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1

Some models

1.1 Gas dynamics in eulerian variables

Let us consider a homogeneous gas (all the molecules are identical with massm)
in a regionÄ, whose coordinatesx = (x1, . . . , xd) are our ‘independent’ variables.
From a macroscopic point of view, it is described by its mass densityρ, its mo-
mentum per unit volumeEq and its total energy per unit volumeE. In a sub-domain
ω containing at an instantN molecules1 of velocitiesEv1, . . . , EvN respectively, we
have ∫

ω

ρ dx = Nm,
∫
ω

Eq dx = m
N∑

j=1

Ev j

from which it follows thatEq = ρEv, Ev being the mean velocity of the molecules.2

Likewise, the total energy is the sum of the kinetic energy and of the rotational and
vibrational energies of the molecules:∫

ω

E dx = 1

2
m

N∑
j=1

‖Ev2‖ +
N∑

j=1

(
ej

v + ej
R

)
whereej

v andej
R are positive. For a monatomic gas, such as He, the energy of rotation

is null. The energy of vibration is a quantum phenomenon, of sufficiently weak
intensity to be negligible at first glance. Applying the Cauchy–Schwarz inequality,
we find that

1

2
m

N∑
j=1

‖Ev j ‖2 ≥ m

2N

∥∥∥∥ N∑
j=1

Ev j

∥∥∥∥2

1 N is a very large number, for example of the order of 1023 if the volume ofω is of the order of a unit, but the
productmN is of the order of this volume.

2 This can be suitably modified if there are several kinds of molecules of different masses.

1
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which gives ∫
ω

E dx ≥ 1

2

(∫
ω

ρ dx

)−1∥∥∥∥ ∫
ω

Eq dx

∥∥∥∥2

+
N∑

j=1

(
ej

v + ej
R

)
≥ 1

2

(∫
ω

ρ dx

)−1∥∥∥∥ ∫
ω

ρEv dx

∥∥∥∥2

.

This being true for every sub-domain, we can deduce that the quantityE/ρ− 1
2‖Ev‖2

is positive. It is called the specificinternal energy(that is per unit mass) and we
denote it bye; we thus have

E = 1

2
ρ‖Ev‖2+ ρe,

where the first term is (quite improperly) called thekinetic energyof the fluid. For
the sequel it should be remembered that the internal energy can be decomposed
into two termsek+ ef whereek is kinetic in origin andef is due to other degrees of
freedom of the molecules.

The law of a perfect gas

A perfect gasobeys three hypotheses:

the vibration energy is null,
the velocities at a point (x, t) satisfy a gaussian distribution law

a exp(−b‖ · −Ev‖2)

wherea, b and Ev are functions of (x, t) (of course,Ev is the mean velocity
introduced above),

the specific internal energy is made up among its different componentspro rata
with the degrees of freedom.

Comments(1) The gaussian distribution comes from the theorem of Laplace that
considers the molecular velocities as identically distributed random variables when
N tends to infinity. It is also the equilibrium distribution (when it is called ‘maxwell-
ian’) in the Boltzmann equation, when it takes into account the perfectly elastic
binary collisions.

(2) Several reasons characterise the gaussian as being the appropriate law. On the
one hand, its set is stable by composition with a similitudeO of Rd(χ 7→ χ ◦ O)
and by multiplication by a scalar (χ 7→ λχ ). On the other, the components of the
velocity are independent identically distributed random variables.
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(3) The hypothesis of the equi-partition of energy is pretty well verified when
there are a few degrees of freedom, for example for monatomic molecules (He),
diatomic molecules (H2, O2, N2) or rigid molecules (H2O, CO2, C2H2, C2H4). The
more complex molecules are less rigid; they thus have more degrees of freedom,
which are not equivalent from the energetic point of view.

(4) The equi-partition takes place also among the translational degrees of free-
dom. If the choice is made of an orthonormal frame of reference, each component
v

j
α − vα of the relative velocity is responsible for the same fractionekα = ek/d in

the energy of kinetic origin.

Let β be the number of non-translational degrees of freedom. The hypothesis of
equi-partition gives the following formula for each type of internal energy:

ek1 = · · · = ekd = 1

d
ek, eR = β

d
ek

and thuse= (d + β)ek1.

The pressurep is the force exerted per unit area on a surface, by the gas situated
on one side of it.3 Take as surface the hyperplanex1 = 0, the fluid being at rest
(Ev ≡ 0, a andb constants). LetA be a domain of unit area of this hyperplane. The
force exerted onA by the gas situated to the left is proportional to the numberM of
particles hittingA per unit time, multiplied by the first componentI1 of the mean
impulse of these.4 On the one hand,M is proportional to the numberN of particles
multiplied by the mean absolute speed (the mean of|vα1 |) in the directionx1. On
the other hand,NI1 is proportional toρw2

1, that is toρe1k. Nothing in this argument
involves explicitly the dimensiond and we therefore havep = kρe1k, wherek is
an absolute constant. A direct calculation in the one-dimensional case yields the
resultk = 2. Introducing theadiabatic exponent

γ = d + b+ 2

d + b

there results thelaw of perfect gases

p = (γ − 1)ρe.

