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Hubert, Christophe Cheverry, Hervé Gilquin, Arnaud Heibig, Peng Yue Jun, Julien
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Introduction

The conservation laws that are the subject of this work are those of physics or
mechanics, when the state of the system considered is a field, that is a vector-
valued function (x, t) �→ u(x, t) of space variables x = (x1, . . . , xd ) and of the
time t . The domain� covered by x is an open set of R

d , with in general 1 ≤ d ≤ 3.
The scalar components u1, . . . , un of u are variables dependent on x and t : if � is
bounded and in the absence of any exchange with the exterior,1 the mean state of
the system

ū := 1

|�|
∫

�

u(x, t) dx

is independent of the time and the system tends to a homogeneous equilibrium
u ≡ ū as the time increases. The fact that we speak of the mean indicates that the
set U of admissible values of the field u is a convex set of R

n .
A conservation law is a partial differential equation

∂ui
∂t

+ divx 
qi = gi ,
where gi (x, t) represents the density (per unit volume) of the interaction with ex-
ternal fields. Among these fields, we can even find some which depend on u; for
example the conservation of momentum of an electrically neutral continuum can
be written

∂ρvi

∂t
+ divx (ρvi 
v − 
T i ) = ρGi ,

where ρ is themass density (ρ is one of the components of u), T = ( 
T 1, . . . , 
T d ) is
the strain tensor, 
v is the velocity and 
G the gravity field. Hence, in general we shall
1 The boundary ∂� is thus impermeable and insulated, for example electrically, in short, there is no interaction
with a field other than u.

xiii
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xiv Introduction

have gi (x, t) = hi (x, t, u(x, t)) where hi is a known function: here gi = u1Gi−1
since ρ is u1. We call 
h the sources of the system.
An equivalent formulation of a conservation law is given by an integral condition,

which expresses the physical balance for the quantity represented by ui in an
arbitrary part ω of �:

d

dt

∫
ω

ui (x, t) dx +
∫

∂ω


qi (x, t) · ν(x) dx =
∫

ω

gi (x, t) dx

where ν(x) denotes the outward unit normal at a point x on the boundary of ω. The
vector field 
qi is thus the flux of the variable ui :
flux of mass if ui is the mass density,
flux of energy if ui is the energy density per unit volume,
electric current if ui is the electric charge density, . . . .

The third formulation of a conservation law is also the most practical for finding the
new equation when we have to effect a change of variables. We define a differential
form αi of degree d in � × (0, T ) by

αi := uidx1 ∧ dx2 ∧ · · · ∧ dxd − qi1dt ∧ dx2 ∧ · · · ∧ dxd
+ · · · (−)dqid dt ∧ dx1 ∧ · · · ∧ dxd−1.

The conservation law is then written

dαi = gi dt ∧ dx1 ∧ · · · ∧ dxd .

This way of looking at the problem suggests that other conservation laws have a
natural formdα = β whereα is a differential formof degree p, not necessarily equal
to d. This is the case of Maxwell’s electromagnetic equations or the Yang–Mills
equations for which p = 2 and d = 3.
In this form, the conservation laws are intangible, in so far as the scales of time,

length, velocity . . . are compatible with a representation of the system by fields.2

However, the description of the evolution of the state of the physical system is
possible only if the system of equations

∂t ui + divx 
qi = gi , 1 ≤ i ≤ n,
is closed under the state laws:

qi := Qi [u; ε].

These laws, in which ε denotes one or several dimensionless parameters,3 describe

2 Quantum effects are therefore excluded, but relativistic effects can, in general, be taken into account.
3 Such as the inverse of a Reynolds number, a mean free path, a relaxation time.
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Introduction xv

in an empirical manner the behaviour of a continuum put into a given homogeneous
state u ∈ U. For example, a fixed mass of gas, in a prescribed volume and at an
imposed temperature, exerts on the boundary a force whose density per unit surface
area (the pressure) is constant and depends only on the thermodynamic parameters
and on the nature of the gas; however, the complete ranges of time and of the space
variables are not allowable and in certain cases, recourse must be had to a statistical
description or to molecular dynamics. Care must always be taken, specially when
an asymptotic analysis is being made, to ensure the validity of the model being
used.
The description of the road traffic on a highway shows that the state law depends

