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The laws of thermodynamics

1.1 The thermodynamic system and processes

A physical system containing a large number of atoms or molecules is called
the thermodynamic system if macroscopic properties, such as the temperature,
pressure, mass density, heat capacity, etc., are the properties of main interest.
The number of atoms or molecules contained, and hence the volume of the sys-
tem, must be sufficiently large so that the conditions on the surfaces of the sys-
tem do not affect the macroscopic properties significantly. From the theoretical
point of view, the size of the system must be infinitely large, and the mathe-
matical limit in which the volume, and proportionately the number of atoms or
molecules, of the system are taken to infinity is often called the thermodynamic
limit.

The thermodynamic process is a process in which some of the macroscopic
properties of the system change in the course of time, such as the flow of matter or
heat and/or the change in the volume of the system. It is stated that the system is in
thermal equilibrium if there is no thermodynamic process going on in the system,
even though there would always be microscopic molecular motions taking place.
The system in thermal equilibrium must be uniform in density, temperature, and
other macroscopic properties.

1.2 The zeroth law of thermodynamics

If two thermodynamic systems, A and B, each of which is in thermal equilibrium
independently, are brought into thermal contact, one of two things will take place:
either (1) a flow of heat from one system to the other or (2) no thermodynamic
process will result. In the latter case the two systems are said to be in thermal
equilibrium with respect to each other.
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2 1 The laws of thermodynamics

The zeroth law of thermodynamics If two systems are in thermal equilibrium
with each other, there is a physical property which is common to the two systems.
This common property is called the temperature.

Let the condition of thermodynamic equilibrium between two physical systems
A and B be symbolically represented by

A ⇔ B. (1.1)

Then, experimental observations confirm the statement

if A ⇔ C and B ⇔ C, then A ⇔ B. (1.2)

Based on preceding observations, some of the physical properties of the system
C can be used as a measure of the temperature, such as the volume of a fixed amount
of the chemical element mercury under some standard atmospheric pressure. The
zeroth law of thermodynamics is the assurance of the existence of a property called
the temperature.

1.3 The thermal equation of state

Let us consider a situation in which two systems A and B are in thermal equilib-
rium. In particular, we identify A as the thermometer and B as a system which is
homogeneous and isotropic. In order to maintain equilibrium between the two, the
volume V of B does not have to have a fixed value. The volume can be changed
by altering the hydrostatic pressure p of B, yet maintaining the equilibrium condi-
tion in thermal contact with the system A. This situation may be expressed by the
following equality:

fB(p, V ) = θA, (1.3)

where θA is an empirical temperature determined by the thermometer A.
The thermometer A itself does not have to be homogeneous and isotropic; how-

ever, let A also be such a system. Then,

fB(p, V ) = f A(pA, VA). (1.4)

For the sake of simplicity, let pA be a constant. Usually pA is chosen to be one
atmospheric pressure. Then f A becomes a function only of the volume V . Let us
take this function to be

f A(pA, VA) = 100

[
VA − V0

V100 − V0

]
A

, (1.5)

where V0 and V100 are the volumes of A at the freezing and boiling temperatures
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1.3 The thermal equation of state 3

of water, respectively, under one atmospheric pressure. This means

θ = 100
VA − V0

V100 − V0
. (1.6)

If B is an arbitrary substance, (1.3) may be written as

f (p, V ) = θ. (1.7)

In the above, the volume of the system A is used as the thermometer; however,
the pressure p could have been used instead of the volume. In this case the volume
of system A must be kept constant. Other choices for the thermometer include the
resistivity of a metal. The temperature θ introduced in this way is still an empirical
temperature. An equation of the form (1.7) describes the relationship between the
pressure, volume, and temperature θ and is called the thermal equation of state. In
order to determine the functional form of f (p, V ), some elaborate measurements
are needed. To find a relationship between small changes in p, V and θ , however,
is somewhat easier. When (1.7) is solved for p, we can write

p = p(θ, V ). (1.8)

Differentiating this equation, we find

dp =
(

∂p

∂θ

)
V

dθ +
(

∂p

∂V

)
θ

dV . (1.9)

If the pressure p is kept constant, i.e., dp = 0, the so-called isobaric process,
(

∂p

∂θ

)
V

dθ +
(

∂p

∂V

)
θ

dV = 0. (1.10)