The most current adiabatic exponents are 5/3 and 7/5 if d = 3, 2 and 5/3 if
d = 2 and 3 ifd = 1. In applications air is considered to be a perfect gas for which
γ = 7/5.

3 In this argument, the surface in question is not a boundary, since it would introduce a reflexion and would
eventually distort the gaussian distribution.

4 This mean is not null as it is calculated solely from the set of molecules for whichv
j
1 > 0.
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The Euler equations

The conservation laws of mass, of momentum and of energy can be written

∂tρ + divx(ρEv) = 0,

∂t (ρvi )+ divx(ρvi Ev)+ ∂i p =
d∑

j=1

∂ j Ti j , 1≤ i ≤ d,

∂t E + divx((E + p)Ev) =
d∑

j=1

∂ j (vi Ti j )− divxEq

whereT − pId is the stress tensor andEq the heat flux. In the last equation, two
terms represent the power of the forces of stress. The conservation of the kinetic
momentρEv∧ x implies thatT is symmetric. We have seen thatT is null for a fluid
at rest and also when it is in uniform motion of translation. The simplest case is
that in whichT is a linear expression of the first derivatives∇xEv, the coefficients
being possibly functions of (ρ,e). The principle of frame indifference implies the
existence of two functionsα andβ such that

Ti j = α(ρ,e)

(
∂vi

∂xj
+ ∂v j

∂xi

)
+ β(ρ,e)(divxEv)δ j

i (1.1)

which clearly introduces second derivatives into the above equations. The tensorT
represents the effects of viscosity and the linear correspondence is Newton’s law. If
α andβ are null the conservation laws are calledEuler’s equations. In the contrary
case they are called theNavier–Stokes equations.

Likewise, the heat flux is null if the temperatureθ (defined later as a thermo-
dynamic potential) is constant. The simplest law is that of Fourier, which can be
written

Eq = −k(ρ,e)∇xθ,

with k ≥ 0.
For a regular flow, a linear combination of the equations yields the reduced system

∂tρ + div(ρEv) = 0,

∂tvi + Ev · ∇xvi + ρ−1∂i p = ρ−1 div(Ti .),

∂te+ Ev · ∇xe+ ρ−1p div Ev = ρ−1

(∑
i, j

Ti j ∂ j vi − div Eq
)
.

Let us linearise this system in a constant solution, in a reference frame in which the
velocity is null:

∂t R+ ρ div EV = 0,

∂t Vi + ρ−1(pρ∂i R+ pe∂iχ ) = ρ−1(α1Vi + (α + β)∂i div EV),

∂tχ + ρ−1p div EV = ρ−1k1(θρR+ θeχ ).
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The last equation can be transformed to

∂t (θρR+ θeχ )+ λdiv EV = kθe

ρ
1(θρR+ θeχ ).

A necessary condition for the Cauchy problem for this linear system to be well-
posed is the (weak) ellipticity of the operator

(R, EV, ξ ) 7→ (0, α1 EV + (α + β)∇ div EV, kθe1ξ )

which results in the inequalities

kθe ≥ 0, α ≥ 0, 2α + β ≥ 0. (1.2)

The entropy

In the absence of second order terms, the flow satisfies

p(∂tρ + Ev · ∇ρ) = ρ2(∂te+ Ev · ∇e)

which suggests the introduction of a functionS(ρ,e), without critical point, such
that

p
∂S

∂e
+ ρ2∂S

∂ρ
= 0.

Such a function is defined up to composition on the left by a numerical function:
if h: R→ R and if Sworks, thenh ◦ Sdoes too, provided thath′ does not vanish.
Such a function satisfies the equation

(∂t + Ev · ∇)S= 0,

as long as the flow is regular, this signifies thatS is constant along the trajectories5

of the particles. On taking account of the viscosity and of the thermal conductivity,
it becomes

ρ(∂t + Ev · ∇)S= Se

∑
i, j

(Ti j ∂ j vi )+ div(k∇θ ),

that is to say

∂t (ρS)+ div(ρSEv) = Se

(
1

2
α
∑
i, j

(∂i v j + ∂ j vi )
2+ β(div Ev)2

)
+ Se div(k∇θ ).

Free to changeS to −S, we can suppose thatSe is strictly positive. The name
specific entropyis given toS. The effect of the viscosity is to increase the integral

5 We refer to the mean trajectory.
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of ρS. The second law of thermodynamics states that the thermal diffusion behaves
in the same sense, that is that∫

ω

Se div(k∇θ ) dx ≥ 0

if there is no exchange of heat across∂ω (Neumann condition∂θ/∂ν = 0).
Otherwise, this integral is compensated by these exchanges. In other terms, after
integration by parts, we must have∫

ω

k∇θ · ∇Se dx ≤ 0,

without restriction onω. Thus∇θ ·∇Se must be negative at every point and naturally
for every configuration. It is then deducted thatθ is a decreasing function ofSe. Free
to composeθ on the left with an increasing function,6 there is no loss of generality
if we assume thatθ = 1/Se, which gives the thermodynamic relation

θ dS= de+ pd

(
1

ρ

)
, θ ≥ 0,

in which 1/θ appears as an integrating factor of the differential form de+ pd(1/ρ).
For a perfect gas are chosen as usualθ = e andS= loge− (γ − 1)logρ.