asmuch on human sciences as on physics: the average speed of vehicles is a function
of the traffic density and reflects the average behaviour of human beings (the drivers)
and depends on circumstances; again, there is nothing absolute about it as it varies
according to material conditions (the reliability and security of the vehicles, the
quality of circulation lanes), and the regulations in force and even the culture of a
country.
The point common to all the models studied here is the fact that fi :u �→ Qi [u, 0]

is an ordinary local function: its value at (x, t) depends only on that of u at this point.
By an abuse of notation, we may therefore write fi [u](x, t) = fi (x, t, u(x, t)) and,
on this occasion, fi denotes a function defined on U and with values in R, which,
in general, will be regular. In first approximation, the evolution of the system can
be deduced from the knowledge of its initial state u0(·) = (u01, . . . , u0n) given on
�, in the solution of the system of non-linear partial differential equations

∂t ui + divx fi (u) = gi (x, t, u), 1 ≤ i ≤ n, x ∈ �, t > 0, (0.1)

augmented by the appropriate boundary conditions. This is the mixed problem
which when � = R

d we rather call the Cauchy problem.
The apparent simplicity of these equations contrasts with the difficulty of the

problems encountered when solving the Cauchy problem or the mixed problem, as
much from the theoretical point of view as from that of numerical analysis. These
two ways of considering the Cauchy problem are equally interesting and difficult.
However, the present work is devoted only to the theoretical aspects, in particular
because the numerical part is covered by a number of very good books. Let us cite
at least those of Leveque [62], Godlewski and Raviart [34], Richtmyer and Morton
[86], Sod [98], and Vichnevetsky and Bowles [109].
To illustrate the mathematical difficulties, let us say that there is not a satisfactory

result concerning the existence of a solution of the Cauchy problem. For given
regular initial data,4 there exists a regular solution, but only during a finite time

4 Let us say of class Hs , with s > 1+ d/2 with the result that u0 is of class C 1.
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xvi Introduction

(Theorem 3.6.1) inversely proportional to ∇xu0. Since, beyond a certain time,
discontinuities in u must develop, this theorem is not satisfactory for applications.
The results which concern weak solutions (those which have a chance of being
defined for all time) are limited to the scalar case (n = 1) or to the one-dimensional
case (d = 1)! Again in this latter case the restrictions themselves are severe: the
global existence in time (Theorem 5.2.1) is known if the total variation of u0 is
sufficiently small (if n = 2, only if the product TV(u0)‖u0‖∞ is supposed small).
There is there a threshold effect, for a local result does not exist where the time
of existence would depend on the scale of the data. This question is discussed by
Temple and Young [105], who have obtained recently a result of this type for the
system of gas dynamics.5 For bounded initial data, but of arbitrary size, the situation
is worse; only 2× 2 systems (i.e. with n = 2 and d = 1) and related systems (see
Chapter 12) have been tackled by the method of compensated compactness, under
restrictive hypotheses and for results of relatively poor quality. Among these, the
Temple systems gain from a suitable theory (see Chapter 13) in large part because
they are a faithful generalisation of the scalar laws of conservation.
The appearance of discontinuities in finite time has led specialists in function

spaces to pay particular attention to spaces such as L∞ or BV (functions of bounded
variation). It is in one or the other space that existence theorems have been obtained
in one-dimensional space. The reason for their success is that these are algebras,
which permits the treatment of the rather strong non-linearity of the equations.
However, the work of Brenner [4], which is concerned with linear systems, shows
that these spaces cannot be adapted to the multi-dimensional case. To the contrary,
the spaces would have to be of Hilbert type, at least to be constructed on L2. We are
thus in the presence of a paradox which has up to the present not been resolved: to
find a function space which is an algebra, probably constructed on L2 and which
contains enough discontinuous functions.
The study of discontinuous solutions, called weak solutions, makes use of the

integral form of the conservation laws, in the equivalent form below:6∫∫
�×R+

(
ui

∂ϕ

∂t
+ fi (u) · ∇xϕ

)
dx dt +

∫
�

ui0ϕ(·, u) dx =
∫∫

�×R+
giϕ dx dt

for every test functionϕ, of classC
∞ andwith compact support in�×R

+.We show
easily the equivalence with the partial differential equation ∂i ut + divx fi (u) = gi
everywhere u is of class C

1. On the other hand, when u is of class C
1 on both sides

of a hypersurface � ∈ R
d+1, with the boundary values u+(x, t) on one side and

u−(x, t) on the other, the integral formulation expresses a transmission condition,

5 Their work is based on the particular structure of the system of gas dynamics and cannot be extended to systems
of general conservation laws, by reason of an estimation due to Joly, Métivier and Rauch [47].

