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1

The laws of thermodynamics

1.1 The thermodynamic system and processes

A physical system containing a large number of atoms or molecules is called
the thermodynamic system if macroscopic properties, such as the temperature,
pressure, mass density, heat capacity, etc., are the properties of main interest.
The number of atoms or molecules contained, and hence the volume of the sys-
tem, must be sufficiently large so that the conditions on the surfaces of the sys-
tem do not affect the macroscopic properties significantly. From the theoretical
point of view, the size of the system must be infinitely large, and the mathe-
matical limit in which the volume, and proportionately the number of atoms or
molecules, of the system are taken to infinity is often called the thermodynamic
limit.

The thermodynamic process is a process in which some of the macroscopic
properties of the system change in the course of time, such as the flow of matter or
heat and/or the change in the volume of the system. It is stated that the system is in
thermal equilibrium if there is no thermodynamic process going on in the system,
even though there would always be microscopic molecular motions taking place.
The system in thermal equilibrium must be uniform in density, temperature, and
other macroscopic properties.

1.2 The zeroth law of thermodynamics

If two thermodynamic systems, A and B, each of which is in thermal equilibrium
independently, are brought into thermal contact, one of two things will take place:
either (1) a flow of heat from one system to the other or (2) no thermodynamic
process will result. In the latter case the two systems are said to be in thermal
equilibrium with respect to each other.

1



2 1 The laws of thermodynamics

The zeroth law of thermodynamics If two systems are in thermal equilibrium
with each other, there is a physical property which is common to the two systems.
This common property is called the temperature.

Let the condition of thermodynamic equilibrium between two physical systems
A andB be symbolically represented by

A ⇔ B. (1.1)

Then, experimental observations confirm the statement

if A ⇔ C and B ⇔ C, then A ⇔ B. (1.2)

Based on preceding observations, some of the physical properties of the system
C can be used as a measure of the temperature, such as the volume of afixed amount
of the chemical element mercury under some standard atmospheric pressure. The
zeroth law of thermodynamics is the assurance of the existence of a property called
thetemperature.

1.3 The thermal equation of state

Let us consider a situation in which two systemsA and B are in thermal equilib-
rium. In particular, we identifyA as the thermometer andB as a system which is
homogeneous and isotropic. In order to maintain equilibrium between the two, the
volumeV of B does not have to have afixed value. The volume can be changed
by altering the hydrostatic pressurep of B, yet maintaining the equilibrium condi-
tion in thermal contact with the systemA. This situation may be expressed by the
following equality:

fB(p, V ) = θA, (1.3)

whereθA is anempirical temperature determined by the thermometerA.
The thermometerA itself does not have to be homogeneous and isotropic; how-

ever, letA also be such a system. Then,

fB(p, V ) = f A(pA, VA). (1.4)

For the sake of simplicity, letpA be a constant. UsuallypA is chosen to be one
atmospheric pressure. Thenf A becomes a function only of the volumeV . Let us
take this function to be

f A(pA, VA) = 100

[
VA − V0

V100 − V0

]
A

, (1.5)

whereV0 andV100 are the volumes ofA at the freezing and boiling temperatures
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of water, respectively, under one atmospheric pressure. This means

θ = 100
VA − V0

V100 − V0
. (1.6)

If B is an arbitrary substance, (1.3) may be written as

f (p, V ) = θ. (1.7)

In the above, the volume of the systemA is used as the thermometer; however,
the pressurep could have been used instead of the volume. In this case the volume
of systemA must be kept constant. Other choices for the thermometer include the
resistivity of a metal. The temperatureθ introduced in this way is still an empirical
temperature. An equation of the form (1.7) describes the relationship between the
pressure, volume, and temperatureθ and is called thethermal equation of state. In
order to determine the functional form off (p, V ), some elaborate measurements
are needed. Tofind a relationship between small changes inp, V andθ , however,
is somewhat easier. When (1.7) is solved forp, we can write

p = p(θ, V ). (1.8)