In this relation, one of the two changes, either dθ or dV, can have an arbitrary
value; however, the ratio dV/dθ is determined under the condition dp = 0. Hence
the notation (∂V /∂θ )p is appropriate. Then,

(
∂p

∂θ

)
V

+
(

∂p

∂V

)
θ

(
∂V

∂θ

)
p

= 0. (1.11)

(∂p/∂θ )V is the rate of change of p with θ under the condition of constant volume,
the so-called isochoric process. Since V is kept constant, p is a function only of θ .
Therefore (

∂p

∂θ

)
V

= 1(
∂θ
∂p

)
V

. (1.12)

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521580560 - Methods of Statistical Physics
Tomoyasu Tanaka
Excerpt
More information

http://www.cambridge.org/0521580560
http://www.cambridge.org
http://www.cambridge.org


4 1 The laws of thermodynamics

Hence (1.11) is rewritten as(
∂p

∂V

)
θ

(
∂V

∂θ

)
p

(
∂θ

∂p

)
V

= −1. (1.13)

This form of equation appears very often in the formulation of thermodynamics. In
general, if a relation f (x, y, z) = 0 exists, then the following relations hold:(

∂x

∂y

)
z

= 1(
∂y
∂x

)
z

,

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (1.14)

The quantity

β = 1

V

(
∂V

∂θ

)
p

(1.15)

is called the volume expansivity. In general, β is almost constant over some range
of temperature as long as the range is not large. Another quantity

K = −V

(
∂p

∂V

)
θ

(1.16)

is called the isothermal bulk modulus. The reciprocal of this quantity,

κ = − 1

V

(
∂V

∂p

)
θ

, (1.17)

is called the isothermal compressibility. Equation (1.9) is expressed in terms of
these quantities as

dp = βK dθ − K

V
dV . (1.18)

1.4 The classical ideal gas

According to laboratory experiments, many gases have the common feature that
the pressure, p, is inversely proportional to the volume, V ; i.e., the product pV is
constant when the temperature of the gas is kept constant. This property is called
the Boyle–Marriot law,

pV = F(θ ), (1.19)

where F(θ ) is a function only of the temperature θ . Many real gases, such as
oxygen, nitrogen, hydrogen, argon, and neon, show small deviations from this
behavior; however, the law is obeyed increasingly more closely as the density of
the gas is lowered.
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1.4 The classical ideal gas 5

Thermodynamics is a branch of physics in which thermal properties of physical
systems are studied from a macroscopic point of view. The formulation of the
theories does not rely upon the existence of a system which has idealized properties.
It is, nevertheless, convenient to utilize an idealized system for the sake of theoretical
formulation. The classical ideal gas is an example of such a system.

Definition The ideal gas obeys the Boyle–Marriot law at any density and temper-
ature.

Let us now construct a thermometer by using the ideal gas. For this purpose, we
take a fixed amount of the gas and measure the volume change due to a change of
temperature, θp, while the pressure of the gas is kept constant. So,

θp = 100
V − V0

V100 − V0
, (1.20)

where V0 and V100 are the volumes of the gas at the freezing and boiling temper-
atures, respectively, of water under the standard pressure. This scale is called the
constant-pressure gas thermometer.

It is also possible to define a temperature scale by measuring the pressure of the
gas while the volume of the gas is kept constant. This temperature scale is defined
by

θV = 100
p − p0

p100 − p0
, (1.21)

where p0 and p100 are the pressures of the gas at the freezing and boiling temper-
atures, respectively, of water under the standard pressure. This scale is called the
constant-volume gas thermometer.

These two temperature scales have the same values at the two fixed points of
water by definition; however, they also have the same values in between the two
fixed temperature points.

From (1.20) and (1.21),

θp = 100
pV − pV0

pV100 − pV0
, θV = 100

pV − p0V

p100V − p0V
, (1.22)

and, since pV0 = p0V and pV100 = p100V ,

θp = θV , (1.23)

and hence we may set θp = θV = θ and simply define

pV0 = p0V = (pV )0, pV100 = p100V = (pV )100, (1.24)
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6 1 The laws of thermodynamics

and

θ = 100
pV − (pV )0

(pV )100 − (pV )0
. (1.25)

When this equation is solved for pV , we find that

pV = (pV )100 − (pV )0

100

[
θ + 100(pV )0

(pV )100 − (pV )0

]
. (1.26)

If we define

(pV )100 − (pV )0

100
= R′,

θ + 100(pV )0

(pV )100 − (pV )0
= �, (1.27)

(1.26) can then be written in the following form:

pV = R′�. (1.28)

� is called the ideal gas temperature. It will be shown later in this chapter that this
temperature becomes identical with the thermodynamic temperature scale.