6 The eventual boundary conditions have not been taken into account here, so as not to overburden the formulae.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521582334 - Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves
Denis Serre
Frontmatter
More information

http://www.cambridge.org/0521582334
http://www.cambridge.org
http://www.cambridge.org


Introduction xvii

called the Rankine–Hugoniot condition:

ν0[ui ]+
d∑

α=1
να[ fiα(u)] = 0

where (x, t) �→ (ν0, . . . , νd ) is a normal vector field to �. This formula suggests
that the role of the sources gi in the propagation of discontinuities is negligible.
This is the reason why these terms are omitted very frequently in this work.
A quick look at the systems of the form (0.1) suggests that they govern re-

versible phenomena, at least when g≡ 0: if u is a solution so also is the function
ũ(x, t) := u(−x, −t). This is obvious if u is of class C

1, it is also true for a weak
solution. Nevertheless it is known that thermodynamics modelled by the equations
of Euler which are the archetype of systems of conservation laws is the centre of ir-
reversible processes. This paradox is bound to the lack of uniqueness of the solution
of the Cauchy problem in the framework of weak solutions. The regular solutions
are effectively reversible, but the discontinuous solutions are not. We attack there
a central question of the theory: how to separate the wheat from the chaff, the so-
lutions observed in nature (called ‘physically admissible’) from those that are only
mathematical artefacts? There are two major types of reply to this question.
The first is descriptive and concerns only piecewise continuous solutions whose

discontinuities occur along regular hypersurfaces of�×R
+. These discontinuities

are physically admissible if they obey a causality principle: the state of the system
cannot contain more information than it has at the initial instant.7 Mathematically,
we consider the coupled system formed, on the one hand, partly of the conservation
laws and partly of the hypersurface and, on the other hand, of theRankine–Hugoniot
condition, seen as an evolution equation for the location of the discontinuity. It is
thus a free boundary problem, which can be transformed to a mixed problem in
a fixed domain. We demand that this mixed problem be well-posed for increasing
time. In dimension d = 1, an equivalent condition, at least if the amplitude of the
jump in u is moderate, is the shock criterion of Lax, formed of four inequalities,
described in §4.3. In a higher dimension, the characterisation of the admissible
discontinuities, much more complex, is explained in Chapter 14. There are prin-
cipally two kinds of ‘good’ discontinuities, according as the Lax inequalities are
strict or two among them are equalities. Only the first type, called shock waves,
are irreversible. The second type, reversible, bear the name contact discontinuities.
Concerning thermodynamics, A. Majda [74, 73] has shown (see Chapter 14) that
the shock waves are, in general, stable (that is, that the mixed problem introduced
above is locally well-posed), while the contact discontinuities (the vortex sheets)

7 or that the boundary conditions provide.
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xviii Introduction

are strongly unstable.8 This instability à la Hadamard is a stone in the garden of
the mechanics of fluids; it renders Euler’s equations unsuited to the prediction of
flows and casts doubt on this model for thermodynamics.9

The second reply is of more general significance but manifests itself less prac-
tically in applications. To begin with is the criticism of the approximation made
above. To simplify the matter, let us suppose ε to be a scalar. It is reasonable to
replace Qi [u; ε] by fi (u) where the solution varies moderately, but it is debatable
where it varies greatly. Nowmost often, the solution of the real problem (denoted by
uε) is regular, of class C

1, but varies rapidly in the neighbourhood of a discontinuity
of u. Typically this neighbourhood has a width of the order of ε and the gradient
of uε must be of the order of 1/ε. In this narrow zone, what has been neglected is
of the same order of magnitude as fi (u). We have in fact

Qi [v; ε]− fi (v) ∼ εBi (v)∇xv,

where B(v) is a tensorwith four indices. A description of the evolutionmore faithful
than (0.1) is therefore

∂t u
ε
i + divx fi (u

ε) = ε divx (Bi (u
ε)∇xuε), 1 ≤ i ≤ n. (0.2)