Differentiating this equation, wefind

dp =
(
∂p

∂θ

)
V

dθ +
(
∂p

∂V

)
θ

dV . (1.9)

If the pressurep is kept constant, i.e., dp = 0, the so-calledisobaric process,(
∂p

∂θ

)
V

dθ +
(
∂p

∂V

)
θ

dV = 0. (1.10)

In this relation, one of the two changes, either dθ or dV, can have an arbitrary
value; however, the ratio dV/dθ is determined under the condition dp = 0. Hence
the notation(∂V /∂θ )p is appropriate. Then,(

∂p

∂θ

)
V

+
(
∂p

∂V

)
θ

(
∂V

∂θ

)
p

= 0. (1.11)

(∂p/∂θ )V is the rate of change ofp with θ under the condition of constant volume,
the so-calledisochoric process. SinceV is kept constant,p is a function only ofθ .
Therefore (

∂p

∂θ

)
V

= 1(
∂θ
∂p

)
V

. (1.12)
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Hence (1.11) is rewritten as(
∂p

∂V

)
θ

(
∂V

∂θ

)
p

(
∂θ

∂p

)
V

= −1. (1.13)

This form of equation appears very often in the formulation of thermodynamics. In
general, if a relationf (x, y, z) = 0 exists, then the following relations hold:(

∂x

∂y

)
z

= 1(
∂y
∂x

)
z

,

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (1.14)

The quantity

β = 1

V

(
∂V

∂θ

)
p

(1.15)

is called thevolume expansivity. In general,β is almost constant over some range
of temperature as long as the range is not large. Another quantity

K = −V

(
∂p

∂V

)
θ

(1.16)

is called theisothermal bulk modulus. The reciprocal of this quantity,

κ = − 1

V

(
∂V

∂p

)
θ

, (1.17)

is called theisothermal compressibility. Equation (1.9) is expressed in terms of
these quantities as

dp = βK dθ − K

V
dV . (1.18)

1.4 The classical ideal gas

According to laboratory experiments, many gases have the common feature that
the pressure,p, is inversely proportional to the volume,V ; i.e., the productpV is
constant when the temperature of the gas is kept constant. This property is called
theBoyle–Marriot law,

pV = F(θ ), (1.19)

where F(θ ) is a function only of the temperatureθ . Many real gases, such as
oxygen, nitrogen, hydrogen, argon, and neon, show small deviations from this
behavior; however, the law is obeyed increasingly more closely as the density of
the gas is lowered.
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Thermodynamics is a branch of physics in which thermal properties of physical
systems are studied from a macroscopic point of view. The formulation of the
theories does not rely upon the existence of a system which has idealized properties.
It is, nevertheless, convenient to utilize an idealized system for the sake of theoretical
formulation. Theclassical ideal gasis an example of such a system.

Definition The ideal gas obeys the Boyle–Marriot law at any density and temper-
ature.

Let us now construct a thermometer by using the ideal gas. For this purpose, we
take afixed amount of the gas and measure the volume change due to a change of
temperature,θp, while the pressure of the gas is kept constant. So,

θp = 100
V − V0

V100 − V0
, (1.20)

whereV0 andV100 are the volumes of the gas at the freezing and boiling temper-
atures, respectively, of water under the standard pressure. This scale is called the
constant-pressure gas thermometer.

It is also possible to define a temperature scale by measuring the pressure of the
gas while the volume of the gas is kept constant. This temperature scale is defined
by

θV = 100
p − p0

p100 − p0
, (1.21)

wherep0 and p100 are the pressures of the gas at the freezing and boiling temper-
atures, respectively, of water under the standard pressure. This scale is called the
constant-volume gas thermometer.

These two temperature scales have the same values at the twofixed points of
water by definition; however, they also have the same values in between the two
fixed temperature points.

