
1

Some models

1.1 Gas dynamics in eulerian variables

Let us consider a homogeneous gas (all the molecules are identical with mass m)
in a region�, whose coordinates x = (x1, . . . , xd ) are our ‘independent’ variables.
From a macroscopic point of view, it is described by its mass density ρ, its mo-
mentum per unit volume 
q and its total energy per unit volume E . In a sub-domain
ω containing at an instant N molecules1 of velocities 
v1, . . . , 
vN respectively, we
have ∫

ω

ρ dx = Nm,

∫
ω


q dx = m
N∑
j=1


v j

from which it follows that 
q = ρ
v, 
v being the mean velocity of the molecules.2
Likewise, the total energy is the sum of the kinetic energy and of the rotational and
vibrational energies of the molecules:

∫
ω

E dx = 1

2
m

N∑
j=1

‖
v2‖ +
N∑
j=1

(
e jv + e jR

)

where e jv and e
j
R are positive. For amonatomic gas, such asHe, the energy of rotation

is null. The energy of vibration is a quantum phenomenon, of sufficiently weak
intensity to be negligible at first glance. Applying the Cauchy–Schwarz inequality,
we find that

1

2
m

N∑
j=1

‖
v j‖2 ≥ m

2N

∥∥∥∥
N∑
j=1


v j
∥∥∥∥
2

1 N is a very large number, for example of the order of 1023 if the volume of ω is of the order of a unit, but the
product mN is of the order of this volume.

2 This can be suitably modified if there are several kinds of molecules of different masses.
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2 Some models

which gives

∫
ω

E dx ≥ 1

2

( ∫
ω

ρ dx

)−1∥∥∥∥
∫

ω


q dx
∥∥∥∥
2

+
N∑
j=1

(
e jv + e jR

)

≥ 1

2

( ∫
ω

ρ dx

)−1∥∥∥∥
∫

ω

ρ
v dx
∥∥∥∥
2

.

This being true for every sub-domain, we can deduce that the quantity E/ρ− 1
2‖
v‖2

is positive. It is called the specific internal energy (that is per unit mass) and we
denote it by e; we thus have

E = 1

2
ρ‖
v‖2 + ρe,

where the first term is (quite improperly) called the kinetic energy of the fluid. For
the sequel it should be remembered that the internal energy can be decomposed
into two terms ek + ef where ek is kinetic in origin and ef is due to other degrees of
freedom of the molecules.

The law of a perfect gas

A perfect gas obeys three hypotheses:

the vibration energy is null,
the velocities at a point (x, t) satisfy a gaussian distribution law

a exp(−b‖ · −
v‖2)
where a, b and 
v are functions of (x, t) (of course, 
v is the mean velocity
introduced above),

the specific internal energy is made up among its different components pro rata
with the degrees of freedom.

Comments (1) The gaussian distribution comes from the theorem of Laplace that
considers the molecular velocities as identically distributed random variables when
N tends to infinity. It is also the equilibrium distribution (when it is called ‘maxwell-
ian’) in the Boltzmann equation, when it takes into account the perfectly elastic
binary collisions.
(2) Several reasons characterise the gaussian as being the appropriate law. On the

one hand, its set is stable by composition with a similitude O of R
d (χ �→ χ ◦ O)

and by multiplication by a scalar (χ �→ λχ ). On the other, the components of the
velocity are independent identically distributed random variables.
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1.1 Gas dynamics in eulerian variables 3

(3) The hypothesis of the equi-partition of energy is pretty well verified when
there are a few degrees of freedom, for example for monatomic molecules (He),
diatomic molecules (H2, O2, N2) or rigid molecules (H2O, CO2, C2H2, C2H4). The
more complex molecules are less rigid; they thus have more degrees of freedom,
which are not equivalent from the energetic point of view.
(4) The equi-partition takes place also among the translational degrees of free-

dom. If the choice is made of an orthonormal frame of reference, each component
v
j
α − vα of the relative velocity is responsible for the same fraction ekα = ek/d in
the energy of kinetic origin.