Barotropic models

A model isbarotropic if the pressure is, because of an approximation, a function
of the density only. There are three possible reasons: the flow is isentropic or it is
isothermal, or again it is the shallow water approximation.

For a regular flow without either viscosity or conduction of heat (that makes up
many of the less realistic hypotheses), we have (∂t + Ev · ∇)S = 0: S is constant
along the trajectories. If, in addition, it is constant at the initial instant, we have
S= const. AsSe > 0, we can invert the functionS(· , ρ): we havee = E (S, ρ),
with the result that alsop is a function of (S, ρ). In the present context,p must be
a function ofρ alone and similarly this is true of all the coefficients of the system,
for exampleα andβ. The conservation of mass and that of momentum thus form
a closed system of partial differential equations (here again we have taken account
of the newtonian viscosity7):

∂tρ + div(ρEv) = 0,

∂t (ρvi )+ div(ρvi Ev)+ ∂i p(ρ) = div(α(∇vi + ∂i Ev))+ ∂i (β div Ev)·
6 This does not affect Fourier’s law, ask is changed with the result that the productk∇θ is not.
7 One more odd choice!
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The equation of the conservation of energy becomes a redundant equation.8 We
shall use it as the ‘entropy’ conservation law of the inviscid model. We call this the
isentropic model:

∂tρ + div(ρEv) = 0,

∂t (ρvi )+ div(ρvi Ev)+ ∂i p(ρ) = 0.

Its mathematical entropy is the mechanical energy1
2ρ(‖Ev‖2 + e(ρ)), associated

with the ‘entropy flux’ρ(1
2‖Ev‖2+e(ρ))Ev+ p(ρ)Ev. For a perfect gas, the hypothesis

S= const., states thateγ−1 = cρ and furnishes thestate law p= κργ . This, then,
is called apolytropic gas.

The isothermalmodel is reasonable when the coefficient of thermal diffusion is
large relative to the scales of the time and space variables. For favourable boundary
conditions, the entropic balance gives

d

dt

∫
Ä

ρSdx ≥ −
∫
Ä

k∇θ · ∇Se dx =
∫
Ä

k
‖∇θ‖2
θ2

dx.

According to the conservation laws, we can add toρS an affine function of the
variables (ρ, ρEv, E) in the preceding inequality. Meanwhile, experience shows that
the mapping (ρ, ρEv, E) 7→ ρS is concave.9 We can thus choose an affine function
η0 with the result thatη := ρS+η0 is negative. If the domainÄ is the whole space
Rd, the fluid being at rest at infinity, we can also takeη to be null at infinity. Finally∫

Ä

k
‖∇θ‖2
θ2

dx ≤ −
∫
Ä

ηt=0 dx·

The right-hand side is a datum of the problem, supposed finite. Ifk is large, we see
that it is all right to approachθ by a constant; that it is a constant and not a function
of time is not clear but is currently assumed. Again, the pressure and the viscosity
become functions ofρ only, and the conservation of mass and that of momentum
form a closed system: the mechanical energy is taken as the mathematical entropy
of the system. For a perfect gas,e= θ is constant, with the result that the state law
is linear: p = κρ.

The isothermal approximation is reasonable enough in certain r´egimes, because,
for a gas, for instance, the thermal effects are always more significant than the
viscous effects. A general criterion regarding these approximations is however that
the shocks of the barotropic models are not the same as those of the Euler equations:
the Rankine–Hugoniot condition is different.

8 Or rather incompatible, if we have included the newtonian viscosity.
9 In fact, this concavity is the condition for the Cauchy problem of the linearised Euler equations to be well-posed.

It no longer holds if we model a fluid with several phases.
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The third barotropic model describes the flow in a shallow basin, that is, in one
whose horizontal dimensions are great with respect to its depth. The domainÄ is
the horizontal projection of the basin: we thus haved = 1 or d = 2. The fluid
is incompressiblewith densityρ0. We do not take the vertical displacements into
account. The variables treated are the horizontal velocity (averaged over the height)
Ev(x, t) and the height of the fluidh(x, t). The pressure is considered to be the integral
of the hydrostatic pressureρ0gzwherez is the vertical coordinate. We therefore have
p = ρogh2/2. The conservation of mass and that of momentum give the system

∂t (ρ0h)+ div(ρ0hEv) = 0,

∂t (ρ0hvi )+ div(ρ0vi Ev)+ 1

2
g∂i (ρ0h2) = 0, 1≤ i ≤ d.