From (1.20) and (1.21),

θp = 100
pV − pV0

pV100 − pV0
, θV = 100

pV − p0V

p100V − p0V
, (1.22)

and, sincepV0 = p0V and pV100 = p100V ,

θp = θV , (1.23)

and hence we may setθp = θV = θ and simply define

pV0 = p0V = (pV)0, pV100 = p100V = (pV)100, (1.24)
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and

θ = 100
pV − (pV)0

(pV)100 − (pV)0
. (1.25)

When this equation is solved forpV, wefind that

pV = (pV)100 − (pV)0

100

[
θ + 100(pV)0

(pV)100 − (pV)0

]
. (1.26)

If we define

(pV)100 − (pV)0

100
= R′,

θ + 100(pV)0

(pV)100 − (pV)0
= 	, (1.27)

(1.26) can then be written in the following form:

pV = R′	. (1.28)

	 is called theideal gas temperature. It will be shown later in this chapter that this
temperature becomes identical with thethermodynamic temperature scale.

The difference betweenθ and	 is given by

	0 = 100
(pV)0

(pV)100 − (pV)0
. (1.29)

According to laboratory experiments, the value of this quantity depends only weakly
upon the type of gas, whether oxygen, nitrogen, or hydrogen, and in particular it
approaches a common value,	0, in the limit as the density of the gas becomes very
small:

	0 = 273.15. (1.30)

We can calculate the volume expansivityβ for the ideal gas at the freezing point
of waterθ = 0:

β = 1

V0

(
∂V

∂	

)
p

= 1

V0

R′

p
= R′

R′	0
= 1

	0
. (1.31)

When the value	0 = 273.15 is introduced, wefind

β = 0.0036610. (1.32)

This value may be favorably compared with experimental measurements.
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1.5 The quasistatic and reversible processes

Thequasistatic processis defined as a thermodynamic process which takes place
unlimitedly slowly. In the theoretical formulation of thermodynamics it is customary
to consider a sample of gas contained in a cylinder with a frictionless piston. The
walls of the cylinder are made up of a diathermal, i.e., a perfectly heat conducting
metal, and the cylinder is immersed in a heat bath at some temperature. In order
to cause any heat transfer between the heat bath and the gas in the cylinder there
must be a temperature difference; and similarly there must be a pressure difference
between the gas inside the cylinder and the applied pressure to the piston in order
to cause any motion of the piston in and out of the cylinder. We may consider an
ideal situation in which the temperature difference and the pressure difference are
adjusted to be infinitesimally small and the motion of the piston is controlled to
be unlimitedly slow. In this ideal situation any change or process of heat transfer
along with any mechanical work upon the gas by the piston can be regarded as
reversible, i.e., the direction of the process can be changed in either direction, by
compression or expansion. Any gadgets which might be employed during the course
of the process are assumed to be brought back to the original condition at the end
of the process. Any process designed in this way is called a quasistatic process or
a reversible processin which the system maintains an equilibrium condition at any
stage of the process.

In this way the thermodynamic system, a sample of gas in this case, can make
somefinite change from an initial stateP1 to a final stateP2 by a succession of
quasistatic processes. In the following we often state that a thermodynamic system
undergoes afinite change from the initial stateP1 to thefinal stateP2 by reversible
processes.

1.6 Thefirst law of thermodynamics

Let us consider a situation in which a macroscopic system has changed state from
one equilibrium stateP1 to another equilibrium stateP2, after undergoing a suc-
cession of reversible processes. Here the processes mean that a quantity of heat
energyQ has cumulatively been absorbed by the system and an amount of me-
chanical workW has cumulatively been performed upon the system during these
changes.

The first law of thermodynamics There would be many different ways or routes
to bring the system from state P1 to the state P2; however, it turns out that the sum

W + Q (1.33)
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is independent of the ways or the routes as long as the two states P1 and P2 are
fixed, even though the quantities W and Q may vary individually depending upon
the different routes.

This is the fact which has been experimentally confirmed and constitutes thefirst
law of thermodynamics. In (1.33) the quantitiesW andQ must be measured in the
same units.