The tensor B is such that the Cauchy problem for (0.2) is well-posed for ε > 0 and
increasing time.10 It represents, according to the case, the effect of a viscosity, that
of thermal conduction, the Joule effect, . . . . In the model of road traffic, where the
scalar u is the density of the vehicles, it represents the faculty of anticipation of the
drivers as a function of the flow of traffic in the vicinity of their vehicle; it is this
anticipation that causes irreversibility.
The system (0.2) is irreversible. This is the essential difference from (0.1), which

is expressed quantitatively as follows. The undisturbed system is in general com-
patible, for the regular solutions, with a supplementary conservation law11

∂t E(u)+ divx F(u) = dE(u) · g(x, t, u) (0.3)

where E :U → R is strictly convex. This can always be reduced to the case in
which E has positive values. The equation (0.3) then yields an a priori estimate of

8 save in dimension d = 1 where the contact discontinuities are stable.
9 It is not difficult to see that the vortex sheets necessarily appear, if d > 2, as a by-product of the interaction of
multi-dimensional shocks. The case d = 1 is less clear.

10 It would be wrong nevertheless to believe that the system (0.2) is parabolic, that is, that the operator v �→
divx B(v)∇xv is elliptic. Its symbol is generally positive but not positive definite.

11 It is principally in this setting that this work is placed.
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Introduction xix

u in a Sobolev–Orlicz space via the differential equation12

d

dt

∫
�

E(u(x, t)) dx =
∫

�

dE(u) · g(x, t, u) dx .

This allows us to control the value of the positive expression

E (t) :=
∫

�

E(u(x, t)) dx .

For example, in the absence of sources, E (t) remains equal to E (0), which depends
only on the initial condition. Of course, this calculation, in which we differentiate
composite functions (for example E ◦ u), does not have a rigorous basis for weak
solutions. On the other hand, the solution of the perturbed problem is in general
regular and satisfies the equation

∂t E(u
ε)+ divx 
F(uε) = dE(uε) · (ε divx (B(uε)∇xuε)+ g(x, t, uε)).

If g ≡ 0 and if the boundary values are favourable, we obtain at the best

E
′(t) = −ε

∫
�

(D2E(uε)∇xuε · B(uε)∇xuε) dx

which is negative for all the realistic examples. But, above all, the right-hand side
does not tend to zero with ε, because we integrate an expression of the order of
ε−1 (because of ε(∇xuε)2) over a zone whose measure is of the order of ε. The
decay of E , certainly preserved by passage to the limit when ε → 0+, thus will be
strict in the presence of discontinuities. A criterion of the admissibility of solutions
is thus ∫∫

�×R+
(E(u)∂tϕ + F(u) · ∇xϕ) dx dt +

∫
R

E(u0)ϕ(·, 0) dx ≥ 0 (0.4)

for every positive test function ϕ ∈ D (�×R), with equality for a classical solution
of (0.1).On the level of the discontinuities, (0.4) is translated as the jump condition13

ν0[E(u)]+
d∑

α=1
να[Fα(u)] ≤ 0. (0.5)

The equality in (0.5) is in general incompatible with the Rankine–Hugoniot condi-
tion except where this concerns the contact discontinuities.

12 To simplify the exposition, no account has been taken of the boundary conditions. For example, the reader
could assume that 
F · ν is null on the boundary.

13 We remark that this condition is independent of the orientation of �.
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xx Introduction

A function E like that introduced above carries the name, in so far as it is a
mathematical object, of entropy. By extension, we call a function E , not necessarily
convex, in a conservation law compatible with (0.1), also an entropy. The vector
field 
F is called the entropy flux associated with E . Again, this terminology is
due to thermodynamics, as the form of the equations of motion in lagrangian14

variables is a system of conservation laws compatible with a supplementary law
in which E is equal to −S, the opposite of physical entropy of the fluid. This
change of sign, which renders convex that which is concave and conversely, is
a cultural difference between mathematicians and physicists. For the physicist,
the entropy has a tendency to increase, while for the mathematician the opposite
holds. In the eulerian representation, in which� is a domain in physical space, the
difference is still moremarked, as E corresponds to−ρS. Despite this, the historical
link between the physical theory and mathematics has led to the inequality (0.4)
being called the entropy condition, when a system of conservation laws can be
modelled on something other than the flow of a fluid. The weak solutions which
satisfy (0.4) are called entropy solutions. By extension and in an improper manner,
we again speak of entropy conditions with regard to the Lax shock condition,
principally because in thermodynamics, the Lax inequalities express the fact that the
entropy S, constant when it follows a particle, in fact grows when it crosses a shock
wave.
Themechanismof dissipation,whichmakesE decrease and renders the evolution

irreversible, is so central that it would not make sense to study theoretically (0.1),
in isolation. This necessarily leads to the algebraic notion of a hyperbolic system
in the linear case, but the understanding of the non-linear case calls for as much
attention to be paid to the (partially) parabolic (0.2). This is why this book is
not entitled Hyperbolic systems of conservation laws. Chapters 6, 7 and 15 are
principally devoted to parabolic systems and these are involved in a significant way
in Chapters 8 and 9.

