Index

α, 12
Abu Mostafa, Y.S., 93
adaptive gain matrix, 176
adaptive GLS structure, 65
adaptive merging, 132
adjusted block means, 58
aircraft identification, 93
algebraic forms, 93
algorithms, 3, 6, 62
ANOVA (analysis of variance)
application of, 8
contrast algorithm, 155
design, 3
four-way, 21
low-order, 46
nested design, 132
one-way, 149
techniques, 2, 4
two-way, 40, 41
Anderson, S., 2
approximation, stochastic, 2, 3, 6, 156–167, 179
approximation methodology, 2
arithmetic mean of block, 149
Aron, J., 7, 81
associated confidence interval, 47
astronomy, 35
asymptotic variance, 172
average risk, 157
averaging filter, 181
averaging over specific index, 13
background arrays, 91, 94, 100, 104
background elements, 95
background interference, 4
background structure, 35, 41, 42, 46
balanced incomplete block, 7
balanced incomplete block (BIB), 7, 25, 27, 57, 93
Bayes estimation, 157
Behar, D., 54, 69, 81, 83
Benteftifa, M., 93
β, 8, 9
‘between sum of squares’ (BSS), 14, 37, 41, 43, 46
BIB, 7, 25, 27
bidirectional, 47, 70
bilevel images, 108
biological behavior, 119
block design, 17, 57
block effects, 57, 61, 149
block mean, 58, 149
block nature, 57
blocks and treatments within blocks, 24
blurred edges, 67
blurring, 181
Bonferroni method, 4, 30, 31
Borel measurable function, 165
Bose, D., 81
Box, G., 2
broad classes of models, 8
BSS, 41, 46
BSS, 41, 43, 46
BSS, 46
BSS, 46

cameras, 90
canonical form, 34
center 135° diagonal, 49
center 45° diagonal, 49
center column contrast, 48
center of gravity, 121
Index

center row contrast, 48
Chang, E., 58, 61, 93, 94
Chernoff-Savage class, 170
Chin, R., 93
chi-square variate, 34
Cholesky factorization, 184
circular harmonic functions expansion, 93
class and homogeneity, 134
class formation, 139
class of effects, 85
column, 14, 21
column and row orientations, 4
column and row position information, 57
column contrast, 47, 75
column effect, 12, 14, 15, 47
column merging, 142
column sum of squares, 42
conformal mapping process, 5
common effect, 14
comparing two or multiple means, 31
comparison test, 67
comparisons among effects, 29
complete layout, 17
complex moments, 93
component sum of squares, 63
confidence ellipsoids, 32
confidence intervals, 7, 29-31, 70, 109
conformal mapping, 91-93, 118, 119
constraint on spread of initial guess, 160
contraction mapping, 159, 165, 179
contrast algorithm, 91, 111
contrast and linear combination comparisons, 31
contrast between target, 95
contrast calculation, 85
contrast detection, 111
contrast estimate, 70, 110
contrast functions, 4, 5, 30, 31, 36, 46, 47, 63,
84, 102, 151, 153
contrast space, 92
contrast tests, 137, 176
contrast value, 91
contrast variance, 50, 52-54, 104, 109
contrast-based procedure, 5, 121, 124
contrast to noise, 153, 155
contrasts of means, 116
convergence, 159, 179
correlation without oscillation, 166
correlated data, 5, 10, 123
correlated nature, 55
correlated noise, 36, 50, 51, 78, 155
correlated noisy environments, 91
correlated noisy image scenes, 86
correlation factor, 51
correlation matrix, 9, 51, 99, 100, 124, 152
correlation matrix K, 9
corrupting noise, 55
cortex of brain, 119
cortical image, 121, 123
cortical plane, 119, 121
cortical reference object, 123
cyclic scanning, 123
cyliner, 121
data collection stage, 17
data parameterization, 139
decision interval, 171
decision rules, 135
decision threshold, 11
degrees of freedom, 11, 14, 16, 20, 23, 99, 134
dependence, 156
dependent noise, 149
derivative operator, 83
design matrix, 8, 54, 98
designated target, 91
detection algorithms, 92
detection features, 122
detection of edges, 86
detection of known objects, 90
detection of lines, 4
detection probability, 1, 3, 153, 176
detection procedure based on the F-statistics, 93
detection stage, 94, 95, 108
detectors
 adaptive, 36
 bidirectional, 5, 39, 67, 70, 71, 86
 contrast-based, 51, 65, 151, 178
 dependent noise-based, 96
 edge, 5, 47, 67, 68, 155, 181
 F test, 176
 GLS, 46, 71
 Latin square-based, 74, 78, 86
 line, 47, 155
 multidirectional, 5, 36, 65, 67
 texture edge, 5
 unidirectional edge, 68
deterministic case, 159
deterministic part, 164
diagonal contrasts, 49
diagonal directions, 44
diagonal effects, 17
diagonal masks, 48, 53
Index