Consider, now, the case in whichP1 and P2 are very close to each other and
bothW andQ are very small. Let these values be d′W and d′Q. According to the
first law of thermodynamics, the sum, d′W + d′Q, is independent of the path and
depends only on the initial andfinal states, and hence is expressed as the difference
of the values of a quantity called theinternal energy, denoted byU , determined by
the physical, or thermodynamic, state of the system, i.e.,

dU = U2 − U1 = d′W + d′Q. (1.34)

Mathematically speaking, d′W and d′Q are notexact differentialsof state functions
since both d′W and d′Q depend upon the path; however, the sum, d′W + d′Q, is
an exact differential of the state functionU . This is the reason for using primes
on those quantities. More discussions on the exact differential follow later in this
chapter.

1.7 The heat capacity

We will consider one of the thermodynamical properties of a physical system, the
heat capacity. The heat capacity is defined as the amount of heat which must be
given to the system in order to raise its temperature by one degree. Thespecific
heatis the heat capacity per unit mass or per mole of the substance.

From thefirst law of thermodynamics, the amount of heat d′Q is given by

d′Q = dU − d′W = dU + pdV, d′W = −pdV. (1.35)

These equations are not yet sufficient tofind the heat capacity, unless dU and
dV are given in terms of d	, the change in ideal gas temperature. In order tofind
these relations, it should be noted that the thermodynamic state of a single-phase
system is defined only when two variables arefixed. The relationship between
U and	 is provided by thecaloric equation of state

U = U (	,V), (1.36)

and there is a thermal equation of state determining the relationship betweenp, V ,
and	:

p = p(	,V). (1.37)
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In the above relations, we have chosen	 andV as the independent variables to
specify the thermodynamic state of the system. We could have equally chosen
other sets, such as (	, p) or (p,V). Which of the sets is chosen depends upon the
situation, and discussions of the most convenient set will be given in Chapter 2.

Let us choose the set (	,V) for the moment; then, onefinds that

dU =
(
∂U

∂	

)
V

d	+
(
∂U

∂V

)
	

dV, (1.38)

d′Q =
(
∂U

∂	

)
V

d	+
[(
∂U

∂V

)
	

+ p

]
dV, (1.39)

and the heat capacity,C, is given by

C =
(
∂U

∂	

)
V

+
[(
∂U

∂V

)
	

+ p

] (
dV

d	

)
process

. (1.40)

The notation (dV/d	)processmeans that the quantity is not just a function only of	,
and the process must be specified.

Theheat capacity at constant volume(isochoric),CV , is found by setting dV = 0,
i.e.,

CV =
(
∂U

∂	

)
V

. (1.41)

The heat capacity for an arbitrary process is expressed as

C = CV +
[(
∂U

∂V

)
	

+ p

] (
dV

d	

)
process

. (1.42)

Theheat capacity at constant pressure(isobaric), Cp, is given by

Cp = CV +
[(
∂U

∂V

)
	

+ p

] (
∂V

∂	

)
p

, (1.43)

where(∂V/∂	)p is found from the thermal equation of state, and(∂U/∂V)	 is
from the caloric equation of state. This quantity may be rewritten as(

∂U

∂V

)
	

= Cp − CV(
∂V
∂	

)
p

− p. (1.44)

The denominator is expressed in terms of the volume expansivity,β, i.e.,

β = 1

V

(
∂V

∂	

)
p

, (1.45)
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and then (
∂U

∂V

)
	

= Cp − CV

βV
− p. (1.46)

This equation expresses the volume dependence of the internal energy in terms of
Cp,CV , andβ.

For many real gases, if the experimentally measured values ofCp, CV , andβ
are introduced into the above equation, the right hand side becomes vanishingly
small, especially if the state of the gas is sufficiently removed from the satura-
tion point; an experimental fact which led to the definition of a classical ideal
gas.

Definition The thermal and caloric equations of state for the classical ideal gas
are defined, respectively, by

p = p(	,V) = nR	

V
, U = U (	), (1.47)

where n is the quantity of the gas measured in the number of moles of the gas and
R is a constant.