CommentsDividing by ρ0, we recover the isentropic model of a perfect gas for
whichγ = 2.

We have not taken into account the effects of viscosity and this is an error: they are
responsible for a boundary layer on the base of the basin which implies a resistance
to the motion. That resistance makes itself manifest in the model by a source term
in the second equation of the form− f (h, |Ev|)vi , with f > 0.

One way of obtaining these equations from the Euler equations is to integrate the
latter with respect toz (but notx). We then make the hypothesis that certain means
of products are the products of means, that is that the vertical variations inρ andEv
are weak.

The relativistic models of a gas, though much more complicated than those which
have preceded, are also those of systems of conservation laws. We shall not give a
detailed presentation here. By way of an example, we shall consider the simplest
among those systems: a barotropic fluid, isentropic, one-dimensional and in special
relativity; the conversation of mass and that of momentum give

∂t

(
p+ ρc2

c2

v2

c2− v2
+ ρ

)
+ ∂x

(
(p+ ρc2)

v

c2− v2

)
= 0,

∂t

(
(p+ ρc2)

v

c2− v2

)
+ ∂x

(
(p+ ρc2)

v2

c2− v2
+ p

)
= 0.

For more general models the reader should consult Taub [102].

1.2 Gas dynamics in lagrangian variables

Writing the equations of gas dynamics in lagrangian coordinates is very complicated
if d ≥ 2; in addition it furnishes a system which does not come into the spirit of
this book. This is why we limit ourselves to the one-dimensional case (d = 1). We
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shall make a change of variables (x, t) 7→ (y, t) which depends on the solution.
The conservation law of mass

ρt + (ρv)x = 0

is the only one which makes no appeal to any approximation. It expresses that
the differential formα := ρ dx − ρv dt is closed and therefore exact.10 We thus
introduce a function (x, t) 7→ y, defined to within a constant byα = dy. We have
dx = v dt + τ dy, where we have denoted byτ = ρ−1 thespecific volume(which
is rather a specific length here).

Being given another conservation law∂tui + ∂xqi = 0, which can be written
d (qi dt − ui dx) = 0, we have that

d((qi − ui v) dt − ui τ dy) = 0,

that is

∂t (ui τ )+ ∂y(qi − ui v) = 0.

The system, written in the variables (y, t), is thus formed of conservation laws. Let
us look at for example the momentumu2 = ρv. In the absence of viscosity, we
haveq2 = ρv2+ p(ρ,e). From this comes

∂tv + ∂y P(τ,e) = 0,

whereP(τ,e) := p(τ−1,e). Similarly, for the energy,u3 = 1
2ρv

2 + ρe andq3 =
(u3+ p)v :

∂t

(
1

2
v2+ e

)
+ ∂y(P(τ,e)v) = 0.

The conservation of mass gives nothing new since it was already used to construct
the change of variables. Withu1= ρ andq1= ρv, we only obtain the trivial equation
1t + 0y=0. To complete the system of equations for the unknowns (τ, v,e) we
have to involve a trivial conservation law. For example withu4 ≡ 1 andq4 ≡ 0,
we obtain

∂tτ = ∂yv.

We note that in lagrangian variables the perfect gas law is writtenP = (γ −1)e/τ .
If we take into account the thermal and viscous effects, thenq2 = ρv2+ p(ρ,e)−

ν(ρ,e)vx. As τvx = vy we obtain

∂tv + ∂y P(τ,e) = ∂y

(ν
τ
∂yv

)
.

10 These assertions are correct even (ρ, ρv) are no better than locally integrable.
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Similarly, q3 = (u3+ p)v − νvvx − kθx gives

∂t

(
1

2
v2+ e

)
+ ∂y(Pv) = ∂y

(
ν

τ
(v∂yv)

)
+ ∂y

(
k

τ
∂yθ

)
.

Criticism of the change of variables

Although this change of variable is perfectly justified, even if (e, v) is bounded
without more regularity as well asv−1 (see D. Wagner [110]), it raises a major
difficulty if the vacuum is somewhere part of the space. In this case, the jacobian
ρ of (x, t) 7→ (y, t) vanishes and it is no longer a change of variable. The specific
volume then reduces to a Dirac mass, with norm equal to the length of the interval
of the vacuum. It becomes critical to give sense to the equations (it is nothing other
than the conservation law of a mathematical difficulty). The equations in eulerian
coordinates are also ill-posed in the vacuum: the velocity cannot be defined and the
fluxesq2 andq3 are singular. Indeed, returning to the variablesu = (ρ, ρv, E), we
haveq2 = u2

2/u1+ p, which makes no sense forρ = 0.