diagonal matrix, 147
diagonally oriented lines, 44
diagonals, 54
difference of means, 83
difference operator, 83
differences of local averages, 83
digital gradient, 83
direction of the edges, 81
directional masks, 5, 83, 84
dissipation of noise perturbation, 160
distribution-free sequential estimation procedure, 158
distribution-free statistics, 179
dominant gray level peaks, 108
double-edge transition type algorithm, 4
Duncan test, 31
Dvoretzky, A., 159
Dvoretzky’s theorem, 165, 179

Eberlein, R., 81
dependence, 66, 67
detector, 4, 66–86, 181
detection preprocessor, 6
detector, 3
detector extractors, 67
detector orientation, 63
detector points, 82
decoder preserving image restoration, 196
decoder reconstruction, 5, 81, 83, 86
decoder transition region, 75
decoder-preserving restoration, 186
decoder-transition methodologies, 69
effect estimates, 37, 41, 46, 78, 80
effect vector, 10, 78
effective signal-to-noise ratio (SNR), 192
effect estimates, 85
elementary contrasts, 110
elementary matrix, 101
empirical version, 158
epsilon-contaminated normal class, 173
error matrix, 98
error sum of squares, 28, 53, 148
error term, 14
estimable function, 32, 33, 107, 109
estimate of effect, 26
estimated values, 181
estimation theory, 15
estimators, 2
expected bias, 169
experimental designs, 2, 7, 31

experimentation units, into homogeneous groups or blocks, 24
extended contrast algorithm, 117
extraction of streaks, 35

$F_{a,n}$, 11
$F_{a,n-1}$, 11
F-distribution, 11
F-statistic, 2, 6, 23, 32, 35, 42, 45, 136, 149, 156
F-test, 31, 46, 73, 176
factor α, 133
factor β, 133
false alarm, 1, 31
fast sampling rate, 3
feature detection, 109
feature extraction process, 78
feature matching, 91, 92, 108
first stage, 181
fixed block effects, 25
fixed effects, 8, 129, 143
fixed threshold, 2, 85
form invariant detection procedure, 91
Fourier domain, 93

gain matrix, 176
Gaussian-Markov theorem, 33, 107
Gaussian assumption, 156
Gaussian noise, 2, 9, 35, 176
general linear model, 8, 10
general mean, 14, 106
Gladyszhev’s theorem, 166, 174, 179
global arrays, 94, 124
global mean, 14
GLS, 83, 182
GLS designs, 4, 63, 76
GLS detector, 46
GLS model, 62
GLS or Youden square type, 6
Graceo-Latin squares, 4, 7, 21, 34, 44, 67, 84
gradient comparison, 85
gradient operation, 5
gradient search, 83, 85
gradient-based approach, 86
gray level, 5, 57, 72, 128
Greek letters, 182

Habesth, R., 39, 62, 63
Hampel, F., 2
hat notation, 26
heterogeneity, 67
heterogeneity of global array, 5
heterogeneous quadrants, 136
hierarchical model, 135
high intensity, 56
higher power, 5
higher-order designs, 17
histogram layout, 108
homogeneity, 67, 128, 129, 135
homogeneous subregions, 108
horizontal edges using a block approach, 71
Huber’s M-estimators, 170, 172, 173
hypotheses, 7, 12, 18, 23, 34
hypothesis-alternative pair, 38, 62
identification by comparisons, 58, 59
identity matrix, 9
image, 64
image reconstruction, 189
image restoration, 181–196
image scenes, 52
image segmentation, 5, 81, 128–143
imaging sensors, 90
impulse response, 3
impulsive noise, 156, 189
incomplete designs, 17, 36, 65
incomplete three-way layout, 17
independent noise case, 147
independent noise-based detector, 96
independent quadratic form, 33
initial segmentation, 123
initial strategy flexibility, 160
input/output SNR, 194
internal holes, 104
invariant representation, 119
invariant tests, 2, 7
invariant to scale, 118
iterative scheme, 159, 179