Some references This volume owes a great deal to those which preceded it, in
particular that of Majda [75]; this, at the same time short and profound, remains
an essential reference and the energy which animates it gives birth to a sense of
vocation. It is the only one to deal with nearly all the topics which deal with
multi-dimensional or asymptotic problems. It is with this that we have tried to deal
here, withmore detail but less animation. Although dealingwithmany subjects, this
work does not go on as long on classical problems as more specialised works. Thus,
the readerwhowishes to deepen his knowledge of theRiemann problem should read

14 In these variables, a particle is represented by a fixed value of the variable x . This is therefore not a ‘space
variable’ as strictly defined.
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the text of Ling Hsiao and Tong Zhang [46]. The global methods, based on the Con-
ley index, for studying the viscosity profiles, are found in Smoller [97]. A systematic
study of the propagation and the interaction of non-linear waves is greatly devel-
oped by Whitham [112]; see also the monograph of Boillat [2]. For questions con-
cerning the mechanics of fluids, with the description of multi-dimensional shocks,
Courant and Friedrichs [11] should be consulted. Various types of singular pertur-
bations (models of combustion, the incompressible limit) and the stability of multi-
dimensional shocks are presented in Majda [75]. For mixed problems in a (partly)
parabolic context, a good reference is Kreiss and Lorenz [55]. In the lecture notes
by Hörmander [45] is found a simple presentation of the blow-up mechanisms for
a general system (not necessarily rich) as well as the global (or nearly global) exis-
tence for a perturbation of thewave equation in dimension d ≥ 2. The notes of Evans
[20] give a view of the methods utilising weak convergence, which goes beyond
mere compensated compactness. The decay of entropic solutions to N-waves is the
subject of the memoir of Glimm and Lax [33]. Concerning the Cauchy problem and
mixed problems for linear equations there are many references; let us, at least, cite
Ivrii [48], Sakamoto [87] and again Kreiss and Lorenz [55]. The quasi-linear mixed
problem in dimension d = 1, which includes the free boundary problems, is sys-
tematically studied in Li Ta-Tsien and Yu Wen-ci [65]. The geometrical aspects of
the conservation laws, especially affine and convex, are the subject of thememoir of
Sévennec [93].
The way the chapters of this book are ordered is merely an indication to the

reader, since the chapters depend little on one another. The core of the theory is
constituted by Chapters 2, 3, 4, 6 and 14. For a postgraduate course in which the
aim is the solution of the Riemann problem for gas dynamics, Chapters 2 and 4
are indispensable but are not enough to give an advanced student a representative
picture of the subject.
In spite of its length, this work does not pretend to be exhaustive. It leads to a

blind alley on several questions, of which some are important. Uniqueness is the
most important of these; the reason is that it is a matter of a subject which is much
less advanced than that of existence (with, however, recent progress by A. Bressan),
and onwhichwe could not give a synthetic view. Likewise, this book does not tackle
questions which touch on ‘pathology’: systems not strictly hyperbolic have other
conditions for the admission of shock waves. At times, it has been mathematical
rigour that has been neglected (with the hope that it is not too frequent for the
taste of the reader): above all an attempt has been made to be the most descriptive
possible, giving perhaps too many criteria and formulae, asymptotic analysis, and
not enough proofs. Some new results will be found (few enough and none major in
all cases) and lists of exercises which should satisfy those who believe in acquiring
insight by the solution of examples. In spite of this range of descriptive material,
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xxii Introduction

there is not a word on the phenomenon of relaxation, nor on kinetic formulations,
and not more on the description by N-waves of behaviour in large times, three
important subjects of the theory. Perhaps, if the occasion arises, a future edition . . .

Lyon, November 1995

. . . cela peut durer pendant très longtemps,
si l’on ne fait pas d’omelette avant!

(Robert Desnos, Chantefables)
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