1.3 The equation of road traffic

Let us consider a highway (a unique sense of circulation will be sufficient for our
purpose), in which we take no account of entries or exits. We represent the vehicle
traffic as the motion of a one-dimensional continuous medium, which is reasonable
if the physical domain which we consider is very great in length in comparison
with the length of the cars. In normal conditions, we have a conservation law of
‘mass’

∂tρ + ∂xq = 0,

whereq = ρv is the flux, or flow, andv is the mean velocity. Unlike the case of a
fluid there is no conservation law of momentum or of energy. The drivers choose
their velocities according to the traffic conditions. It results in a relationv = V(ρ)
whereV is the speed limit ifρ is small. The functionρ 7→ V is decreasing and
vanishes for a saturation valueρm, for which neighbouring vehicles are bumper-to-
bumper. The space of the states is thereforeU = [0,qm].

This model is a typical example of a scalar conservation law. The state law
q(ρ)= ρV(ρ) has the form indicated in Fig. 1.1. We notice that each possible value
of the flow corresponds to two possible densities, of different velocities, with the
exception of the maximal flow.
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Fig. 1.1: Road traffic: flux vs density (in France).

A more precise model is obtained by taking the drivers’ anticipation into account.
If they observe an upstream increase in the density (respectively a diminution),
they show a tendency to brake (respectively to accelerate) slightly. In other terms,
v − V(ρ) is of the opposite sign to that ofρx. The simplest state law which takes
account of this phenomenon isv = V(ρ)− ερx, with 0<ε¿1, which leads to the
weakly parabolic equation

ρt + q(ρ)x = ε(ρρx)x.

1.4 Electromagnetism

Electromagnetism is a typically three-dimensional phenomenon (d=3), which
brings vector fields into play: the electric intensityE, the electric inductionD, the
magnetic intensityH , the magnetic inductionB, the electric currentj and the heat
flux q. Denoting bye the internal energy per unit volume, the conservation laws
are

Faraday’s law

∂t B+ curl E = 0,

with which is associated the compatibility condition divB = 0 (absence of
magnetic charge),

Ampère’s law

∂t D − curl H + j = 0,

conservation of energy

∂t E + div(E ∧ H + q) = 0.
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Maxwell’s equations

In the first instance let us neglect the current and the heat flux (which is correct for
example in the vacuum). Combining the three laws, we obtain

∂te= H · ∂t B+ E · ∂t D.

If the system formed by the laws of Faraday and Amp`ere is closed by the state laws

H =H (B, D), E = E (B, D),

from the conservation of energy it is then deduced that

H (B, D) · dB+ E (B, D) · dD

is an exact differential. Following Coleman and Dill [9], we can then postulate the
existence of a functionW: R3× R3→ R such that

Hj = ∂W

∂Bj
, Ej = ∂W

∂D j
, j = 1,2,3.

We havee= W(B, D); the conservation laws are calledMaxwell’s equations:

∂t B+ curl
∂W

∂D
= 0, ∂t D − curl

∂W

∂B
= 0.

These lead toPoynting’s formula

∂t W(B, D)+ div(E ∧ H ) = 0,

which shows thatW is an entropy of the system, generally convex. Some other
entropies of the system, not convex, are the components ofB ∧ D.

Now, taking into account the charge and the heat, the complete model is the
following:

∂t B+ curl
∂W

∂D
= 0, ∂t D − curl

∂W

∂B
= − j,

∂t (W(B, D)+ ε0)+ div(E ∧ H + q) = 0,

whereε0 is the purely calorific part of the internal energy.11 For a regular solution
we have

∂tε0+ div q = E · j,

where the right-hand side represents the work done by the electromagnetic force

11 We have made the hypothesis that the underlying material is fixed in the reference frame. For a material in
accelerated motion, see for example the following section.
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(the Joule effect). We notice that transfer between the two forms of energy is
possible. In the vacuum, the current is zero and there is neither temperature, nor
heat flux; next, following Feynman [21] (Chapter 12.7 of the first part of vol. II),
the Maxwell equations are linear in a large range of the variables. The energyW is
thus a quadratic form:

W(B, D) = 1

2

(
1

µ0
‖B‖2+ 1

ε0
‖D‖2

)
.

The constants of electric and magnetic permittivity have the values (in S.I. units)
ε0 = (36π ·109)−1 andµ0 = 4π ·10−7. Their product isc−2, the inverse of the
square of the velocity of light.

In material medium, conducting and isotropic, the state law has the same form
but with constantsε >0 andµ>0 of greater value. The number (εµ)−1/2 is again
equal to the velocity of propagation of plane waves in the medium. In media which
are poor conductors (dielectrics) the state law is no longer linear. The isotropy
manifests itself by the condition

W(RB, RD) = W(B,D), ∀R ∈ O3(R).

This implies the existence of a functionw of three variables, such that

W(B, D) = w(‖B‖, ‖D‖, B · D).

Finally, paramagnetic bodies present phenomena of memory (withhysteresis),
which do not come into the body of systems with conservation laws.

Plane waves

Henceforth, let us neglect the thermodynamic effects as well as the electric current.
For a plane wave which is propagating in thex1-direction we have∂2 = ∂3 = 0,
with the result that∂t B1 = ∂t D1 = 0. There remain four equations, in which we
write x = x1, the unique space variable:

∂t B2− ∂x
∂W

∂D3
= 0, ∂t B3+ ∂x

∂W

∂D2
= 0,

∂t D2+ ∂x
∂W

∂B3
= 0, ∂t D3− ∂x

∂W

∂B2
= 0.

