined by ¢ = p(dx—
zdt) — see§1.2. Denoting byr = 1/p the specific volume, these equations are

13 Which replaces the hypothedis= B A v.
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transformed to

Tt = Zy,
1 2
z+ | p(l/z.€) + =|b|*) =0,
2 y
1 1 1 1
<5z2 + Enwn2 +e+ Enbuz) + ((p+ Ernbnz)z— pb- w) =0,
t y
(tb)y — pwy = 0.

A combination of these equations gives, for a regular solutpr; pz, = 0 or
againe + pr; = 0, that is to say

Sr,e) =0,

Sheing the thermodynamic entropgydS = de+ p dr). The analogous calculation
in eulerian variables yields the transport equation

which shows thap Sis an entropy, in the mathematical sense, of the model.

A simplified model of waves

Let us consider the system of plane waves of M.H.D. in eulerian variables to fix
the ideas, withB # 0. It admits in general seven distinct velocities of propagation
Al < Ao < --- < Azamong whichhs = z, Ao = z— Bp~ Y2, andirg = 2+ Bp /2

(12 andig are the speeds of tdfven waveps The four remaining speeds are the
roots of the quartic equation

(A — 2% = ) — 2* — B2/p) = (> — D?|IbI|*/p,

c=c(p, €) being the speed of sound in the absence of an electromagnetic field.

However, wherb vanishes, we haviks = A, andis = Ag. This coincidence of

two speeds and the non-linearity of the equations induce a resonance. For waves of

small amplitude, this phenomenon can be described by an asymptotic development.
First of all, a choice of a galilean frame of reference allows the assumption

that the base stais, constant, satisfiesy = 0 (we already havéy = 0) and

Zo.,/po = Po. We thus have»(ug) = A3(Up) = O: the resonance occurs along curves

(in the physical plane) with small velocities. Uf— ug is of the sizes « 1 this

velocity is also of the order of, which leads to the change of the time variable
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S .= et, S00; = €ds. The other hypotheses are

ontheonehangd = pp+¢01+--+, Z=29+¢€z1+---, e=¢€+ee1+---,

on the other hand = /- (wl(s, X) +ew?(s, t, X)+--), b= /- (b*(s, x)+
eb?(s, t, X) + - - -). We note that, althouglye is great compared with, these
hypotheses ensure that andiz are of the order of.

The examination of the terms of ordein the conservation laws shows that z;,
e, andw? are explicit functions ob?. Finally, the terms of ordes¥? in Faraday’s
law, averaged with respect to the slow variabte eliminateb?, furnish a system
which governs the evolution &f := b

&U + o d(JU]I?U) =0, (1.3)

whereo is a constant which depends only gny,(ep). In this book, we shall copi-
ously use the system (1.3) to illustrate the various theories, but we shall also make
appeal to a slightly more general one:

dU + dx(p(lUNU) =0
wherep: Rt — R is a given smooth function.

1.6 Hyperelastic materials

We shall consider a deformable solid body, which occupies, at rest, a reference
configuration which is an open setc RY. We describe its motion by a mapping
(x,t) = (y,t), 2 — RY, wherey is the position at the instamtof the particle
which was situated at restain the reference configuration. We define the velocity
v: Q@ — RY and the deformation tensar © — My(R) by
_ oy W

at’ T ax
In the first instance we write the compatibility conditions

v

OtUoj = 0j Vg, OkUgj = 0jUok, 1=<a,j, k=<d.

A material is said to bayperelastidf it admits an internal energy density of the form
W(u) and if the forces due to the deformation derive from this energy (principle of
virtual work):

o
Yo
Heres/8y denotes the variational derivative bfy] := [ W(Vy) dx:

OW
fo= 30
’ X_: Uy

f=(f,..., fq), fo=
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The fundamental law of dynamics is written
8t Vg = fOl + Oo>

whereg represents the other forces, due to gravity or to an electromagnetic field
(but here we do not consider any coupling). Findlly;= (u, v) obeys a system of
conservation laws of first order (for which= d(d + 1))

OtUgj = 0jvg, 1=<a,j <d,

d
AW
atva:§ 3k8uk+ga, 1§Ol§d
k=1 4

These equations can be linear, whnis a quadratic polynomial, but this type of
behaviour is not realistic. In fact, the energy is defined onlyufarGL4(R) with
det(u) > 0 (the material does not change orientation), and must tend to infinity when
the material is compressed to a single point:

lim W(u) =

u—0,

The models of elasticity are thus fundamentally non-linear. Other restrictions on
the form of W are due to the principle dfame indifference

W(u) = W(RU), R e SQy(R), 1.4
and, if the material is isotropic,
W(u) = W(UuR), R e SGiR). (1.5)

From (1.4), there exists a functiam S™ — R, on the cones™ of positive definite
symmetric matrices such that

W(u) = w(u'u).