Let β be the number of non-translational degrees of freedom. The hypothesis of
equi-partition gives the following formula for each type of internal energy:

ek1 = · · · = ekd = 1

d
ek, eR = β

d
ek

and thus e = (d + β)ek1.
The pressure p is the force exerted per unit area on a surface, by the gas situated

on one side of it.3 Take as surface the hyperplane x1 = 0, the fluid being at rest
(
v ≡ 0, a and b constants). Let A be a domain of unit area of this hyperplane. The
force exerted on A by the gas situated to the left is proportional to the number M of
particles hitting A per unit time, multiplied by the first component I1 of the mean
impulse of these.4 On the one hand, M is proportional to the number N of particles
multiplied by the mean absolute speed (the mean of |vα

1 |) in the direction x1. On
the other hand, NI1 is proportional to ρw2

1, that is to ρe1k. Nothing in this argument
involves explicitly the dimension d and we therefore have p = kρe1k, where k is
an absolute constant. A direct calculation in the one-dimensional case yields the
result k = 2. Introducing the adiabatic exponent

γ = d + b + 2

d + b
there results the law of perfect gases

p = (γ − 1)ρe.

The most current adiabatic exponents are 5/3 and 7/5 if d = 3, 2 and 5/3 if
d = 2 and 3 if d = 1. In applications air is considered to be a perfect gas for which
γ = 7/5.

3 In this argument, the surface in question is not a boundary, since it would introduce a reflexion and would
eventually distort the gaussian distribution.

4 This mean is not null as it is calculated solely from the set of molecules for which v
j
1 > 0.
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4 Some models

The Euler equations

The conservation laws of mass, of momentum and of energy can be written

∂tρ + divx (ρ
v) = 0,

∂t (ρvi )+ divx (ρvi 
v)+ ∂i p =
d∑
j=1

∂ j Ti j , 1 ≤ i ≤ d,

∂t E + divx ((E + p)
v) =
d∑
j=1

∂ j (vi Ti j )− divx 
q

where T − pId is the stress tensor and 
q the heat flux. In the last equation, two
terms represent the power of the forces of stress. The conservation of the kinetic
moment ρ
v ∧ x implies that T is symmetric. We have seen that T is null for a fluid
at rest and also when it is in uniform motion of translation. The simplest case is
that in which T is a linear expression of the first derivatives ∇x 
v, the coefficients
being possibly functions of (ρ, e). The principle of frame indifference implies the
existence of two functions α and β such that

Ti j = α(ρ, e)

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ β(ρ, e)(divx 
v)δ ji (1.1)

which clearly introduces second derivatives into the above equations. The tensor T
represents the effects of viscosity and the linear correspondence is Newton’s law. If
α and β are null the conservation laws are called Euler’s equations. In the contrary
case they are called the Navier–Stokes equations.
Likewise, the heat flux is null if the temperature θ (defined later as a thermo-

dynamic potential) is constant. The simplest law is that of Fourier, which can be
written


q = −k(ρ, e)∇xθ,

with k ≥ 0.
For a regular flow, a linear combination of the equations yields the reduced system

∂tρ + div(ρ
v) = 0,

∂tvi + 
v · ∇xvi + ρ−1∂i p = ρ−1 div(Ti .),

∂t e + 
v · ∇xe + ρ−1 p div 
v = ρ−1
(∑
i, j

Ti j∂ jvi − div 
q
)

.

Let us linearise this system in a constant solution, in a reference frame in which the
velocity is null:

∂t R + ρ div 
V = 0,

∂t Vi + ρ−1(pρ∂i R + pe∂iχ ) = ρ−1(α�Vi + (α + β)∂i div 
V ),
∂tχ + ρ−1 p div 
V = ρ−1k�(θρR + θeχ ).
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1.1 Gas dynamics in eulerian variables 5

The last equation can be transformed to

∂t (θρR + θeχ )+ λ div 
V = kθe
ρ

�(θρR + θeχ ).

A necessary condition for the Cauchy problem for this linear system to be well-
posed is the (weak) ellipticity of the operator

(R, 
V , ξ ) �→ (0, α� 
V + (α + β)∇ div 
V , kθe�ξ )

which results in the inequalities

kθe ≥ 0, α ≥ 0, 2α + β ≥ 0. (1.2)

The entropy

In the absence of second order terms, the flow satisfies

p(∂tρ + 
v · ∇ρ) = ρ2(∂t e + 
v · ∇e)
which suggests the introduction of a function S(ρ, e), without critical point, such
that

p
∂S

∂e
+ ρ2

∂S

∂ρ
= 0.