It is worthwhile noting the fact that the definition of a mole can be given within the
framework of thermodynamics, i.e., the amount of the gas is adjusted in such a way
that the quantitypV/	 becomes equal for all gases. Thermodynamics is a macro-
scopic physics, and hence the formulation of thermodynamics can be developed
without taking any atomic structure of the working system into consideration.

One important property of the classical ideal gas follows immediately from the
above definition of the equations of state and (1.46):(

∂U

∂V

)
	

= 0, Cp = CV + βpV = CV + nR. (1.48)

1.8 The isothermal and adiabatic processes

Let us now discuss some other properties of the ideal gas. There are two commonly
employed processes in the formulation of thermodynamics.

One is theisothermal process. In this process, the physical system, such as an
ideal gas, is brought into thermal contact with a heat reservoir of temperature	,
and all the processes are performed at constant temperature. For an ideal gas,

pV = constant, d	 = 0. (1.49)

The lines drawn in thep − V plane are called theisotherms.
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�

�

pVγ = constant
adiabatic

pV = constant
isothermal

V

p

Fig. 1.1.

The other process is theadiabaticprocess. In this process, the physical system
is isolated from any heat reservoir, and hence there is no heat transfer in and out of
the system. A passage, or line, in thep − V plane in an adiabatic process will now
be found.

From (1.39), for an adiabatic process(
∂U

∂	

)
V

= CV ,

(
∂U

∂V

)
	

= 0, CVd	+ pdV = 0, (1.50)

which yields a differential equation

dV

V
+ CV

nR

d	

	
= 0, (1.51)

with the solution

V	
CV
nR = constant. (1.52)

If this is combined with	 = pV/nR, wefind

p
CV
nR V

nR+CV
nR = constant, (1.53)

which yields

pVγ = constant, (1.54)

whereγ = Cp/CV .
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1.9 The enthalpy

Let us go back to thefirst law of thermodynamics,

d′Q = dU + pdV, (1.55)

and construct an equation in which the temperature	 and pressurep are used
as independent variables. In order to accomplish this, both dU and dV must be
expressed in terms of d	 and dp, i.e.,

dU =
(
∂U

∂	

)
p

d	+
(
∂U

∂p

)
	

dp,

dV =
(
∂V

∂	

)
p

d	+
(
∂V

∂p

)
	

dp. (1.56)

Then,

d′Q =
[(
∂U

∂	

)
p

+ p

(
∂V

∂	

)
p

]
d	+

[(
∂U

∂p

)
	

+ p

(
∂V

∂p

)
	

]
dp. (1.57)

This suggests that the quantityH , called theenthalpyand defined by

H = U + pV, (1.58)

is a convenient quantity when	 and p are used as the independent variables:

d′Q =
(
∂H

∂	

)
p

d	+
[(
∂H

∂p

)
	

− V

]
dp. (1.59)

The heat capacity at constant pressure (isobaric),Cp, is found by setting dp = 0,
i.e.,

Cp =
(
∂H

∂	

)
p

. (1.60)

The heat capacity for an arbitrary process is expressed as

C = Cp +
[(
∂H

∂p

)
	

− V

] (
dp

d	

)
process

. (1.61)

1.10 The second law of thermodynamics

Let us examine closely the reversibility characteristics of the processes which take
place in nature. There are three forms of statement concerning the reversibility
vs. irreversibility argument. (Note that the terminologiescyclic engineandcyclic
processare used. The cyclic engine is a physical system which performs a succession
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of processes and goes back to the state from which it started at the end of the
processes. The physical conditions of the surroundings are assumed also to go back
to the original state.)

The second law of thermodynamics is stated in the following three different
forms.

Clausius’s statement It is impossible to operate a cyclic engine in such a way
that it receives a quantity of heat from a body at a lower temperature and gives off
the same quantity of heat to a body at a higher temperature without leaving any
change in any physical system involved.

Thomson’s statement† It is impossible to operate a cyclic engine in such a way
that it converts heat energy from one heat bath completely into a mechanical work
without leaving any change in any physical system involved.