The difference between θ and � is given by

�0 = 100
(pV )0

(pV )100 − (pV )0
. (1.29)

According to laboratory experiments, the value of this quantity depends only weakly
upon the type of gas, whether oxygen, nitrogen, or hydrogen, and in particular it
approaches a common value, �0, in the limit as the density of the gas becomes very
small:

�0 = 273.15. (1.30)

We can calculate the volume expansivity β for the ideal gas at the freezing point
of water θ = 0:

β = 1

V0

(
∂V

∂�

)
p

= 1

V0

R′

p
= R′

R′�0
= 1

�0
. (1.31)

When the value �0 = 273.15 is introduced, we find

β = 0.0036610. (1.32)

This value may be favorably compared with experimental measurements.
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1.6 The first law of thermodynamics 7

1.5 The quasistatic and reversible processes

The quasistatic process is defined as a thermodynamic process which takes place
unlimitedly slowly. In the theoretical formulation of thermodynamics it is customary
to consider a sample of gas contained in a cylinder with a frictionless piston. The
walls of the cylinder are made up of a diathermal, i.e., a perfectly heat conducting
metal, and the cylinder is immersed in a heat bath at some temperature. In order
to cause any heat transfer between the heat bath and the gas in the cylinder there
must be a temperature difference; and similarly there must be a pressure difference
between the gas inside the cylinder and the applied pressure to the piston in order
to cause any motion of the piston in and out of the cylinder. We may consider an
ideal situation in which the temperature difference and the pressure difference are
adjusted to be infinitesimally small and the motion of the piston is controlled to
be unlimitedly slow. In this ideal situation any change or process of heat transfer
along with any mechanical work upon the gas by the piston can be regarded as
reversible, i.e., the direction of the process can be changed in either direction, by
compression or expansion. Any gadgets which might be employed during the course
of the process are assumed to be brought back to the original condition at the end
of the process. Any process designed in this way is called a quasistatic process or
a reversible process in which the system maintains an equilibrium condition at any
stage of the process.

In this way the thermodynamic system, a sample of gas in this case, can make
some finite change from an initial state P1 to a final state P2 by a succession of
quasistatic processes. In the following we often state that a thermodynamic system
undergoes a finite change from the initial state P1 to the final state P2 by reversible
processes.

1.6 The first law of thermodynamics

Let us consider a situation in which a macroscopic system has changed state from
one equilibrium state P1 to another equilibrium state P2, after undergoing a suc-
cession of reversible processes. Here the processes mean that a quantity of heat
energy Q has cumulatively been absorbed by the system and an amount of me-
chanical work W has cumulatively been performed upon the system during these
changes.

The first law of thermodynamics There would be many different ways or routes
to bring the system from state P1 to the state P2; however, it turns out that the sum

W + Q (1.33)
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8 1 The laws of thermodynamics

is independent of the ways or the routes as long as the two states P1 and P2 are
fixed, even though the quantities W and Q may vary individually depending upon
the different routes.

This is the fact which has been experimentally confirmed and constitutes the first
law of thermodynamics. In (1.33) the quantities W and Q must be measured in the
same units.

Consider, now, the case in which P1 and P2 are very close to each other and
both W and Q are very small. Let these values be d′W and d′Q. According to the
first law of thermodynamics, the sum, d′W + d′Q, is independent of the path and
depends only on the initial and final states, and hence is expressed as the difference
of the values of a quantity called the internal energy, denoted by U , determined by
the physical, or thermodynamic, state of the system, i.e.,

dU = U2 − U1 = d′W + d′Q. (1.34)

Mathematically speaking, d′W and d′Q are not exact differentials of state functions
since both d′W and d′Q depend upon the path; however, the sum, d′W + d′Q, is
an exact differential of the state function U . This is the reason for using primes
on those quantities. More discussions on the exact differential follow later in this
chapter.

1.7 The heat capacity

We will consider one of the thermodynamical properties of a physical system, the
heat capacity. The heat capacity is defined as the amount of heat which must be
given to the system in order to raise its temperature by one degree. The specific
heat is the heat capacity per unit mass or per mole of the substance.