If, in addition, (1.5) holds, then the functid®— w(S) depends only on the eigen-
values ofS.
We find an entropy of the system in writing the conservation of energy:

at<%||v||2+W(u)) i (aua,>

The total mechanical energy,(u) — %H v||%+ W(u) is not always conveX* How-
ever, itis in the ‘directions compatible’ with the constraiptl,j = dj Usk. In other

14 There are obstructions due to the invariances mentioned above and to the fi¢ttémats to infinity at 0 and
at infinity. See [8] Theorem 4.8-1 for a discussion.



1.7 Singular limits of dispersive equations 19

words, W is convex on each straight line + Rz wherez is of rank one (the
Legendre—Hadamard conditipnThis reduced concept of convexity is appropri-
ate for problems with constraints. In particular, the mechanical energy furnishes
an a priori estimate. A constitutive law currently used is that of St Venant and
Kirchhoff:

w(S) = %A(Tr E)?+ uTr(E?, E:= %(s— In).

On the other hand, other entropies do not have this convexity property; for all
k<d

1 d oW
a(v - u) = Bk(EHUH - W(u)) + 2; 9 <Uakm>-

=

Strings and membranes

More generally, we can consider a material for which 2 (with @ ¢ RY) but with
(y,t) € RP with p > d. The casg =d is that described above. Whegn= 3 and
d = 2itis a mater of a membrane or a shell, while- 2 andd = 1 corresponds to
a string. For a membrane or a string, the equations are the same as in the preceding
paragraph, but the Greek suffixes go from Iptmstead of from 1 tal. There are
thenn = p(d + 1) unknowns and just as many equations of evolution.
Let us look at the case of string:is a vector andV(u) = ¢(JJu])), because of
frame indifferencey being a state law. We have

W e 1=l
aua - r(p o - )

with the result that W is the product ofy’ (called thetensionof the string) by the
unit tangent vector to it: ~tu. There are four or six equations:

Ut = vy, v = (r_lfpl(r)u)x +g.

1.7 Singular limits of dispersive equations

The systems of conservation laws which are presented here proceed from com-
pletely integrable dispersive partial differential equations. We take as an example
the Korteweg—de Vries (KdV) equation

U[ + 6UUX - uXxx, (16)

but there are others, of which the best known is the cubic non-lineao&iciger
equation.



20 Some models

Certain solutions of (1.6) are progressive periodic waves: they have the form
u = u(x — ct) with u” = 6uu’ — cu’, with the result that
1o 3 1 5
éu =u —Ecu —au—Db,
wherea andb are constants of integration. The triplet b, ¢) defines a unique
periodic solution (to within a translation) when the polynomial equaB¢K) =
X3 —2cX2—aX—b=0hasreal roota; < U, < uz. We then have min(x) =
uz and maxu(x) = us.
What are of interest here are such periodic solutions of the KdV equation, which
are, in first approximation, modulated by the slow variabéeg) := (et, £x) with
O<ex 1.

u®(x, 1) = up(a(s, y), b(s, y), c(s, y); x — c(s, y)t) + sus(s, v, X, t) + 0(82).

We require thati; andug be smooth functions and that be almost periodic with
respect toX, t).

The choice of the parameters, p, ¢) is not the most practical from the point
of view of calculations. We proceed to construct another set, with the aid of the
expressions

. . . 1
ip=u, ip:=2u?  igi=Zui+4+ud

2

These are invariants of the KdV equation in the sense that sufficiently smooth
solutiong® satisfy

dik +9xjk =0, 1<k<3,
with
R 2 : 3 1 2
Jj1=3U" — uxyx, ja=2u + SUx — Ul

) 1 9
js = §u§X 4 BUUZ — UxUxxx — 3UUxx + Eu“.

Let (a1, ap, a3) € R be a triplet such that there exists a functiore H1(Sh),
St = R/Z, with

1 14 1
/ wdé = ay, / —wzdé = ay, f w3 d¢ < as.
0 0o 2 0

Then the seX(ay, ap, a3) of the couplesi, Y) € HY(S!) x (0, +00) such that

! '1, Yo 1 5
/(;vd§=a1, /oév dé = ay, /()(v +ﬁv >d§=a3

15 There is no interest in the question of smoothness here; let us say that it is does not cause trouble.