K, 9
Kadar, I., 72, 73, 75, 93, 175
Kang, T., 93
Karolakis, S., 81, 93
Kiener-Wolfowitz, 163, 165, 179
Kowalski, J., 3
Kronecker product, 184
Kronecker delta, 63
kurtosis, 2
Kurz, L., 7, 72, 73, 75, 78, 81, 93, 175, 176
Λ-set, 181
Latin letters, 182
Latin square designs, 17, 18, 67, 86
Latin square mask, 72
Latin squares, 4, 7, 34, 78, 86
“Lena” image, 144, 192, 193, 195
learning intervals, 171
learning phase, 102
learning procedure, 93
learning stage, 91, 96, 121
least squares, 9, 48, 165, 179
Lehmann, E.L., 2
line detection, 4, 35–65
line discrimination, 67
line extraction, 35
line segments, 36
line thickening problem, 47
linear combination, 30, 110
linear contrast techniques, 91
linear hypothesis, 4, 10
linear models, 7–34
linear prediction, 82
linear regressions, 186
linearly independent side conditions, 9
linked lists, 138, 143
localized mask operations, 66
locating a trajectory, 59
logarithmic mapping, 119
logarithmic transformation, 119
logical predicates, 135–137, 143
Lomp, G., 3
lookup table, 98
loss of contrast, 128
low complexity, 91
LS, 71

M-estimator, 173
M-interval partition approximation, 176
machine vision, 92, 118
Mann–Whitney–Wilcoxon statistic, 172
mapping, 93, 119, 121
Markov noise, 36, 147, 182, 183
Markov process, 51, 81
mask, 3, 67, 106
mask size, 106
matched filter, 1, 35
matrix components, 80
maximum a posteriori probability estimator (MAP), 157
maximum contrast, 50, 85
maximum gradient edge detection, 81
maximum gradient search, 82
maximum likelihood estimation, 157
maximum likelihood method, 9
mean block effects, 150
mean estimate, 15, 37, 41, 46, 148
mean square sense, 159, 160, 179
mean square sense convergence, 161
median filters, 181
medical applications, 118
merging adjacent quadrants, 132
merging process, 128, 138
merging strategies, 142
merging homogeneous quadrants of regions, 132
meteorites, 35
meteorite trajectory, 35
military applications, 92
Miller, R., 30
minimum mean-square estimator (MMSE), 157
minimum variance, 33
missing value approach, 6, 181, 189, 195
MTF building image, 195
mixed observation set, 100
mixture distribution model, 181
mixture noise, 189
model fitting, 31
model for reconstruction, 81
model parameter variance, 5
Moltwinkel, C., 93
moment invariant technique, 92, 93
moment invariants, 93, 112, 119
Monte-Carlo simulations, 3, 6, 177, 178
moving robot, 90
μ, 12
multicomparison methodology, 34, 59, 86, 92
multicomparison model, 49
multicomparisons, confidence intervals, 4
multidirectional edges, 86
multiple comparison S-method, 152
multiple comparison techniques, 4
multiple comparisons, 30
multiple linear regression model, 186
multiple projections of object, 90
multipurpose segmentation algorithm, 129
multivariate normal distribution, 33
n-dimensional vector, 8
n×p matrix, 8
nested design algorithm, 143
nested design approach, 6
nested design model, 129, 133
nested two-factor design, 133
Neter, J., 7
Neyman–Pearson detector, 153, 178
noise, 6, 183, 195
noise component, 8, 21
noise contamination, 156
noise dissipation, 160
noise variance, 49, 51
noise vector, 8
noisy environments, 91
noisy image, 86
nominal contrast, 104
non-Gaussian noise, 189
noncentral parameter, 176
noncentrality parameter, 6, 11
nonlinear statistical operators (masks), 2
nonlinear time convolution, 3
nonnegative real sequences, 160
nonrobustized version, 156
nonsingular n×n matrix, 10
nonuniform background structures, 46
nonuniform sampling grid, 121
normal equations, 13, 15, 73, 78
null hypothesis, 2
number of treatments in block, 25
object, 90, 104
object detection, 5, 90–126
objective measures of performance, 192
objects of large size, 124
ω, 11
on-board cameras, 90
one-dimensional contrast case, 59
one-sample, 170, 179
one-way, 4, 7, 34
one-way design, 11, 13, 37
one-way design with fixed effects, 106
one-way layout, 90
one-way model, 12, 69, 148
optimization gain coefficients, 174, 179
optimization parameters, 95
orientation, 91
original, 92, 95
original and transformed data spaces, 124
orthogonal, 47, 116
orthogonal contrast functions, 63
orthogonal contrasts, 5, 116, 124
orthogonal data, 10
orthogonal transformation, 2, 7
orthogonality condition, 64
orthonormal complement, 152
outliers, 170
output SNR, 194
overall arithmetic mean, 58
Index