From the first law of thermodynamics, the amount of heat d′Q is given by

d′Q = dU − d′W = dU + pdV, d′W = −pdV . (1.35)

These equations are not yet sufficient to find the heat capacity, unless dU and
dV are given in terms of d�, the change in ideal gas temperature. In order to find
these relations, it should be noted that the thermodynamic state of a single-phase
system is defined only when two variables are fixed. The relationship between
U and � is provided by the caloric equation of state

U = U (�, V ), (1.36)

and there is a thermal equation of state determining the relationship between p, V ,
and �:

p = p(�, V ). (1.37)

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521580560 - Methods of Statistical Physics
Tomoyasu Tanaka
Excerpt
More information

http://www.cambridge.org/0521580560
http://www.cambridge.org
http://www.cambridge.org


1.7 The heat capacity 9

In the above relations, we have chosen � and V as the independent variables to
specify the thermodynamic state of the system. We could have equally chosen
other sets, such as (�, p) or (p, V ). Which of the sets is chosen depends upon the
situation, and discussions of the most convenient set will be given in Chapter 2.

Let us choose the set (�, V ) for the moment; then, one finds that

dU =
(

∂U

∂�

)
V

d� +
(

∂U

∂V

)
�

dV, (1.38)

d′Q =
(

∂U

∂�

)
V

d� +
[(

∂U

∂V

)
�

+ p

]
dV, (1.39)

and the heat capacity, C , is given by

C =
(

∂U

∂�

)
V

+
[(

∂U

∂V

)
�

+ p

] (
dV

d�

)
process

. (1.40)

The notation (dV/d�)process means that the quantity is not just a function only of �,
and the process must be specified.

The heat capacity at constant volume (isochoric), CV , is found by setting dV = 0,
i.e.,

CV =
(

∂U

∂�

)
V

. (1.41)

The heat capacity for an arbitrary process is expressed as

C = CV +
[(

∂U

∂V

)
�

+ p

] (
dV

d�

)
process

. (1.42)

The heat capacity at constant pressure (isobaric), C p, is given by

C p = CV +
[(

∂U

∂V

)
�

+ p

] (
∂V

∂�

)
p

, (1.43)

where (∂V /∂�)p is found from the thermal equation of state, and (∂U/∂V )� is
from the caloric equation of state. This quantity may be rewritten as

(
∂U

∂V

)
�

= C p − CV(
∂V
∂�

)
p

− p. (1.44)

The denominator is expressed in terms of the volume expansivity, β, i.e.,

β = 1

V

(
∂V

∂�

)
p

, (1.45)
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10 1 The laws of thermodynamics

and then (
∂U

∂V

)
�

= C p − CV

βV
− p. (1.46)

This equation expresses the volume dependence of the internal energy in terms of
C p, CV , and β.

For many real gases, if the experimentally measured values of C p, CV , and β

are introduced into the above equation, the right hand side becomes vanishingly
small, especially if the state of the gas is sufficiently removed from the satura-
tion point; an experimental fact which led to the definition of a classical ideal
gas.

Definition The thermal and caloric equations of state for the classical ideal gas
are defined, respectively, by

p = p(�, V ) = n R�

V
, U = U (�), (1.47)

where n is the quantity of the gas measured in the number of moles of the gas and
R is a constant.

It is worthwhile noting the fact that the definition of a mole can be given within the
framework of thermodynamics, i.e., the amount of the gas is adjusted in such a way
that the quantity pV/� becomes equal for all gases. Thermodynamics is a macro-
scopic physics, and hence the formulation of thermodynamics can be developed
without taking any atomic structure of the working system into consideration.

One important property of the classical ideal gas follows immediately from the
above definition of the equations of state and (1.46):(

∂U

∂V

)
�

= 0, C p = CV + βpV = CV + n R. (1.48)

1.8 The isothermal and adiabatic processes

Let us now discuss some other properties of the ideal gas. There are two commonly
employed processes in the formulation of thermodynamics.

One is the isothermal process. In this process, the physical system, such as an
ideal gas, is brought into thermal contact with a heat reservoir of temperature �,
and all the processes are performed at constant temperature. For an ideal gas,

pV = constant, d� = 0. (1.49)

The lines drawn in the p − V plane are called the isotherms.
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