Such a function is defined up to composition on the left by a numerical function:
if h: R → R and if S works, then h ◦ S does too, provided that h′ does not vanish.
Such a function satisfies the equation

(∂t + 
v · ∇)S = 0,

as long as the flow is regular, this signifies that S is constant along the trajectories5

of the particles. On taking account of the viscosity and of the thermal conductivity,
it becomes

ρ(∂t + 
v · ∇)S = Se
∑
i, j

(Ti j∂ jvi )+ div(k∇θ ),

that is to say

∂t (ρS)+ div(ρS
v) = Se
(
1

2
α

∑
i, j

(∂iv j + ∂ jvi )
2 + β(div 
v)2

)
+ Se div(k∇θ ).

Free to change S to −S, we can suppose that Se is strictly positive. The name
specific entropy is given to S. The effect of the viscosity is to increase the integral

5 We refer to the mean trajectory.
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6 Some models

of ρS. The second law of thermodynamics states that the thermal diffusion behaves
in the same sense, that is that ∫

ω

Se div(k∇θ ) dx ≥ 0

if there is no exchange of heat across ∂ω (Neumann condition ∂θ/∂ν = 0).
Otherwise, this integral is compensated by these exchanges. In other terms, after
integration by parts, we must have∫

ω

k∇θ · ∇Se dx ≤ 0,

without restriction onω. Thus∇θ ·∇Semust be negative at every point and naturally
for every configuration. It is then deducted that θ is a decreasing function of Se. Free
to compose θ on the left with an increasing function,6 there is no loss of generality
if we assume that θ = 1/Se, which gives the thermodynamic relation

θ dS = de + pd
(
1

ρ

)
, θ ≥ 0,

in which 1/θ appears as an integrating factor of the differential form de+ pd(1/ρ).
For a perfect gas are chosen as usual θ = e and S = log e − (γ − 1)log ρ.

Barotropic models

A model is barotropic if the pressure is, because of an approximation, a function
of the density only. There are three possible reasons: the flow is isentropic or it is
isothermal, or again it is the shallow water approximation.
For a regular flow without either viscosity or conduction of heat (that makes up

many of the less realistic hypotheses), we have (∂t + 
v · ∇)S = 0: S is constant
along the trajectories. If, in addition, it is constant at the initial instant, we have
S= const. As Se > 0, we can invert the function S(· , ρ): we have e = E (S, ρ),
with the result that also p is a function of (S, ρ). In the present context, p must be
a function of ρ alone and similarly this is true of all the coefficients of the system,
for example α and β. The conservation of mass and that of momentum thus form
a closed system of partial differential equations (here again we have taken account
of the newtonian viscosity7):

∂tρ + div(ρ
v) = 0,

∂t (ρvi )+ div(ρvi 
v)+ ∂i p(ρ) = div(α(∇vi + ∂i 
v))+ ∂i (β div 
v)·
6 This does not affect Fourier’s law, as k is changed with the result that the product k∇θ is not.
7 One more odd choice!
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1.1 Gas dynamics in eulerian variables 7

The equation of the conservation of energy becomes a redundant equation.8 We
shall use it as the ‘entropy’ conservation law of the inviscid model. We call this the
isentropic model:

∂tρ + div(ρ
v) = 0,

∂t (ρvi )+ div(ρvi 
v)+ ∂i p(ρ) = 0.

Its mathematical entropy is the mechanical energy 1
2ρ(‖
v‖2 + e(ρ)), associated

with the ‘entropy flux’ ρ( 12‖
v‖2+e(ρ))
v+ p(ρ)
v. For a perfect gas, the hypothesis
S = const., states that eγ−1 = cρ and furnishes the state law p = κργ . This, then,
is called a polytropic gas.
The isothermal model is reasonable when the coefficient of thermal diffusion is

large relative to the scales of the time and space variables. For favourable boundary
conditions, the entropic balance gives

d

dt

∫
�

ρS dx ≥ −
∫

�

k∇θ · ∇Se dx =
∫

�

k
‖∇θ‖2

θ2
dx .