Ostwald’s statement It is impossible to construct a perpetual machine of the
second kind.

The perpetual machine of the second kindis a machine which negates Thom-
son’s statement. For this reason, Ostwald’s statement is equivalent to Thomson’s
statement.

If one of the statements mentioned above is accepted to be true, then other
statements are proven to be true. All the above statements are, therefore, equivalent
to one another.

In order to gain some idea as to what is meant by the proof of a theorem in the
discussion of the second law of thermodynamics, the following theorem and its
proof are instructive.

Theorem 1.1 A cyclic process during which a quantity of heat is received from a
high temperature body and the same quantity of heat is given off to a low temperature
body is an irreversible process.

Proof If this cyclic process is reversible it would then be possible to take away a
quantity of heat from a body at a lower temperature and give off the same quan-
tity of heat to a body at a higher temperature without leaving any changes in the
surroundings. This reverse cycle would then violate Clausius’s statement. For this
reason, if the Clausius statement is true, then the statement of this theorem is also
true.

† William Thomson, later Lord Kelvin, developed the second law of thermodynamics in 1850.



14 1 The laws of thermodynamics

It will be left to the Exercises to prove that the following statements are all true
if one of the preceding statements is accepted to be true:

generation of heat by friction is an irreversible process;
free expansion of an ideal gas into a vacuum is an irreversible process;
a phenomenon offlow of heat by heat conduction is an irreversible process.

The motion of a pendulum is usually treated as a reversible phenomenon in
classical mechanics; however, if one takes into account the frictional effect of the
air, then the motion of the pendulum must be treated as an irreversible process.
Similarly, the motion of the Moon around the Earth is irreversible because of the
tidal motion on the Earth. Furthermore, if any thermodynamic process, such as the
flow of heat by thermal conduction or the free expansion of a gas into a vacuum, is
involved, all the natural phenomena must be regarded as irreversible processes.

Another implication of the second law of thermodynamics is that the direction of
the irreversibleflow of heat can be used in defining the direction of the temperature
scale. If two thermodynamic systems are not in thermal equilibrium, then aflow
of heat takes place from the body at a higher temperature to the body at a lower
temperature.

1.11 The Carnot cycle

TheCarnot cycleis defined as a cyclic process which is operated under the following
conditions.

Definition The Carnot cycle is an engine capable of performing a reversible cycle
which is operated between two heat reservoirs of empirical temperaturesθ2 (higher)
andθ1 (lower).

Theheat reservoiror heat bathis interpreted as having an infinitely large heat
capacity and hence its temperature does not change even though there is heat transfer
into or out of the heat bath. The terminologies heat reservoir (R) and heat bath may
be used interchangeably in the text.

The Carnot cycle,C, receives a positive quantity of heat from the higher tem-
perature reservoir and gives off a positive quantity of heat to the lower temperature
reservoir. Since this is a reversible cycle, it is possible to operate the cycle in the
reverse direction. Such a cycle is called thereverse Carnot cycle, C̄. C̄ undergoes
a cyclic process during which it receives a positive quantity of heat from a lower
temperature reservoir and gives off a positive amount of heat to the reservoir at a
higher temperature.
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Theorem 1.2 The Carnot cycle, C, performs positive work on the outside body
while the reverse Carnot cycle,C̄, receives positive work from the outside body.

Proof Let us consider a reverse Carnot cycleC̄. This cycle, by definition, takes
up a quantity of heat from the lower temperature heat reservoir and gives off a
positive quantity of heat to the higher temperature heat reservoir. If, contrary to the
assumption, the outside work is zero, the cycle would violate the Clausius statement.
The quantity of work from the outside body cannot be negative, because this would
mean that the cyclic engine could do positive work on the outside body, which
could be converted into heat in the higher temperature heat bath. The net result is
that the reverse cycle would have taken up a quantity of heat and transferred it to
the higher temperature reservoir. This would violate the Clausius statement. For
this reason the reverse Carnot cycle must receive a positive quantity of work from
an outside body.