overall unit mean, 61
overshoot constraint sequence, 160

p-dimensional vector, 8
p-way design, 17
pairwise comparisons, 31
pairwise function, 29, 30
parallelepiped masks, 49
parallelepiped, 48
parameter estimation, 4, 7, 34, 156
parameterization, 133
parametric function, 32, 107
partition stage, 108
partition tests, 2
partitioning, 162, 164
P_0, 178
peaked probability density function, 2
Pearson and Hartley, 177
performance analysis, 156–179
performance criterion, 158
permutation matrices, 5, 100, 101, 124
pixels
 adjacent, 52
 background, 91
 badly corrupted, 181
 low-intensity, 56
 missing values, 189
 target, 104
polar angle, 119
polar coordinates, 119
post hoc comparison, 75
potential lines, 64
power calculations, 179
power for all alternatives, 7
predicate, 135–137
preprocessing mask, 189
preprocessors, 181
preselected threshold, 3
prewhitening transformation, 10
primary treatment levels, 63
primitive feature, 153
primitive quadrants, 130
primitive structures, 135
probability of detection, 1, 3, 153, 176
processing time, 3, 5, 91
projection, 90, 121
projection matrix, 152
Prulits, D., 93
pulse function, 58
pulse-like distribution, 66
pulse-like shape distribution, 61
pure merging, 128
pure splitting, 128
q, 11
q-dimensional contrast space, 34
quadratics, 99
quantization of treatment levels, 57
radial distance, 92, 119
radial masks, 147–155
radial processing, 5, 147
radial processing masks, 155
radial version, 148
random effects models, 8
random part, 163, 164
randomization, 24
randomized design, 57
randomized Latin square layout, 72
randomized version, 100
rank of X^T, 9
rank of quadratic form, 104
rank statistic preprocessors, 170
reconstructed edge, 82
rectangular representation, 119
rectangular window, 49
recursive least square estimator, 6, 82, 186
reduced algorithm, 91
reference contrast, 92
reference database, 90
reference objects, 91, 94, 118
reference templates, 95
region effects, 6
region homogeneity, 128, 136
region merging, 143
region testing, 130
region-growing algorithm, 128, 129
regression equation, 158
regression function, 174
regular contrast algorithm based on ANOVA, 155
reparameterized, replicated, full-rank two-way
design, 174
replicated models, 93
replicates of each treatment, 26
replication order, 174
representation, 119
restoration, 6, 196
restored images, 181
retinal plane, 119
retino-cortical mapping, 120
RMSA estimator, 156, 181
Robbins-Monro, 162, 165, 179
Robbins-Monro stochastic approximation (RMSA) algorithm, 156
robotics, 90
robust estimator, 176
robust form, 174
robust recursive estimation, 169, 179
robust SAMVLS, 173
robust segmentation procedure, 129
robustified versions, 2, 170
robustness, 35, 67
rotation, 90
rotation angle, 92
rotation between test, 118
rotation invariance, 5, 92, 120, 124
rotation invariant object detection, 91, 92
rotation transformation, 118
rotational invariance, 119
row, 12, 21
row contrast, 47, 75
row effects, 14, 15, 41
row scanning, 123
row stacking operation, 100
S-contrast, 104
S-criterion (multicomparison method), 153
Sacks’ theorem, 165
saddle point, 173
salt and pepper noise, 181
salt and pepper type, 189, 195
sample mean, 85
sample mean effect estimates, 48
sampling grid, 121
SAMVLS, 167, 170, 173
satellite picture processing, 90
SBIB designs, 4, 34, 56, 57, 93, 147, 149
scale invariance, 120
scaling effect, 110
scanning window, 8, 17
scene classification, 128
Scheffe, H., 4, 7, 30, 31, 39, 104
segment homogeneity, 134, 138
segmentation, 5, 128, 135
segmentation of gray level images, 143
separable product, 100
set 5 of indexes, 19
set of treatments, 182
shape, 104
shape statistics, 4, 46
shape test, 41, 46, 62, 69, 70, 75, 102
sharpness, 71, 82
shift in mean, 39
σ^2, 9
ship discrimination, 93
side conditions, 13, 15, 19, 27
sign test, 59
signal function, 3
significance level, 73
significant block effects, 58, 60, 61
significant difference test (Fisher), 31
significant unit effects, 60, 61
significant visual contrast, 47
simulation results, 3, 192