According to the conservation laws, we can add to ρS an affine function of the
variables (ρ, ρ
v, E) in the preceding inequality. Meanwhile, experience shows that
the mapping (ρ, ρ
v, E) �→ ρS is concave.9 We can thus choose an affine function
η0 with the result that η := ρS+η0 is negative. If the domain� is the whole space
R
d , the fluid being at rest at infinity, we can also take η to be null at infinity. Finally∫

�

k
‖∇θ‖2

θ2
dx ≤ −

∫
�

ηt=0 dx ·

The right-hand side is a datum of the problem, supposed finite. If k is large, we see
that it is all right to approach θ by a constant; that it is a constant and not a function
of time is not clear but is currently assumed. Again, the pressure and the viscosity
become functions of ρ only, and the conservation of mass and that of momentum
form a closed system: the mechanical energy is taken as the mathematical entropy
of the system. For a perfect gas, e = θ is constant, with the result that the state law
is linear: p = κρ.

The isothermal approximation is reasonable enough in certain régimes, because,
for a gas, for instance, the thermal effects are always more significant than the
viscous effects. A general criterion regarding these approximations is however that
the shocks of the barotropic models are not the same as those of the Euler equations:
the Rankine–Hugoniot condition is different.

8 Or rather incompatible, if we have included the newtonian viscosity.
9 In fact, this concavity is the condition for the Cauchy problem of the linearised Euler equations to be well-posed.
It no longer holds if we model a fluid with several phases.
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8 Some models

The third barotropic model describes the flow in a shallow basin, that is, in one
whose horizontal dimensions are great with respect to its depth. The domain � is
the horizontal projection of the basin: we thus have d = 1 or d = 2. The fluid
is incompressible with density ρ0. We do not take the vertical displacements into
account. The variables treated are the horizontal velocity (averaged over the height)

v(x, t) and the height of the fluid h(x, t). The pressure is considered to be the integral
of the hydrostatic pressureρ0gzwhere z is the vertical coordinate.We therefore have
p = ρogh2/2. The conservation of mass and that of momentum give the system

∂t (ρ0h)+ div(ρ0h
v) = 0,

∂t (ρ0hvi )+ div(ρ0vi 
v)+ 1

2
g∂i (ρ0h

2) = 0, 1 ≤ i ≤ d.

Comments Dividing by ρ0, we recover the isentropic model of a perfect gas for
which γ = 2.
We have not taken into account the effects of viscosity and this is an error: they are

responsible for a boundary layer on the base of the basin which implies a resistance
to the motion. That resistance makes itself manifest in the model by a source term
in the second equation of the form − f (h, |
v|)vi , with f > 0.
One way of obtaining these equations from the Euler equations is to integrate the

latter with respect to z (but not x). We then make the hypothesis that certain means
of products are the products of means, that is that the vertical variations in ρ and 
v
are weak.
The relativisticmodels of a gas, thoughmuchmore complicated than thosewhich

have preceded, are also those of systems of conservation laws. We shall not give a
detailed presentation here. By way of an example, we shall consider the simplest
among those systems: a barotropic fluid, isentropic, one-dimensional and in special
relativity; the conversation of mass and that of momentum give

∂t

(
p + ρc2

c2
v2

c2 − v2
+ ρ

)
+ ∂x

(
(p + ρc2)

v

c2 − v2

)
= 0,

∂t

(
(p + ρc2)

v

c2 − v2

)
+ ∂x

(
(p + ρc2)

v2

c2 − v2
+ p

)
= 0.

For more general models the reader should consult Taub [102].