Let us look at the simple case in whichW is a function ofρ := (‖B‖2+ ‖D‖2)1/2

only. Introducing the functionsy := B2 + D3 + i(B3 − D2), z := B2 − D3 +
i(B3+ D2), we haveyt − (ϕ(ρ)y)x = 0, zt + (ϕ(ρ)z)x = 0. The polar coordinates
(r, s, α, β), defined byy = r exp iα andz = sexp iβ, enable us to simplify the
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system into

αt − ϕ(ρ)αx = 0, rt − (ϕ(ρ)r )x = 0,

βt + ϕ(ρ)βx = 0, st + (ϕ(ρ)s)x = 0,

with the connection 2ρ2 = r 2+ s2.

1.5 Magneto-hydrodynamics

Magneto-hydrodynamics (abbreviated as M.H.D.) studies the motion of a fluid in
the presence of an electromagnetic field. As it is a moving medium, the field acts
on the acceleration of the particles, while the motion of the charges contributes to
the evolution of the field. This coupling is negligible in a great number of situations
but comes into action in a Tokamak, a furnace with induction, or in the interior of
a star.

The fluid is described by its density, its specific internal energy, its pressure,
and its velocity. If no account is taken of the diffusion processes, we write the
conservation laws of mass, of momentum, of energy and Faraday’s law as
follows:

ρt + div(ρv) = 0,

(ρvi )t + div(ρvi v)+ ∂

∂xi

(
p+ 1

2
‖B‖2

)
− div(Bi · B) = 0, 1≤ i ≤ 3,(

ρ

(
1

2
‖v‖2+ ε

)
+ 1

2
‖B‖2

)
t
+ div

(
ρ

(
1

2
‖v‖2+ ε

)
+ pv + E ∧ B

)
= 0,

Bt + curl E = 0.

We see from these equations that the magnetic field exerts a force on the fluid
particles and contributes to the internal energy of the system. The fact that the
electric field does not is the result of an approximation, the same as we made in
disregarding Amp`ere’s law.

There are two state laws: on the one handp= p(ρ,e), which always has the form
P = (γ − 1)ρe for a perfect gas; on the other hand,E = B ∧ v. This expresses a
local equilibrium: the acceleration of the particles taken individually is of the form
f + (E + v ∧ B)/m wherem is the mass of a particle of unit charge andf is the
force due to the binary interactions. Asm¿ 1 and since the velocity of the fluid
remains moderate,12 E + v ∧ B is very small.

12 Under this hypothesis, the fluid is seen as a dielectric.
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For a sharper description, we take account of the processes of diffusion: the
viscosity, Fourier’s law certainly, even Ohm’s law:13

E = B ∧ v + η j + χ ( j ∧ B).

Finally we take Amp`ere’s law into account, but we neglect in it the derivative∂t E
considering thatE varies slowly in time:

j = curl B.

Each of the phenomena which we come to take into account is studied by adding
one or several of the second order terms in the laws of conservation. Whether the
factors such asη, χ , k, α andβ can be considered as small or not depends on the
scale of the problems studied.

Plane waves in M.H.D.

Again, we consider the solutions for which∂2 = ∂3 = 0 andβ := B1 is constant.
This behaviour is established when the initial condition satisfies it. In the sequel
we write

z := v1, w := (v2, v3), b := (B2, B3), x := x1.

In Faraday’s lawBt + curl E = 0, the component in the direction ofx1 and the
compatibility condition divB = 0 are trivial. There remain seven equations in place
of eight, which is correct sinceB1 is no longer an unknown:

∂tρ + ∂x(ρz) = 0,

∂t (ρz)+ ∂x

(
ρz2+ p(ρ,e)+ 1

2
‖b‖2

)
= 0,

∂t (ρw)+ ∂x(ρzw − ρb) = 0,

∂t

(
ρ

(
1

2
z2+ 1

2
‖w‖2+ e

)
+ 1

2
‖b‖2

)
+ ∂x

(
ρz

(
1

2
z2+ 1

2
‖w‖2+ e

)
+ (p+ ‖b‖2)z− βb · w

)
= 0,

∂tb+ ∂x(zb− βw) = 0.

The system is simpler in lagrangian coordinates (y, t), defined by dy= ρ(dx−
zdt) – see§1.2. Denoting byτ = 1/ρ the specific volume, these equations are

13 Which replaces the hypothesisE = B ∧ v.



February 8, 1999 16:12 CU002/Serre CU002-01

16 Some models

transformed to

τt = zy,

zt +
(

p(1/τ,e)+ 1

2
‖b‖2

)
y
= 0,

wt − βby = 0,(
1

2
z2+ 1

2
‖w‖2+ e+ 1

2
‖b‖2

)
t
+
(

(p+ 1

2
τ‖b‖2)z− βb · w

)
y
= 0,

(τb)t − βwy = 0.