Next, let us consider a normal Carnot cycle working between two heat reservoirs.
The amount of work performed on the outside body must be positive, because, if
it were negative, the cycle would violate the Clausius statement by operating it in
the reverse direction.

1.12 The thermodynamic temperature

In this section thethermodynamic temperaturewill be defined. To accomplish
this we introduce an empirical temperature scale, which may be convenient for
practical purposes, e.g., a mercury column thermometer scale. The only essential
feature of the empirical temperature is that the scale is consistent with the idea of an
irreversible heat conduction, i.e., the direction of the scale is defined in such a way
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that a quantity of heat canflow irreversibly from a body at a higher temperature to
a body at a lower temperature. Let us prepare two heat baths of temperaturesθ1 and
θ2, θ1 < θ2, and suppose that two Carnot cycles,C andC′, are operated between
the two reservoirs.

C receives heatQ2 from θ2, gives off heatQ1 to θ1, and performs mechanical workW on
the outside.
C′ receives heatQ′

2 from θ2, gives off heatQ′
1 to θ1, and performs mechanical workW on

the outside.

Let us now reverse the direction of the Carnot cycleC′, call it the reverse Carnot
cycleC̄′, and consider a combined systemC + C̄′.

C + C̄′ receives heatQ′
1 − Q1 from θ1, gives off heatQ′

2 − Q2 to θ2 and performs no work
on the outside.

The next step is to examine whetherQ′
1 − Q1 is positive or negative.

If Q′
1 − Q1 > 0, thenQ′

2 − Q2 > 0, because of thefirst law. This would, however, violate
the Clausius statement.
If Q′

1 − Q1 < 0, thenQ′
2 − Q2 < 0. The combined cycle, however, becomes equivalent

with irreversible conduction of heat, which is in contradiction with the performance of the
reversible Carnot cycle.
The only possibility is, then,Q′

1 − Q1 = 0, andQ′
2 − Q2 = 0.

An important conclusion is that all the Carnot cycles have the same performance
regardless of the physical nature of the individual engine, i.e.,

Q1 = Q1(θ1, θ2,W), Q2 = Q2(θ1, θ2,W). (1.62)

Furthermore, if the same cycle is repeated, the heat and work quantities are doubled,
and in general

Q1(θ1, θ2,nW) = nQ1(θ1, θ2,W),

Q2(θ1, θ2,nW) = nQ2(θ1, θ2,W); (1.63)
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and in turn

Q1(θ1, θ2,nW)

Q2(θ1, θ2,nW)
= Q1(θ1, θ2,W)

Q2(θ1, θ2,W)
. (1.64)

This means that the ratioQ2/Q1 depends only onθ1 andθ2, not on the amount of
work W. So,

Q2

Q1
= f (θ1, θ2), (1.65)

where f is a function which does not depend upon the type of the Carnot cycle. Let
us suppose that two Carnot cycles are operated in a series combination as is shown
in Fig. 1.4. Then, from the preceding argument,

Q2

Q1
= f (θ1, θ2),

Q1

Q0
= f (θ0, θ1). (1.66)

If we look at the combination of the cycleC, heat bathR1, and cycleC′ as another
Carnot cycle, we have

Q2

Q0
= f (θ0, θ2). (1.67)

This means

f (θ1, θ2) = f (θ0, θ2)

f (θ0, θ1)
. (1.68)

R2 θ2

��
���

�
R1 θ1

�

�

��
��

R0 θ0

C

C′

Q2

Q1

Q1

Q0

Fig. 1.4.
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Since the left hand side of the equation does not depend uponθ0, the right hand
side of the equation is not allowed to containθ0. Therefore,

f (θ1, θ2) = φ(θ2)

φ(θ1)
. (1.69)

Equation (1.65) can be expressed as

Q2

Q1
= φ(θ2)

φ(θ1)
. (1.70)

Based on the abovefinding, the thermodynamic temperature scale can be intro-
duced according to the following equation:

Q2

Q1
= T2

T1
. (1.71)

This equation, however,fixes only the ratio of the temperatures. In order to deter-
mine the scale of the temperature, two well definedfixed points are needed: one is
the ice point and the other is the saturation vapor point of water under the standard
atmospheric conditions, and the temperature difference between the two points is
defined to be 100 degrees. When the Carnot cycle is operated between the heat
baths kept at these temperatures, we have

T0 + 100

T0
= Qs

Q0
, (1.72)

whereT0 is the ice point,Qs is the quantity of heat received from the heat bath at
the boiling point, andQ0 is the quantity of heat given off to the heat source at the
ice point.