1.2 Gas dynamics in lagrangian variables

Writing the equations of gas dynamics in lagrangian coordinates is very complicated
if d ≥ 2; in addition it furnishes a system which does not come into the spirit of
this book. This is why we limit ourselves to the one-dimensional case (d = 1). We
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1.2 Gas dynamics in lagrangian variables 9

shall make a change of variables (x, t) �→ (y, t) which depends on the solution.
The conservation law of mass

ρt + (ρv)x = 0

is the only one which makes no appeal to any approximation. It expresses that
the differential form α := ρ dx − ρv dt is closed and therefore exact.10 We thus
introduce a function (x, t) �→ y, defined to within a constant by α = dy. We have
dx = v dt + τ dy, where we have denoted by τ = ρ−1 the specific volume (which
is rather a specific length here).
Being given another conservation law ∂t ui + ∂xqi = 0, which can be written

d (qi dt − ui dx) = 0, we have that

d((qi − uiv) dt − uiτ dy) = 0,

that is

∂t (uiτ )+ ∂y(qi − uiv) = 0.

The system, written in the variables (y, t), is thus formed of conservation laws. Let
us look at for example the momentum u2 = ρv. In the absence of viscosity, we
have q2 = ρv2 + p(ρ, e). From this comes

∂tv + ∂y P(τ, e) = 0,

where P(τ, e) := p(τ−1, e). Similarly, for the energy, u3 = 1
2ρv2 + ρe and q3 =

(u3 + p)v :

∂t

(
1

2
v2 + e

)
+ ∂y(P(τ, e)v) = 0.

The conservation of mass gives nothing new since it was already used to construct
the change of variables.With u1 = ρ and q1 = ρv, we only obtain the trivial equation
1t + 0y = 0. To complete the system of equations for the unknowns (τ, v, e) we
have to involve a trivial conservation law. For example with u4 ≡ 1 and q4 ≡ 0,
we obtain

∂tτ = ∂yv.

We note that in lagrangian variables the perfect gas law is written P = (γ − 1)e/τ .
If we take into account the thermal and viscous effects, then q2 = ρv2+ p(ρ, e)−

ν(ρ, e)vx . As τvx = vy we obtain

∂tv + ∂y P(τ, e) = ∂y

(ν

τ
∂yv

)
.

10 These assertions are correct even (ρ, ρv) are no better than locally integrable.
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10 Some models

Similarly, q3 = (u3 + p)v − νvvx − kθx gives

∂t

(
1

2
v2 + e

)
+ ∂y(Pv) = ∂y

(
ν

τ
(v∂yv)

)
+ ∂y

(
k

τ
∂yθ

)
.

Criticism of the change of variables

Although this change of variable is perfectly justified, even if (e, v) is bounded
without more regularity as well as v−1 (see D. Wagner [110]), it raises a major
difficulty if the vacuum is somewhere part of the space. In this case, the jacobian
ρ of (x, t) �→ (y, t) vanishes and it is no longer a change of variable. The specific
volume then reduces to a Dirac mass, with norm equal to the length of the interval
of the vacuum. It becomes critical to give sense to the equations (it is nothing other
than the conservation law of a mathematical difficulty). The equations in eulerian
coordinates are also ill-posed in the vacuum: the velocity cannot be defined and the
fluxes q2 and q3 are singular. Indeed, returning to the variables u = (ρ, ρv, E), we
have q2 = u22/u1 + p, which makes no sense for ρ = 0.

1.3 The equation of road traffic

Let us consider a highway (a unique sense of circulation will be sufficient for our
purpose), in which we take no account of entries or exits. We represent the vehicle
traffic as the motion of a one-dimensional continuous medium, which is reasonable
if the physical domain which we consider is very great in length in comparison
with the length of the cars. In normal conditions, we have a conservation law of
‘mass’

∂tρ + ∂xq = 0,

where q = ρv is the flux, or flow, and v is the mean velocity. Unlike the case of a
fluid there is no conservation law of momentum or of energy. The drivers choose
their velocities according to the traffic conditions. It results in a relation v = V (ρ)
where V is the speed limit if ρ is small. The function ρ �→ V is decreasing and
vanishes for a saturation value ρm, for which neighbouring vehicles are bumper-to-
bumper. The space of the states is therefore U = [0, qm].
This model is a typical example of a scalar conservation law. The state law

q(ρ)= ρV (ρ) has the form indicated in Fig. 1.1. We notice that each possible value
of the flow corresponds to two possible densities, of different velocities, with the
exception of the maximal flow.
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