A combination of these equations gives, for a regular solution,et + pzy = 0 or
againet + pτt = 0, that is to say

S(τ,e)t = 0,

Sbeing the thermodynamic entropy (θ dS= de+ p dτ ). The analogous calculation
in eulerian variables yields the transport equation

(∂t + z∂x)S= 0,

which shows thatρS is an entropy, in the mathematical sense, of the model.

A simplified model of waves

Let us consider the system of plane waves of M.H.D. in eulerian variables to fix
the ideas, withβ 6= 0. It admits in general seven distinct velocities of propagation
λ1 < λ2 < · · · < λ7 among whichλ4 = z, λ2 = z− βρ−1/2, andλ6 = z+ βρ−1/2

(λ2 andλ6 are the speeds of theAlfven waves). The four remaining speeds are the
roots of the quartic equation

((λ− z)2− c2)((λ− z)2− β2/ρ) = (λ− z)2‖b‖2/ρ,
c= c(ρ,e) being the speed of sound in the absence of an electromagnetic field.
However, whenb vanishes, we haveλ3 = λ2 andλ5 = λ6. This coincidence of
two speeds and the non-linearity of the equations induce a resonance. For waves of
small amplitude, this phenomenon can be described by an asymptotic development.

First of all, a choice of a galilean frame of reference allows the assumption
that the base stateu0, constant, satisfiesw0 = 0 (we already haveb0 = 0) and
z0
√
ρ0 = β0. We thus haveλ2(u0)= λ3(u0)=0: the resonance occurs along curves

(in the physical plane) with small velocities. Ifu − u0 is of the sizeε ¿ 1 this
velocity is also of the order ofε, which leads to the change of the time variable
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s := εt , so∂t = ε∂s. The other hypotheses are

on the one handρ = ρ0+ ερ1+ · · ·, z= z0+ εz1+ · · ·, e= e0+ εe1+ · · ·,
on the other handw=√ε · (w1(s, x)+εw2(s, t, x)+· · ·), b = √ε · (b1(s, x)+
εb2(s, t, x)+ · · ·). We note that, although

√
ε is great compared withε, these

hypotheses ensure thatλ2 andλ3 are of the order ofε.

The examination of the terms of orderε in the conservation laws shows thatρ1, z1,
e1 andw1 are explicit functions ofb1. Finally, the terms of orderε3/2 in Faraday’s
law, averaged with respect to the slow variablet to eliminateb2, furnish a system
which governs the evolution ofU := b1:

∂tU + σ∂x(‖U‖2U ) = 0, (1.3)

whereσ is a constant which depends only on (ρ0,e0). In this book, we shall copi-
ously use the system (1.3) to illustrate the various theories, but we shall also make
appeal to a slightly more general one:

∂tU + ∂x(ϕ(‖U‖)U ) = 0

whereϕ: R+ → R is a given smooth function.

1.6 Hyperelastic materials

We shall consider a deformable solid body, which occupies, at rest, a reference
configuration which is an open setÄ ⊂ Rd. We describe its motion by a mapping
(x, t) 7→ (y, t), Ä → Rd, wherey is the position at the instantt of the particle
which was situated at rest atx in the reference configuration. We define the velocity
v: Ä→ Rd and the deformation tensoru: Ä→ Md(R) by

v = ∂y

∂t
, uα j = ∂yα

∂xj
.

In the first instance we write the compatibility conditions

∂tuα j = ∂ j vα, ∂kuα j = ∂ j uαk, 1≤ α, j, k ≤ d.

A material is said to behyperelasticif it admits an internal energy density of the form
W(u) and if the forces due to the deformation derive from this energy (principle of
virtual work):

f = ( f1, . . . , fd), fα = − δE
δyα

.

Hereδ/δy denotes the variational derivative ofE [y] := ∫ W(∇y) dx:

fα =
∑
j=1

∂ j
∂W

∂uα j
.
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The fundamental law of dynamics is written

∂tvα = fα + gα,

whereg represents the other forces, due to gravity or to an electromagnetic field
(but here we do not consider any coupling). Finally,U := (u, v) obeys a system of
conservation laws of first order (for whichn = d(d + 1))

∂tuα j = ∂ j vα, 1≤ α, j ≤ d,

∂tvα =
d∑

k=1

∂k
∂W

∂uαk
+ gα, 1≤ α ≤ d.

These equations can be linear, whenW is a quadratic polynomial, but this type of
behaviour is not realistic. In fact, the energy is defined only foru∈GLd(R) with
det(u)>0 (the material does not change orientation), and must tend to infinity when
the material is compressed to a single point:

lim
u→0n

W(u) = +∞.

The models of elasticity are thus fundamentally non-linear. Other restrictions on
the form ofW are due to the principle offrame indifference:

W(u) = W(Ru), R ∈ SOd(R), (1.4)

and, if the material is isotropic,

W(u) = W(uR), R ∈ SOd(R). (1.5)

From (1.4), there exists a functionw: S+ → R, on the coneS+ of positive definite
symmetric matrices such that

W(u) = w(uTu).