In principle, it is possible to measure the ratioQs/Q0, and the value must be
independent of the physical systems used as the Carnot cycle. In this way the
absolute scale ofT0 is found to be

T0 = 273.15. (1.73)

This scale of temperatue is called thekelvin,† or theabsolute temperature, and is
denoted by K. More recently, it has been agreed to use the triple point of water as
the onlyfixed point, which has been defined to be 273.16 K.

From the practical point of view, the efficiency of an engine is an important
quantity which is defined by

η = Q2 − Q1

Q2
. (1.74)

† After Lord Kelvin (William Thomson (1854)).
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The efficiency of the Carnot cycle is independent of the physical system used as
the Carnot cycle, and is expressed as

η = T2 − T1

T2
. (1.75)

1.13 The Carnot cycle of an ideal gas

It will be established in this section that the temperature provided by the ideal
gas thermometer is identical to the thermodynamic temperature. Let us consider
a Carnot cycle using an ideal gas operated between the heat reservoirs kept atT2

andT1. The ideal gas is a substance for which theP,V,	 relation (among other
properties) is given by

pV = nR	, (1.76)

where p is the hydrostatic pressure under which the gas is kept in a cylinder of
volumeV and in thermal equilibrium conditions at the ideal gas temperature	.
R is a universal constant, independent of the type of gas, andn is the amount of
gas measured in units of moles.	 is the ideal gas absolute temperature. Any real
gas behaves very much like an ideal gas as long as the mass density is sufficiently
small.

Let us assume that the Carnot cycle is made up of the following four stages:

Stage (i)
The ideal gas is initially prepared at stateA(p0,V0,	1). The gas is then isolated from

the heat bath and compressed adiabatically until the temperature of the gas reaches	2.
At the end of this process the gas is in stateB(p1,V1,	2).

Stage (ii)
The gas is brought into thermal contact with a heat bath at temperature	2 and it is

now allowed to expand while the temperature of the gas is kept at	2 until the gas reaches
the stateC(p2,V2,	2). This process is an isothermal expansion.

Stage (iii)
The gas is again isolated from the heat bath and allowed to expand adiabatically until it

reaches stateD(p3,V3,	1).

Stage (iv)
The gas is brought into thermal contact with the heat bath at temperature	1 and then

compressed isothermally until it is brought back to its initial stateA(p0,V0,	1).

All the foregoing processes are assumed to be performed quasistatically and
hence reversibly. It was shown in Sec. 1.8 that the pressure and volume of the ideal
gas change according to the lawpVγ = constant during an adiabatic process. Here,
γ = Cp/CV .
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Fig. 1.5. A Carnot cycle in thep–V plane.

Let us now examine the energy balance in each of the preceding processes.γ is
assumed to be constant for the gas under consideration.

Process (i):A → B
There is no transfer of heat during this process. The mechanical work performed upon

the gas is

W1 =
∫ V0

V1

pdV,

pVγ = p0Vγ

0 = p1Vγ

1 = k,∫ V0

V1

pdV =
∫ V0

V1

k

Vγ
dV

= k

γ − 1

[
1

Vγ−1
1

− 1

Vγ−1
0

]

= 1

γ − 1

[
p1Vγ

1

Vγ−1
1

− p0Vγ

0

Vγ−1
0

]

= 1

γ − 1
(p1V1 − p0V0). (1.77)

Since

p0V0 = R′	1, p1V1 = R′	2, (1.78)