small local operators (masks), 3
small sample theory, 167
SNR, 192
split-and-merge procedure, 5, 128–131, 135
splitting regions, 132
splitting tile, 131
$S_N (Y, \beta)$, 11
$S_N (Y, \mu, \beta)$, 11
standard array, 5, 91, 94, 95, 124
standard pattern, 94, 95
statistics for testing hypotheses, 20
step function, 41
step-like change, 66
Stern, D., 78, 81
stochastic approximation, 2, 3, 6, 156–167, 179
stochastic case, 159, 165
strongly mixing type, 156
structural noise, 2
structured backgrounds, 35, 46, 47
structures and lines, 64
studentized range distribution, 75
subarrays, 106
subspace, 11, 39
sufficient conditions, 159, 179
sum of squares, 12, 16, 23, 80
sum of squares associated with H_n, 11
sum of measurements, 58
symmetric balanced incomplete blocks, 4
symmetric BIB (SBIB), 26, 57
symmetric Wilcoxon statistic, 173
symmetrical incomplete block design (SBIB), 147
systematic square, 72
T-test treatments, 182
tabulated threshold, 14
target, 94, 108, 124
target arrays, 91, 94, 100
target extraction, 118
target-to-background pixel ratio, 102
targeted objects, 90
TCM form, 53
TCM matrix, 52
Teh, C., 93
template, 85, 91, 108
template array, 94
template matching technique, 94
template reference, 91
tensored correlated model, 52
tensored form, 81, 99, 183
test contrast, 92
test feature, 68
test object, 91
test of heterogeneity of global array, 124
test of sharpness, 71
test of means of populations, 10
test statistic, 11, 18
tests of shape for lines, 62
texture, 57, 128
texture edges, 5
thickening effect, 41
thickening problems, 65
thickness, 82
three-dimensional images, 93
three-dimensional object detection, 90
three-pixel line, 151
threshold, 50, 92
threshold testing scheme, 58
thresholding scheme, 61
tile, 129, 135
tile homogeneity, 136
tile merging, 142
tile segmentation, 132
topological mapping strategies, 93
trajectories, 4, 56–58, 61, 65
trajectory detection, 36, 55, 57, 59, 61, 65, 93, 149
trajectory elements, 57
trajectory of meteorites, 35
transformation, 93
transformation P, 10
transformation rules, 95
transformation-based object detection, 5, 94, 122, 123
transformed data approach, 93
transformed observations, 100
transformed spaces, 92, 95
translation in the transformed space, 92
treatment and block effects, 27
treatment group, 63
treatment level, 62
tree, 130
Tsai, C., 176
Tukey, 30, 31
Tukey method, 4, 30
Tukey’s honestly significant difference test (HSD), 75
two-dimensional object detection, 90, 91
two-factor nested design, 132
two-sample tests, 170, 171
two-stage approach, 6, 196
two-step process, 128
two-way design, 34, 36, 174
two-way layout, 7, 24, 90
two-way layout parameterization, 5, 124
two-way model, 98
U-form, 172
UMP, 2, 35
UMP-invariant, 39
unbiased estimate, 55, 58, 107, 109
unbiased estimators, 33
unbiased linear estimate, 32, 107
unequal nesting, 133
unequal number of replicates, 133
undershoot correction, 160
unidirectional line detection, 36
unidirectional problem, 65
uniformity criterion, 128
uniformly most powerful (UMP), 2, 35
unique unbiased linear estimate, 32
unit effects, 60, 61
unit step function, 150
unit-based approach, 61
V curve, 155, 178
validity of results, 29
variable threshold approach, 1
variance, 107
variance analysis, see ANOVA
variance of contrast function, 154
vector form, 174
vector of estimate, 98
vector of orthogonal data, 10
vector space Ω, 8
vertical effects, 69
vision, human, 118, 120
vision problems, 90
visual comparison, 192
visual contrast, 47
visual equivalence, 5, 95, 123
Index

- Wasserman, W., 7
- weighed sum of squares, 37, 41
- Wilcoxon robustized recursive least mean square estimator, 195
- Wilcoxon statistic preprocessor, 156
- Wilcoxon symmetric statistic, 171
- window, 36, 48
- “within sum of squares” (WSS) 14, 37, 41, 43, 46

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>X', 8, 9</td>
<td></td>
</tr>
<tr>
<td>Youden square, 4, 56, 60, 61</td>
<td></td>
</tr>
<tr>
<td>YS masks, 182</td>
<td></td>
</tr>
<tr>
<td>zero-sum condition, 13</td>
<td></td>
</tr>
</tbody>
</table>