If, in addition, (1.5) holds, then the functionS 7→w(S) depends only on the eigen-
values ofS.

We find an entropy of the system in writing the conservation of energy:

∂t

(
1

2
‖v‖2+W(u)

)
=

d∑
α, j=1

∂ j

(
vα
∂W

∂uα j

)
.

The total mechanical energy (v,u) 7→ 1
2‖v‖2+W(u) is not always convex.14 How-

ever, it is in the ‘directions compatible’ with the constraint∂kuα j = ∂ j uαk. In other

14 There are obstructions due to the invariances mentioned above and to the fact thatW tends to infinity at 0 and
at infinity. See [8] Theorem 4.8-1 for a discussion.
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words, W is convex on each straight linēu + Rz wherez is of rank one (the
Legendre–Hadamard condition). This reduced concept of convexity is appropri-
ate for problems with constraints. In particular, the mechanical energy furnishes
an a priori estimate. A constitutive law currently used is that of St Venant and
Kirchhoff:

w(S) = 1

2
λ(Tr E)2+ µTr(E2), E := 1

2
(S− In).

On the other hand, other entropies do not have this convexity property; for all
k ≤ d

∂t (v · uk) = ∂k

(
1

2
‖v‖2−W(u)

)
+

d∑
j=1

∂ j

(
uαk

∂W

∂uα j

)
.

Strings and membranes

More generally, we can consider a material for whichx ∈ Ä (withÄ ⊂ Rd) but with
(y, t) ∈ Rp with p ≥ d. The casep=d is that described above. Whenp = 3 and
d = 2 it is a mater of a membrane or a shell, whilep ≥ 2 andd = 1 corresponds to
a string. For a membrane or a string, the equations are the same as in the preceding
paragraph, but the Greek suffixes go from 1 top instead of from 1 tod. There are
thenn = p(d + 1) unknowns and just as many equations of evolution.

Let us look at the case of string:u is a vector andW(u) = ϕ(‖u‖), because of
frame indifference,ϕ being a state law. We have

∂W

∂uα
= 1

r
ϕ′(r )uα, r := ‖u‖,

with the result that dW is the product ofϕ′ (called thetensionof the string) by the
unit tangent vector to it:r−1u. There are four or six equations:

ut = vx, vt = (r−1ϕ′(r )u)x + g.

1.7 Singular limits of dispersive equations

The systems of conservation laws which are presented here proceed from com-
pletely integrable dispersive partial differential equations. We take as an example
the Korteweg–de Vries (KdV) equation

ut + 6uux = uxxx, (1.6)

but there are others, of which the best known is the cubic non-linear Schr¨odinger
equation.
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Certain solutions of (1.6) are progressive periodic waves: they have the form
u = u(x − ct) with u′′′ = 6uu′ − cu′, with the result that

1

2
u′2 = u3− 1

2
cu2− au− b,

wherea andb are constants of integration. The triplet (a,b, c) defines a unique
periodic solution (to within a translation) when the polynomial equationP(X) :=
X3− 1

2cX2−aX−b = 0 has real roots:u1 < u2 < u3. We then have minu(x) =
u1 and maxu(x) = u2.

What are of interest here are such periodic solutions of the KdV equation, which
are, in first approximation, modulated by the slow variables (s, y) := (εt, εx) with
0< ε ¿ 1.

uε(x, t) = u0(a(s, y),b(s, y), c(s, y); x − c(s, y)t)+ εu1(s, y, x, t)+ O(ε2).

We require thatu1 andu0 be smooth functions and thatu1 be almost periodic with
respect to (x, t).

The choice of the parameters (a,b, c) is not the most practical from the point
of view of calculations. We proceed to construct another set, with the aid of the
expressions

i1 := u, i2 := 1

2
u2, i3 := 1

2
u2

x + u3.

These are invariants of the KdV equation in the sense that sufficiently smooth
solutions15 satisfy

∂t i k + ∂x jk = 0, 1≤ k ≤ 3,

with

j1 = 3u2− uxx, j2 = 2u3+ 1

2
u2

x − uuxx,

j3 = 1

2
u2

xx + 6uu2
x − uxuxxx− 3u2uxx + 9

2
u4.

Let (a1,a2,a3) ∈ R3 be a triplet such that there exists a functionw ∈ H1(S1),
S1 = R/Z, with∫ 1

0
w dξ = a1,

∫ 1

0

1

2
w2 dξ = a2,

∫ 1

0
w3 dξ < a3.

Then the setX(a1,a2,a3) of the couples (v,Y) ∈ H1(S1)× (0,+∞) such that∫ 1

0
v dξ = a1,

∫ 1

0

1

2
v2 dξ = a2,

∫ 1

0

(
v3+ 1

2Y2
v′2
)

dξ = a3

15 There is no interest in the question of smoothness here; let us say that it is does not cause trouble.


